A Review of Estimation Models

Su, Chapter 6

Chapter Goals

- 1. Provide an Overview of Linear Regressions and OLS
- 2. Familiarize Students With Regression Techniques
- 3. Link Economic Theory, Economic Data and Regressions
- 4. Demonstrate How To Use Excel To Run Regressions
- 5. Explain How To Interpret Regression Results

Definitions

- *Population*: The complete set of pertinent data that contains certain characteristics of interest
- *Sample*: A subset of data drawn from a population ideally contains the same characteristics of interest as the population
- Parameter: Any measurable characteristic of a population
- *Statistic or Estimate*: Any value computed entirely from the sample and used to estimate a population parameter
- *Estimator*: The method used to obtain an *estimate*
- *Regression Model*: A mathematical representation of the relationship between two or more variables
- Simple Regression Analysis: A linear or nonlinear regression model that has only two unknown parameters $Y = B_0 + B_1 X$ (6.1*a*)
- *Multiple Regression Analysis*: A linear or nonlinear regression model that has more than two unknown parameters

A Population Regression Model

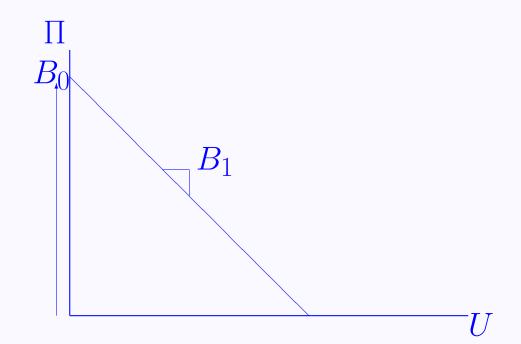
- Suppose we are interested in studying the relationship between that inflation rate and the unemployment rate in an economy
- The Phillips Curve is an economic model that describes this relationship.
- According to this theory, the Phillips Curve relationship can be described by

$$\Pi = B_0 + B_1 U$$

where Π is the inflation rate and U is the unemployment rate

• The relationship between Π and U is linear so B_0 is the intercept parameter and B_1 the slope parameter

Slope and Intercept Parameters



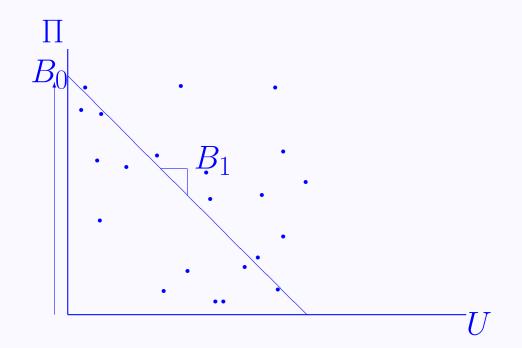
Economic Interpretation of Regression Line

- This straight line is called the Phillips Curve Relationship in Economics
- Given an Unemployment Rate (U_0) in an economy, can expect the Inflation Rate to be P_0 , or

 $P_0 = E(P|U_0) = B_0 + B_1 U_0$

- Points are observations all inflation/unemployment combinations observed in a period of time
- The Population Regression Line is a hypothetical straight line passing through the distribution, cutting it in half
- The Population is all observations the population is not observed

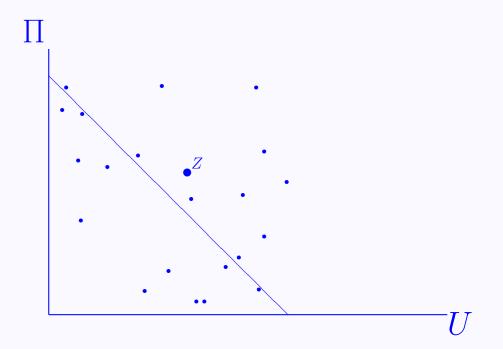
Regression Line and Observations



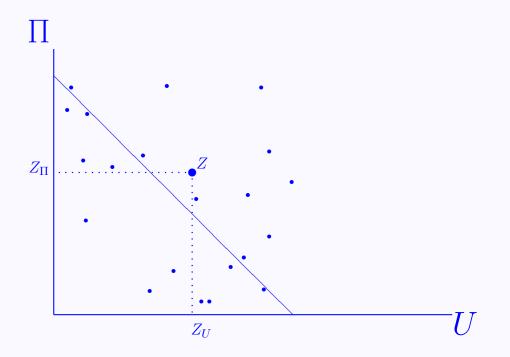
Observations and Deviations

- \bullet Observations are defined by their corresponding values of Π and U
- For example the observation Z would correspond to (Π_Z, U_Z)
- Observations deviate from the Population Regression Line both vertically and horizontally
- Define the vertical distance between any observation and the Population Regression Line as u_i
- Note that for each observation a "deviation" (u_i) can easily be calculated
- For observation Z this deviation is u_z

