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Abstract

In a recent talk, Sushmitha Parameswaran showed that in the setting of standard LCP in

Rn, a rank-one matrix has the Q-property if and only if it is positive. Answering a question

raised by Prof. K.C. Sivakumar, we extend this result from Rn to Euclidean Jordan algebras.

Specifically, we show that in the setting of symmetric cone linear complementarity problem, a

rank-one linear transformation a⊗ b has the Q-property if and only if a > 0 and b > 0 or a < 0

and b < 0.

Key Words: Euclidean Jordan algebra, complementarity problem, Q-property

AMS Subject Classification:

1



1 Introduction

Let K be a proper cone (= closed convex pointed cone with nonempty interior) in a finite dimen-

sional real Hilbert space H. Given a linear transformation L : H → H and a q ∈ H, we consider

the linear complementarity problem, LCP(L,K, q): Find x ∈ H such that

x ∈ K, L(x) + q ∈ K∗, and 〈x, L(x) + q〉 = 0,

where K∗ = {y ∈ H : 〈y, x〉 ≥ 0 for all x ∈ K} is the dual of K. This is a special of a variational

inequality problem, VI(f, C): Find x∗ ∈ C such that

〈f(x∗), x− x∗〉 ≥ 0 for all x ∈ C,

where C is a closed convex set in H and f : H → H.

Examples:

1. When H = Rn and K = Rn
+, LCP(L,K, q) = standard LCP.

2. When H = Sn and K = Sn+, LCP(L,K, q) = semidefinite LCP.

3. When H = V (Euclidean Jordan algebra) and K = V+ (corresponding symmetric cone),

LCP(L,K, q) = symmetric cone LCP.

Definition 1.1 Let K be a proper cone in H and L be linear on H. We say that L has the

Q-property on K if for every q ∈ H, LCP(L,K, q) has a solution.

Problem: Find necessary and/or sufficient conditions for L to have the Q-property on K.

While there is no (meaningful) necessary condition, a well-known sufficient condition is given by

Karamardian [7].

Theorem 1.2 (Karamardian’s theorem) Suppose there is a d ∈ int(K∗) such that zero is the only

solution of the problems LCP(L,K, 0) and LCP(L,K, d). Then, L has the Q-property.

There is an immediate corollary:

Corollary 1.3 Suppose L is strictly copositive on K, that is, 〈L(x), x〉 > 0 for all 0 6= x ∈ K

or, equivalently, there exists α > 0 such that 〈L(x), x〉 ≥ α ||x||2 for all x ∈ K. Then L has the

Q-property on K.

The present talk is motivated by a simple result in the standard LCP theory:

A nonnegative matrix is a Q-matrix if and only if its diagonal entries are positive.
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(If A = [aij ] is a nonnegative matrix with a11 = 0, then, with q = (−1, 1, 1, . . . , 1), LCP(A, q)

cannot have a solution. In the reverse direction, one can apply the above corollary.)

This raises an interesting Question: Is there an analog for general cones?

Since nonnegative matrices correspond to matrices M with M(Rn
+) ⊆ Rn

+, for a general cone K,

we consider

π(K) := {L ∈ B(H) : L(K) ⊆ K},

where B(H) is the space of all (bounded) linear transformations on H. While much is known about

π(K) (see references in Orlitzky [8]), characterizing it is notoriously hard. It is known (see Tam

[9]) that π(K) is a proper cone in B(H) and its dual (in the Hilbert space B(H) with inner product

〈L1, L2〉 := tr(L1L
∗
2)) is given by

π(K)∗ :=
{ N∑

i=1

ai ⊗ bi : ai ∈ K∗, bi ∈ K, i = 1, 2, . . . , N
}
,

where, for a, b ∈ H,

(a⊗ b)(x) := 〈b, x〉 a (x ∈ H).

So, the previous question reduces to: Which linear transformations in π(K) have the Q-property?

This turns out to be too broad. We restrict our attention to self-dual cones (those satisfying

K∗ = K) and, in particular, to symmetric cones in Euclidean Jordan algebras.

Here is a simple result.

Theorem 1.4 Suppose K is self-dual. Then,

1. Every L ∈ π(K) is copositive on K.

2. Every L ∈ int
(
π(K)

)
is strictly copositive on K, hence has the Q-property.

Proof. Let K be self-dual. If L ∈ π(K) and x ∈ K, then L(x) ∈ K = K∗ and so 〈L(x), x〉 ≥ 0.

Thus, L is copositive on K.

