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Abstract

In a recent talk, Sushmitha Parameswaran showed that in the setting of standard LCP in
R™, a rank-one matrix has the Q-property if and only if it is positive. Answering a question
raised by Prof. K.C. Sivakumar, we extend this result from R™ to Euclidean Jordan algebras.
Specifically, we show that in the setting of symmetric cone linear complementarity problem, a
rank-one linear transformation a ® b has the Q-property if and only if @ > 0 and b > 0 or a <0
and b < 0.
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1 Introduction

Let K be a proper cone (= closed convex pointed cone with nonempty interior) in a finite dimen-
sional real Hilbert space H. Given a linear transformation L : H — H and a ¢ € H, we consider
the linear complementarity problem, LCP(L, K, q): Find € H such that

rze€ K, L(x)+q€ K, and (z,L(z) +¢q) =0,

where K* = {y € H : (y,z) > 0 for all z € K} is the dual of K. This is a special of a variational
inequality problem, VI(f,C): Find z* € C such that

(f(z*),x —x*) > 0 for all x € C,

where C' is a closed convex set in H and f: H — H.

Examples:
1. When H = R" and K = R, LCP(L, K, q) = standard LCP.
2. When H = 8" and K = S8}, LCP(L, K, q) = semidefinite LCP.

3. When H = V (Euclidean Jordan algebra) and K = V., (corresponding symmetric cone),
LCP(L, K, q) = symmetric cone LCP.

Definition 1.1 Let K be a proper cone in H and L be linear on H. We say that L has the
Q-property on K if for every q € H, LCP(L, K, q) has a solution.

Problem: Find necessary and/or sufficient conditions for L to have the Q-property on K.

While there is no (meaningful) necessary condition, a well-known sufficient condition is given by

Karamardian [7].

Theorem 1.2 (Karamardian’s theorem) Suppose there is a d € int(K*) such that zero is the only
solution of the problems LCP(L, K,0) and LCP(L,K,d). Then, L has the Q-property.

There is an immediate corollary:

Corollary 1.3 Suppose L is strictly copositive on K, that is, (L(z),z) > 0 for all0 # x € K
or, equivalently, there exists o > 0 such that (L(z),z) > a||x||? for allz € K. Then L has the
Q-property on K.

The present talk is motivated by a simple result in the standard LCP theory:

A nonnegative matriz is a Q-matriz if and only if its diagonal entries are positive.



(If A = [a;] is a nonnegative matrix with a;; = 0, then, with ¢ = (—1,1,1,...,1), LCP(4,q)

cannot have a solution. In the reverse direction, one can apply the above corollary.)
This raises an interesting Question: Is there an analog for general cones?

Since nonnegative matrices correspond to matrices M with M (R’ ) C R}, for a general cone K,

we consider
m(K):={LeB(H): L(K)C K},

where B(H) is the space of all (bounded) linear transformations on H. While much is known about
m(K) (see references in Orlitzky [8]), characterizing it is notoriously hard. It is known (see Tam
[9]) that m(K) is a proper cone in B(H) and its dual (in the Hilbert space B(H) with inner product
(L1, Lo) :=tr(Ly1L3)) is given by

N
m(K)* ;:{Zai@)bi: a; € K*, biEK,Z‘:LQ,...,N},
i=1
where, for a,b € H,

(a®b)(x):=(b,x)a (re€ H).

So, the previous question reduces to: Which linear transformations in 7w(K) have the Q-property?
This turns out to be too broad. We restrict our attention to self-dual cones (those satisfying

K* = K) and, in particular, to symmetric cones in Euclidean Jordan algebras.
Here is a simple result.