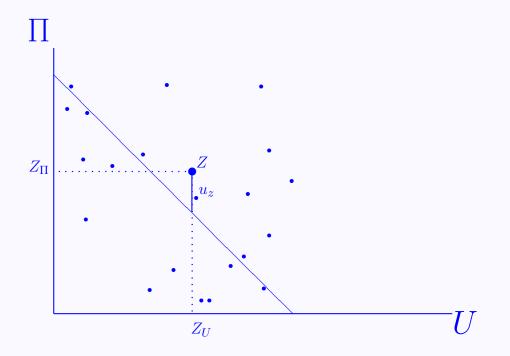
Regression Line and Deviations



Regression Line and Deviations



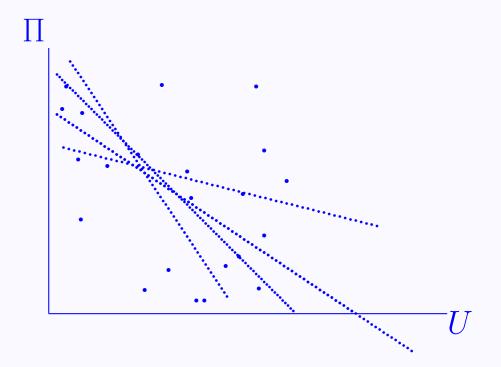
Regression Line and Deviations



The Sample Regression Model

- The parameters of the Population Regression Model are unknown
- They must be estimated by applying statistical methods to a **sample** of observations from the **population**
- If the sample is large enough, its distribution will be similar to the distribution of the population $Y_i = \beta_0 + \beta_1 X_i + e_i$
- For the Phillips Curve example $\Pi_i = \beta_0 + \beta_1 U_i + e_i$
- The *is* represent observations in the sample
- β_0 and β_1 are estimates of the population parameters B_0 and B_1
- The e_i s are the sample disturbance term or sample errors the distance between each observation and the sample regression line
- These are observed, not the u_i s from the population

Regression Lines and Parameters



How Can The "Right" Sample Regression Line Be Located?

- By putting it "as close as possible" to all the sample points.
- What does "as close as possible" mean?

How Can The "Right" Sample Regression Line Be Located?

- By putting it "as close as possible" to all the sample points.
- What does "as close as possible" mean?
- Ordinary Least Squares (OLS):Technique to find the minimum sum of squared deviations, i.e. the regression line

OLS "Solutions" to the Minimization Problem for Regression Coefficients

• Note that

$$\Pi_i = \beta_0 + \beta_1 U_i + e_i \to e_i = \Pi_i - \beta_0 - \beta_1 U_i$$

Minimization Problem

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (\Pi - \beta_0 - \beta_1 U)^2$$

• Solution ("Normal Equations"):

$$\beta_0 = \frac{\sum U \sum U \Pi - \sum \Pi \sum U^2}{(\sum U)^2 - n \sum U^2}$$

$$\beta_1 = \frac{\sum U \sum \Pi - n \sum U \Pi}{(\sum U)^2 - n \sum U^2}$$

"Normal Equations"

 $\beta_0 = \frac{\sum U \sum U \Pi - \sum \Pi \sum U^2}{(\sum U)^2 - n \sum U^2}$

 $\beta_1 = \frac{\sum U \sum \Pi - n \sum U \Pi}{(\sum U)^2 - n \sum U^2}$

Three Types of Regression Parameters

• Regression Coefficients:

 β_0 and β_1 the slope and intercept - Location

• Disturbance Variance:

 $\sigma_u^2,$ or σ_e^2 measures goodness of fit

• Coefficients of Correlation and Determination:

r and R^2 measures association

Disturbance Variances

- Refers to the variance of the error term in the regression model the e_i s.
- Variance or Standard Deviation: Measures the spread or dispersion of a sample or population
- Always measured from the central location/mean/expected value
- **Population Variance**: For any Population Z, the Variance of the Population is the sum of squares of Z divided by population size

$$var(Z) = \sigma_Z^2 = E[Z_i - E(Z_i)]^2 = \frac{\sum (Z_i - \mu_Z)^2}{N}$$

• Sample Variance: For any Sample X, the Variance of the Sample is the sum of squares of X divided by sample size

$$var(X) = s_X^2 = E[X_i - E(X_i)]^2 = \frac{\sum (X_i - \mu_Z)^2}{N - 1}$$

Standard Error of Estimate

- Want to measure the spread of the actual values around the regression line
- "Goodness of Fit" measurement
- Must use sample disturbances or residuals

$$\sigma_e^2 = \frac{\sum (e - E[e])^2}{n - 2} = \frac{\sum e^2}{n - 2}$$

Standard Errors of Estimated Slope and Intercept

- β_0 and β_1 are random variables, need to know about their distribution in order to understand how accurate they are
- Means are population parameters (B_0 and B_1)
- Variances:

$$VAR(\beta_0) = \frac{\sigma_e^2}{\sum x^2}$$
$$VAR(\beta_1) = \sigma_e^2 \frac{\sum X^2}{n \sum x^2}$$
$$x = X - E[X]$$

Measures of Association

• **Covariance** (between two random variables X and Y):Measures association but not causality

$$Cov(X,Y) = E[X - E(X)][Y - E(Y)] = \frac{\sum (X_i - \mu_X)(Y_i - \mu_Y)}{N - 1}$$

• **Coefficient of Correlation** (between two random variables X and Y): Measures association, addresses problem that covariance is affected by units of measurement

$$corr(X,Y) = r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Properties of the Regression Parameters: Disturbance Variance

- The disturbance term (u_i in the population regression model, e_i in the sample regression model) represents unexplained variation in Y
- Where does this unexplained variation come from?
- 1. Unpredictable randomness
- 2. Factors that affect Y which were left out of regression
- 3. Measurement error in data
- Assumptions about the behavior of the error term
 - Mean zero $E(u_i) = 0$
 - Constant variance $E(u_i u_{i+j}) = \sigma_u^2 if j = 0$
 - No serial correlation $E(u_i u_{i+j}) = 0$ if j > 0
 - Independent of $X E(u_i x_i) = 0$
 - Normally distributed $u_i N(0, \sigma_u^2)$

Properties of the Estimated Slope and Intercept Parameters

- The population regression parameters do not vary, but the sample regression parameters do
- Think about taking many small samples from a population (say randomly drawn samples of 100 from a population with 1,000,000 observations)
- Would get many OLS estimates. The OLS estimates of slope and intercept term are random variables
- Usually have only one observation
- Need to know about the distribution in order to make inferences about these estimated parameters
- How do we describe distributions? Mean and variance

Recapitulation

- Regression line: $Y_i = \beta_0 + \beta_1 X_i$
- An observation, Point Z, deviates vertically from the regression line
- This vertical distance is e_Z
- Can calculate a e_i for each observation, called "deviations" or "regression errors"
- The regression error is a random variable, and we assume
- 1. E(e) = 0
- 2. $var(e) = \sigma^2$
- 3. $cov(e_i, e_j) = 0$
- 4. $e \sim N(0, \sigma^2)$

Estimating the variance σ^2

- Disturbances are $e_i = y_i \beta_0 \beta_1 x_i$
- Use the e_i 's to estimate variance

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-2}$$

Distribution of Regression Parameters

- β_0 and β_1 are observations of random variables
- Need to describe their distribution mean and variance
- Means are the population parameters (B_0 and B_1) *unbiasedness*
- Variance of β_0 : Given that $\beta_0 = \overline{y} \beta_1 \overline{x}$

$$var(\beta_0) = \hat{\sigma}^2 \frac{\sum x^2}{T \sum (x_i - \overline{x})^2}$$

• Variance of β_1 :

$$var(\beta_1) = E[\beta_1 - E[\beta_1]]^2 = \frac{\hat{\sigma}^2}{\sum (x_1 - \overline{x})^2}$$

note that although β_1 depends on y, it's variance does not

• Covariance:

$$cov(\beta_0, \beta_1) = \hat{\sigma}^2 \frac{x}{\sum (x_i - \overline{x})^2}$$

Probability Distribution of Least Squares Estimators

$$\beta_0 \sim N\left[B_0, \hat{\sigma}^2 \frac{\sum x^2}{T\sum (x_i - \overline{x})^2}\right]$$

$$\beta_1 \sim N\left[B_1, \frac{\hat{\sigma}^2}{\sum (x_1 - \overline{x})^2}\right]$$