Suppose L ∈ int
(
π(K)

)
. Then, for some ε > 0, L − ε I ∈ π(K), where I denotes the identity

transformation on H. Then, for all nonzero x ∈ K, 〈(L − ε I)x, x〉 ≥ 0, that is, 〈L(x), x〉 ≥
ε ||x||2 > 0. Finally, an application of Karamardian’s theorem gives the Q-property.

Example: Let H = Hn (the space of all n × n complex Hermitian matrices) with inner product

〈X,Y 〉 := tr(XY ) and K = Hn
+, the semidefinite cone. A map (= linear transformation) L on Hn

is said to be a completely positive map if there exist complex matrices A1, A2, . . . , AN such that

L(X) =
N∑
i=1

AiXA
∗
i for all X ∈ Hn.
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(Such maps appear in quantum information theory; a celebrated result of Choi is related to this.

Some buzz words: L is unital if L(I) = I, trace-preserving if L∗(I) = I; doubly stochastic if it

is unital and trace-preserving. A quantum channel is a completely positive map that is trace-

preserving.)

We note that if X ∈ Hn
+, that is, if X is positive semidefinite, then, AXA∗ is so for any complex

square matrix A. Thus, every completely positive map is in π(Hn
+). Working with A ∈ Rn×n

and H = Sn (the space of all n × n real symmetric matrices), various authors have investigated

complementarity problems of the transformation MA(X) := AXAT . In particular, Bhimasankaram

et al. [2] (see also, Chandrashekaran et al. [3]) have shown that MA is strictly copositive on Sn+ if

and only if A is either positive definite or negative definite and Balaji [1] has shown that MA has

the Q-property if and only if A is either positive definite or negative definite. Motivated by these,

we now pose the following

Problem: Characterize completely positive maps with the Q-property.

Note: It is tempting to bring in the Z-property into this discussion. However, a result of Gowda-

Song-Sivakumar [5] says that when K is irreducible, nonnegative multiples of the Identity map are

the only ones in Z(K) ∩ π(K).

Since we do not know how to describe the Q-property of transformations that are on the boundary

of π(K), we turn out attention to those in π(K)∗. In the case of a self-dual cone K, any element

of π(K)∗ is a sum of rank-one transformations of the form a⊗ b, where a, b ∈ K. We consider just

one transformation L = a ⊗ b. In her UMBC online seminar talk (of July 16, 2020), Sushmitha

Parameswaran shows that in the setting of standard LCP, a rank-one matrix abT is a Q-matrix if

and only if it is positive. In a private communication, Prof. K.C. Sivakumar raises the following

Question: When does a rank-one transformation on a Euclidean Jordan algebra have the Q-

property?

In this talk, we provide an answer. First, we review some necessary material.

Given a self-dual cone K in H, we write x ≥ 0 when x ∈ K and x > 0 when x ∈ int(K). We also

write x < 0 when −x > 0 etc. We note:

• y ≥ 0 iff 〈y, x〉 ≥ 0 for all x ≥ 0.

• y > 0 iff 〈y, x〉 > 0 for all 0 6= x ≥ 0.

(The second item can be seen by an application of the standard separation theorem.)

A Euclidean Jordan algebra is a finite dimensional real inner product space V together with a

Jordan product x ◦ y satisfying certain properties, see the Appendix. In such an algebra, the cone

of squares K := {x◦x : x ∈ V} – called the symmetric cone of V – is a self-dual cone whose interior
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is transitive. We assume that V has rank n and carries the trace inner product.

The result below is stated in the setting of a general Euclidean Jordan algebra. If unfamiliar with

this general setting, one may let V = Sn, K = Sn+ (the semidefinite cone), with

X ◦ Y :=
XY + Y X

2
and 〈X,Y 〉 := tr(XY ).

In this case, for any X ∈ Sn, we have the spectral decomposition

X = UDUT = λ1(u1u
T
1 ) + λ2(u2u

T
2 ) + · · ·+ λn(unu

T
n ),

where U is an orthogonal matrix with column vectors u1, u2, . . . , un and D is a diagonal matrix

with entries (eigenvalues) λ1, λ2, . . . , λn. Writing ei := uiu
T
i , we see that {e1, e2, . . . , en} is a Jordan

frame in Sn. For C ∈ Sn, the transformation MC (defined by MC(X) = CXC) is called a quadratic

representation of C.

Recall that a rank-one transformation on H is given by L = a ⊗ b, where a, b ∈ H; In the case of

H = Rn, this is just abT . Our result is the following:

Theorem 1.5 Suppose K is self-dual in H and L = a⊗b for some a, b ∈ H. Consider the following

statements:

(i) a > 0, b > 0 or a < 0, b < 0.