Theorem 1.4 Suppose K is self-dual. Then,

1. Every L € n(K) is copositive on K.

2. Fvery L € int (W(K)) is strictly copositive on K, hence has the Q-property.
Proof. Let K be self-dual. If L € n(K) and = € K, then L(z) € K = K* and so (L(z),z) > 0.
Thus, L is copositive on K.
Suppose L € int (7(K)). Then, for some ¢ > 0, L — eI € 7(K), where I denotes the identity
transformation on H. Then, for all nonzero z € K, ((L —el)x,x) > 0, that is, (L(z),z) >

e||z||? > 0. Finally, an application of Karamardian’s theorem gives the Q-property. O

Example: Let H = H™ (the space of all n x n complex Hermitian matrices) with inner product
(X,Y) :=tr(XY) and K = H, the semidefinite cone. A map (= linear transformation) L on H"

is said to be a completely positive map if there exist complex matrices Ay, As, ..., Ay such that

N
L(X) = A;XAj forall X € H".
=1



(Such maps appear in quantum information theory; a celebrated result of Choi is related to this.
Some buzz words: L is unital if L(I) = I, trace-preserving if L*(I) = I; doubly stochastic if it
is unital and trace-preserving. A quantum channel is a completely positive map that is trace-
preserving.)

We note that if X € H'}, that is, if X is positive semidefinite, then, AX A* is so for any complex
square matrix A. Thus, every completely positive map is in 7(#H’). Working with A € R™*"
and H = 8™ (the space of all n x n real symmetric matrices), various authors have investigated
complementarity problems of the transformation M4 (X) := AX AT, In particular, Bhimasankaram
et al. [2] (see also, Chandrashekaran et al. [3]) have shown that M, is strictly copositive on St if
and only if A is either positive definite or negative definite and Balaji [1] has shown that My has
the Q-property if and only if A is either positive definite or negative definite. Motivated by these,

we now pose the following

Problem: Characterize completely positive maps with the Q-property.

Note: It is tempting to bring in the Z-property into this discussion. However, a result of Gowda-
Song-Sivakumar [5] says that when K is irreducible, nonnegative multiples of the Identity map are
the only ones in Z(K) N7 (K).

Since we do not know how to describe the Q-property of transformations that are on the boundary
of m(K), we turn out attention to those in m(K)*. In the case of a self-dual cone K, any element
of m(K)* is a sum of rank-one transformations of the form a ® b, where a, b € K. We consider just
one transformation L = a ® b. In her UMBC online seminar talk (of July 16, 2020), Sushmitha
Parameswaran shows that in the setting of standard LCP, a rank-one matriz ab’ is a Q-matriz if

and only if it is positive. In a private communication, Prof. K.C. Sivakumar raises the following

Question: When does a rank-one transformation on a Euclidean Jordan algebra have the Q-

property?

In this talk, we provide an answer. First, we review some necessary material.
Given a self-dual cone K in H, we write x > 0 when z € K and > 0 when z € int(K). We also

write £ < 0 when —x > 0 etc. We note:
e y>0iff (y,z) >0 for all x > 0.
e y>0iff (y,x) >0 for all 0 #x > 0.
(The second item can be seen by an application of the standard separation theorem.)
A Euclidean Jordan algebra is a finite dimensional real inner product space V together with a

Jordan product x o y satisfying certain properties, see the Appendix. In such an algebra, the cone

of squares K := {xox : x € V} — called the symmetric cone of V — is a self-dual cone whose interior



is transitive. We assume that V has rank n and carries the trace inner product.
The result below is stated in the setting of a general Euclidean Jordan algebra. If unfamiliar with

this general setting, one may let V = 8", K = S (the semidefinite cone), with
XoY:i=—— and (X,Y):=tr(XY).
In this case, for any X € 8™, we have the spectral decomposition
X =UDUT = X (urul) 4+ Ao(ugud) + -+ + Ap(unul),

where U is an orthogonal matrix with column vectors wy,uso,...,u, and D is a diagonal matrix
with entries (eigenvalues) Aj, A2, ..., A,. Writing e; := uiuiT, we see that {e1,ea,...,e,} is a Jordan
frame in §™. For C' € 8", the transformation M¢ (defined by Mo (X) = CXC) is called a quadratic

representation of C.

Recall that a rank-one transformation on H is given by L = a ® b, where a,b € H; In the case of
H = R™, this is just ab’. Our result is the following:

Theorem 1.5 Suppose K is self-dual in H and L = a®b for some a,b € H. Consider the following

statements:

(i) a>0,b>0o0ra<0,b<0.