Properties of Regression Parameters

- Linear: The OLS model is clearly a linear model
- Unbiased: The expected value of the regression parameters is are population parameters
- **Best**: In the sense that among all linear unbiased estimators, the variance of the OLS estimator is smallest
- **Gauss-Markov Theorem**: Proves that OLS is the "best" linear unbiased estimator

Multiple Regression

- More than one variable can affect another
- Keynesian Investment Function:

$$I = \gamma_0 + \gamma_1 Y - \gamma_2 R$$

- Need to be able to sort out different effects of R and Y on I
- Use Multiple regression more than one explanatory variable

$$y_t = B_0 + B_1 x_{t1} + B_2 x_{t2} + e_t$$

- The explanatory variables affect y separately: $\frac{\partial y_t}{\partial x_{t2}} = B_2$ and $\frac{\partial y_t}{\partial x_{t1}} = B_1$
- Estimates of B_1 and B_2 depend on both x_{t1} and x_{t2}

A General Statistical Model

- $y_t = B_1 + B_2 x_{2t} + B_3 x_{3t} + \ldots + B_k x_{kt} + e_t$
- 1. $E(e_t) = 0$
- 2. $var(e_t) = \sigma^2$
- 3. $cov(e_t, e_s) = 0$ for $t \neq s$
- 4. $e_t \sim N(0, \sigma^2)$
- Error variance estimation ("standard error of the estimate"): $\hat{\sigma}^2 = \frac{\sum \hat{e}_t^2}{T-K}$
- Variances of estimates

$$var(b_{2}) = \frac{\hat{\sigma}^{2}}{(1 - r_{23}^{2})\sum(x_{t2} - \overline{x_{2}})^{2}}$$
$$var(b_{3}) = \frac{\hat{\sigma}^{2}}{(1 - r_{23}^{2})\sum(x_{t3} - \overline{x_{3}})^{2}}$$
$$r_{23} = \frac{\sum(x_{t2} - \overline{x_{2}})(x_{t3} - \overline{x_{3}})}{\sqrt{\sum(x_{t2} - \overline{x_{2}})}\sqrt{\sum(x_{t3} - \overline{x_{3}})}}$$

Variance-Covariance Matrix

• For the statistical model

 $y_t = B_0 + B_1 x_{t1} + B_2 x_{t2} + e_t$

• The OLS estimators b_1 , b_2 and b_3 have a variance-covariance matrix

 $\left[\begin{array}{ccc} var(b_1) & cov(b_1,b_2) & cov(b_1,b_3) \\ cov(b_2,b_1) & var(b_2) & cov(b_2,b_3) \\ cov(b_3,b_1) & cov(b_3,b_2) & var(b_3) \end{array}\right]$

Analysis of Variance tables

- Generated by regression packages, show the variation in the dependent variable and other important measures of variation in regression models
- Have a common format

		Sum of	Mean
Source of Variation	DF	Squares	Square
Explained	K	ESS	$\frac{ESS}{K}$
Unexplained	T-K	RSS	$\frac{RSS}{T-K}$
Total	T	TSS	$\frac{TSS}{T}$

Goodness-of-fit

• For multiple regression models, measure of goodness of fit is R^2 , the *coefficient of determination*

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{t} - \overline{y}_{t})^{2}}{\sum (y_{t} - \overline{y}_{t})^{2}}$$

- Note that $0 \le R^2 \le 1$
- **SSR**: "Regression Sum of Squares" the amount of variation in *y* explained by the entire regression model
- SST: "Total Sum of Squares" the total variation in y
- Also can use *adjusted* R^2 to adjust for multiple regressors

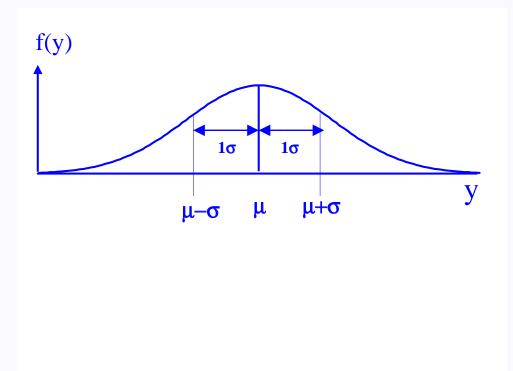
$$\overline{R^2} = 1 - \frac{SSE/(T-K)}{SST/(T-1)}$$