(ii) The implication 0 6= x ≥ 0⇒ L(x) > 0 holds.

(iii) L has the Q-property.

Then, (i)⇔ (ii)⇒ (iii).

Moreover, if H = V is a Euclidean Jordan algebra and K is the corresponding symmetric cone,

then above statements are all equivalent.

Proof. (i)⇒ (ii): This is obvious as L(x) = 〈b, x〉 a.

(ii) ⇒ (i): We assume (ii) so that for any 0 6= x ≥ 0, 〈b, x〉 a > 0. Suppose a > 0, in which case,

〈b, x〉 > 0 for all 0 6= x ≥ 0. Then, by our previous observation, b > 0. Similarly, b < 0 when a < 0.

Thus we have (i).

(ii)⇒ (iii): When (ii) holds, L becomes strictly copositive on K, that is, 0 6= x ≥ 0⇒ 〈L(x), x〉 >
0. As noted previously, L has the Q-property.

(iii) ⇒ (i): We now assume that our Hilbert space is a Euclidean Jordan algebra and K is the

corresponding symmetric cone. Suppose L = a ⊗ b has the Q-property. With e denoting the unit

element of V, LCP(L,K,−e) has a solution, say, u. Then, L(u) − e ≥ 0 implies that 0 6= u ≥ 0

and L(u) ≥ e > 0; so 〈b, u〉 a > 0. Then, either a > 0 or a < 0. Supposing a > 0, we will show that

b > 0. (Similarly, when a < 0 we can show that b < 0).

We will employ a standard trick to drive a to e and look at the induced/simplified transformation.
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Now, given that a > 0, let c :=
√
a−1 and consider the quadratic representation Pc defined by

Pc(x) := 2c ◦ (c ◦ x)− c2 ◦ x.

(In the case of V = Sn, PC(X) = CXC = MC(X).)

Because c is invertible, from the well-known properties of quadratic representations, we see that Pc

is self-adjoint and invertible, (Pc)
−1 = Pc−1 , Pc(K) = K, Pc(K

◦) = K◦, and Pc(a) = e. (Here, K◦

is the interior of K.) We define a new linear transformation T on V by

T := PcLPc.

Claim: T has the Q-property.

To see this, take any p ∈ V, let q ∈ V be such that Pc(q) = p. Let x be a solution of LCP(L,K, q)

so that x ≥ 0, L(x) + q ≥ 0 and 〈x, L(x) + q〉 = 0. Writing x = Pc(y), we see that y ≥ 0 and

T (y) + p = Pc(LPc(y) + q) = Pc(L(x) + q) ≥ 0. We also see that

0 = 〈x, L(x) + q〉 = 〈Pc(y), L(Pc(y)) + q〉 = 〈y, Pc(L(Pc(y) + q)〉 = 〈y, T (y) + p〉.

Thus, LCP(T,K, p) has a solution, namely, y. This proves the claim.

Now, define d := Pc(b) so that

T (x) = PcLPc(x) = Pc

(
〈Pc(x), b〉 a

)
= 〈x, Pc(b)〉Pc(a) = 〈x, d〉 e for all x ∈ V.

(Note that T looks very much like L, except that we have e in place of a.)

Claim: d > 0.

We will prove the claim by writing the spectral decomposition

d = d1e1 + d2e2 + · · ·+ dnen

and showing that each di > 0. We show that d1 > 0 (with a similar proof for other di). Corre-

sponding to the Jordan frame coming from d, define

q := −1 e1 + 0 e2 + · · ·+ 0 en

and let x be a solution of LCP(T,K, q) whose Peirce decomposition with respect to {e1, e2, . . . , en}
be given by

x =
n∑

i=1

xiei +
∑
i<j

xij .

Define vectors x̄ and d̄ in Rn by x̄ := (x1, x2, . . . , xn) and d̄ := (d1, d2, . . . , dn). As x ≥ 0, we have

0 ≤ 〈x, ei〉 = xi for all i and so x̄ ≥ 0 in Rn. Also, since the above Peirce decomposition is an

orthogonal decomposition and V is assumed to carry the trace inner product (so that ||ei|| = 1 for

6



all i),

〈x, d〉 = 〈x̄, d̄〉.

As e = e1 + e2 + · · ·+ en, we have

0 ≤ T (x) + q = 〈x, d〉 e+ q =
[
〈x̄, d̄〉 − 1

]
e1 + 〈x̄, d̄〉 e2 + · · ·+ 〈x̄, d̄〉 en.