(i1) The implication 0 # x > 0 = L(z) > 0 holds.
(iii) L has the Q-property.

Then, (i) < (i1) = (vi1).
Moreover, if H =V is a Euclidean Jordan algebra and K 1is the corresponding symmetric cone,

then above statements are all equivalent.

Proof. (i) = (ii): This is obvious as L(z) = (b, x) a.

(73) = (i): We assume (i7) so that for any 0 # = > 0, (b,x)a > 0. Suppose a > 0, in which case,
(b,x) > 0 for all 0 # = > 0. Then, by our previous observation, b > 0. Similarly, b < 0 when a < 0.
Thus we have (7).

(74) = (i74): When (i7) holds, L becomes strictly copositive on K, that is, 0 # > 0 = (L(x),z) >
0. As noted previously, L has the Q-property.

(7i1) = (i): We now assume that our Hilbert space is a Euclidean Jordan algebra and K is the
corresponding symmetric cone. Suppose L = a ® b has the @-property. With e denoting the unit
element of V, LCP(L, K, —e) has a solution, say, u. Then, L(u) — e > 0 implies that 0 # u > 0
and L(u) > e > 0; so (b,u)a > 0. Then, either a > 0 or a < 0. Supposing a > 0, we will show that
b > 0. (Similarly, when a < 0 we can show that b < 0).

We will employ a standard trick to drive a to e and look at the induced/simplified transformation.



Now, given that a > 0, let ¢ := vVa—! and consider the quadratic representation P, defined by

P.(2) :=2co(cox) —c?oux.

(In the case of V = §", Po(X) = CXC = Mc(X).)
Because c is invertible, from the well-known properties of quadratic representations, we see that P,
is self-adjoint and invertible, (P.)™! = P.-1, P.(K) = K, P.(K°) = K°, and P.(a) = e. (Here, K°

is the interior of K.) We define a new linear transformation 7" on V by
T := P.LP.,.

Claim: T has the Q-property.

To see this, take any p € V, let ¢ € V be such that P.(q¢) = p. Let z be a solution of LCP(L, K, q)
so that z > 0, L(z) + ¢ > 0 and (z, L(z) 4+ q) = 0. Writing x = P.(y), we see that y > 0 and
T(y) +p= P.(LP.(y) + q) = P.(L(z) + q) > 0. We also see that

0= (z, L(7) + q) = (Pe(y), L(P(v)) + q) = (y, P(L(Pe(y) + q)) = (y, T(y) + p)-

Thus, LCP(T, K, p) has a solution, namely, y. This proves the claim.
Now, define d := P.(b) so that

T(z) = P.LP:(z) = P:((Pe(z),b) a) = (z, P(b)) P.(a) = (z,d)e for all z € V.

(Note that T looks very much like L, except that we have e in place of a.)

Claim: d > 0.

We will prove the claim by writing the spectral decomposition

d=die1 +does + -+ dpen
and showing that each d; > 0. We show that d; > 0 (with a similar proof for other d;). Corre-
sponding to the Jordan frame coming from d, define

qg:=—-leg+0ey+---+0e,

and let = be a solution of LCP(T, K, q) whose Peirce decomposition with respect to {ej,ea,...,e,}
be given by
n
T = inei + Zx”
i=1 i<y
Define vectors  and d in R" by Z := (x1,22,...,7,) and d := (d1,da, ..., d,). As x > 0, we have

0 < (x,e;) = x; for all i and so Z > 0 in R™. Also, since the above Peirce decomposition is an

orthogonal decomposition and V is assumed to carry the trace inner product (so that ||e;|| =1 for



all i),
(z,d) = (z,d).
Ase=e;+ey+ - -+ ey, we have

0<T(z)+q=(z,dye+q=[(T,d) —1]e; + (T, d)ea +--- + (Z,d) y,.

This implies that (z,d) —1 > 0 and (z,d) > 0. Then, (z,T(x) + ¢) = 0 leads to

1 [(Z,d) — 1] 4+ 22(Z,d) + 23(T,d) + -+ + 2, (Z,d) =0

and to the complementarity relations

0=m[(z,d) — 1] = 29(Z,d) = 23(Z,d) = - - - = 2,(Z, d).