Statistical Inference

- Recall that the OLS estimators $(b_1, b_2, \text{etc.})$ are random variables
- This implies that we can make statistical inferences about the values of these parameters
- In particular, we can learn how close or far these values might be from some important values, like zero, or some value given to us by economic theory
- One distribution used for these tests is the normal distribution
- This distribution has two parameters: μ mean and σ^2 variance
- Graphically it is a "bell curve"
- The probability distribution function (pdf) is

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\mu)^2}{2\sigma^2}}$$

The Normal Distribution



The Standardized Normal Distribution

- "Standardizes" a normally distributed random variable by subtracting off the mean and dividing by the standard deviation of the original random variable
- Usually denoted by the variable Z
- Expression is

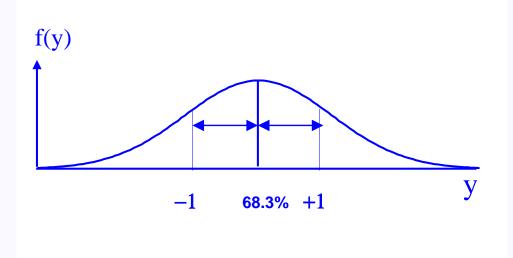
$$Z = \frac{y - \mu}{\sigma}$$

where y is a normally distributed random variable, μ is the mean of y and σ is the standard deviation of y

- $\bullet \; Z \sim N(0,1)$
- Probability distribution function is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}}$$

The Standard Normal Distribution



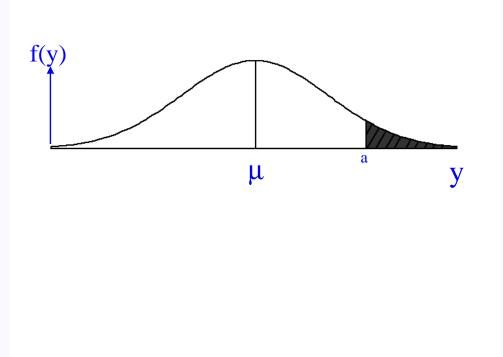
Probabilities in Continuous Distributions

- Recall that probabilities are expressed as areas under the curve in these continuous distributions
- Statistical inference of the type "Given the mean and standard deviation of a normally distributed random variable, what is the probability of observing a value larger than *a*" is typically done
- Formally, for a normally distributed random variable Y with mean μ and standard deviation σ

$$P[Y \ge a] = P\left[\left[\frac{Y-\mu}{\sigma} \ge \frac{a-\mu}{\sigma}\right] = P\left[\left[Z \ge \frac{a-\mu}{\sigma}\right]\right]$$

• Use standard normal statistical tables or spreadsheets to compute this

Probabilities in Continuous Distributions



Student's t Distribution

- Since generally the population variance of an OLS estimator b_k , $var(b_k)$, is unknown, we estimate it with $var(b_k)$ which uses $\hat{\sigma}^2$ instead of σ^2
- This is the basis of most hypothesis testing in regression models
- The test statistic

$$t = \frac{b_k - \beta_k}{\sqrt{v\hat{a}r(b_k)}} = \frac{b_k - \beta_k}{s.e.(b_k)}$$

has a Student's t distribution with T_K degrees of freedom

- Looks like a normal distribution, but has fatter tails
- Use t tables or functions in spreadsheets for this statistic

t-tests in Regressions

• Consider the statistical model

$$y_t = B_0 + B_1 x_{t1} + B_2 x_{t2} + e_t$$

• t-tests can be used to test any linear combination of the regression coefficients in this model

 $H_o: \beta_1 = 0$

 $H_o: \beta_1 + \beta_2 = 4$

 $H_o: 3\beta_1 - 7\beta_2 = 11$

• Every such t-test has T-K degrees of freedom where K is the number of coefficients estimated including the intercept

One-tailed Tests

• For

$$y_t = B_0 + B_1 x_{t1} + B_2 x_{t2} + e_t$$

- Suppose we want to test the null hypothesis H_o : $\beta_2 = 0$ against the alternative H_a : $\beta_2 > 0$
- The test statistic is $t = \frac{b_2}{s.e.(b_2)}$ which is distributed t with T K = T 3 degrees of freedom
- We need to select a value for α a significance level for the test in order to find a critical value t_c to compare the value of the t-statistic to
- If $t > t_c$ we reject the null, else accept