Since (z,d) > 1, we see that 9 = 23 = --- = z, = 0. From (Z,d) —1 > 0 we get z1d; > 1;
As z1 > 0, we have z1 > 0 and d; > 0. Likewise, we see that each d; > 0. Thus, d > 0 in V.
Now, d = P.(b) implies that b = P.-1(d) > 0 as P.(K°) = K°. We conclude that b > 0. Hence
(#i7) = (7). This completes the proof of the theorem. O

Question: Does the implication (iit) = (i) hold for general self-dual cones?

2 Appendix: Euclidean Jordan algebras

The material given below can be found in [4, 6]. A Euclidean Jordan algebra is a finite dimensional
real inner product space (V,(-,-)) together with a bilinear product (called the Jordan product)
(z,y) — x oy satisfying the following properties:

e zoy=you,

2

e vo(x?0oy)=2%0(z0y), where 22

=xox, and

o (xoy,z)=(r,yo0z2).

In such an algebra, there is ‘unit element’ e such that roe =z for all z. In V, K = {xox :€ V} is
called the symmetric cone of V. It is a self-dual cone.

Any nonzero Euclidean Jordan algebra is a direct product/sum of simple Euclidean Jordan algebras
and every simple Euclidean Jordan algebra is isomorphic to one of five algebras, three of which are
the algebras of n x n real/complex/quaternion Hermitian matrices. The other two are: the algebra
of 3 x 3 octonion Hermitian matrices and the Jordan spin algebra. In the algebras 8™ (of all n x n
real symmetric matrices) and H" (of all n x n complex Hermitian matrices), the Jordan product

and the inner product are given, respectively, by

XoY:i=———— and (X,Y):=tr(XY),



where the trace of a real/complex matrix is the sum of its diagonal entries.

A nonzero element ¢ in V is an idempotent if ¢? = ¢; it is a primitive idempotent if it is not the sum
of two other idempotents. A Jordan frame {ej,es,...,e,} consists of primitive idempotents that
are mutually orthogonal and with sum equal to the unit element. All Jordan frames in V have the
same number of elements, called the rank of V. Let the rank of V be n. According to the spectral

decomposition theorem [4], any element x € V has a decomposition
T = x1€1 + x2e2 + -+ + Tpen,

where the real numbers x1,x9,...,2, are (called) the eigenvalues of z and {ej,es,...,e,} is a
Jordan frame in V. (An element may have decompositions coming from different Jordan frames,
but the eigenvalues remain the same.)

We use the notation > 0 (z > 0) when z € K (interior of K) or, equivalently, all the eigenvalues
of & are nonnegative (respectively, positive). When x > 0 with spectral decomposition x = z1e; +
xoey + - -+ Tpen, we define /x 1= \/T1e1 + /Toea + -+ /Tpe,. If £ > 0, then r7t = (21) e +
oo (zn) " ten. If 21, 29,..., 2, are the eigenvalues of x € V, we define the trace of z by

tr(x) ==z + 22+ -+ - + Ty

It is known that (x,y) > tr(x o y) defines another inner product on V that is compatible with the
Jordan product. Throughout this talk, we assume that the inner product on V is this trace inner
product, that is, (x,y) = tr(z oy). In this inner product, the norm of any primitive element is one

and so any Jordan frame in V is an orthonormal set. Additionally, tr(z) = (z,e) for all z € V.

Given a Jordan frame {ej,e2, ..., ey}, we have the Peirce orthogonal decomposition ([4], Theorem
IV21): V= Zigj Vij, where Vi, ;= {z € V:zoe; =a} = Reand for i < j, Vi :={z € V:
zoe; = 3x =z oe;}. Then, for any z € V we have

n

T = Zl’ij = Zl’iei + Zl’ij with ZTij € Vl] (1)
1<j i=1 1<J

3 Stepan Karamardian, 1933-1994

Armenian, studied in Syria; MS from University of Illinois (1962), PhD from University of Cali-
fornia, Berkeley (1966, under George Dantzig); faculty at University of California, Irvine, Dean of
School of Management (1982-1991); Co-founded American University of Armenia.
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