This implies that 〈x̄, d̄〉 − 1 ≥ 0 and 〈x̄, d̄〉 ≥ 0. Then, 〈x, T (x) + q〉 = 0 leads to

x1
[
〈x̄, d̄〉 − 1

]
+ x2〈x̄, d̄〉+ x3〈x̄, d̄〉+ · · ·+ xn〈x̄, d̄〉 = 0

and to the complementarity relations

0 = x1[〈x̄, d̄〉 − 1] = x2〈x̄, d̄〉 = x3〈x̄, d̄〉 = · · · = xn〈x̄, d̄〉.

Since 〈x̄, d̄〉 ≥ 1, we see that x2 = x3 = · · · = xn = 0. From 〈x̄, d̄〉 − 1 ≥ 0 we get x1d1 ≥ 1;

As x1 ≥ 0, we have x1 > 0 and d1 > 0. Likewise, we see that each di > 0. Thus, d > 0 in V.

Now, d = Pc(b) implies that b = Pc−1(d) > 0 as Pc(K
◦) = K◦. We conclude that b > 0. Hence

(iii)⇒ (i). This completes the proof of the theorem.

Question: Does the implication (iii)⇒ (i) hold for general self-dual cones?

2 Appendix: Euclidean Jordan algebras

The material given below can be found in [4, 6]. A Euclidean Jordan algebra is a finite dimensional

real inner product space (V, 〈·, ·〉) together with a bilinear product (called the Jordan product)

(x, y)→ x ◦ y satisfying the following properties:

• x ◦ y = y ◦ x,

• x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x, and

• 〈x ◦ y, z〉 = 〈x, y ◦ z〉.

In such an algebra, there is ‘unit element’ e such that x ◦ e = x for all x. In V, K = {x ◦ x :∈ V} is

called the symmetric cone of V. It is a self-dual cone.

Any nonzero Euclidean Jordan algebra is a direct product/sum of simple Euclidean Jordan algebras

and every simple Euclidean Jordan algebra is isomorphic to one of five algebras, three of which are

the algebras of n×n real/complex/quaternion Hermitian matrices. The other two are: the algebra

of 3× 3 octonion Hermitian matrices and the Jordan spin algebra. In the algebras Sn (of all n× n
real symmetric matrices) and Hn (of all n × n complex Hermitian matrices), the Jordan product

and the inner product are given, respectively, by

X ◦ Y :=
XY + Y X

2
and 〈X,Y 〉 := tr(XY ),
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where the trace of a real/complex matrix is the sum of its diagonal entries.

A nonzero element c in V is an idempotent if c2 = c; it is a primitive idempotent if it is not the sum

of two other idempotents. A Jordan frame {e1, e2, . . . , en} consists of primitive idempotents that

are mutually orthogonal and with sum equal to the unit element. All Jordan frames in V have the

same number of elements, called the rank of V. Let the rank of V be n. According to the spectral

decomposition theorem [4], any element x ∈ V has a decomposition

x = x1e1 + x2e2 + · · ·+ xnen,

where the real numbers x1, x2, . . . , xn are (called) the eigenvalues of x and {e1, e2, . . . , en} is a

Jordan frame in V. (An element may have decompositions coming from different Jordan frames,

but the eigenvalues remain the same.)

We use the notation x ≥ 0 (x > 0) when x ∈ K (interior of K) or, equivalently, all the eigenvalues

of x are nonnegative (respectively, positive). When x ≥ 0 with spectral decomposition x = x1e1 +

x2e2 + · · ·+xnen, we define
√
x :=

√
x1e1 +

√
x2e2 + · · ·+√xnen. If x > 0, then x−1 := (x1)

−1e1 +

· · ·+ (xn)−1en. If x1, x2, . . . , xn are the eigenvalues of x ∈ V, we define the trace of x by

tr(x) := x1 + x2 + · · ·+ xn.

It is known that (x, y) 7→ tr(x ◦ y) defines another inner product on V that is compatible with the

Jordan product. Throughout this talk, we assume that the inner product on V is this trace inner

product, that is, 〈x, y〉 = tr(x ◦ y). In this inner product, the norm of any primitive element is one

and so any Jordan frame in V is an orthonormal set. Additionally, tr(x) = 〈x, e〉 for all x ∈ V.

Given a Jordan frame {e1, e2, . . . , en}, we have the Peirce orthogonal decomposition ([4], Theorem

IV.2.1): V =
∑

i≤j Vij , where Vii := {x ∈ V : x ◦ ei = x} = R ei and for i < j, Vij := {x ∈ V :

x ◦ ei = 1
2x = x ◦ ej}. Then, for any x ∈ V we have

x =
∑
i≤j

xij =
n∑

i=1

xiei +
∑
i<j

xij with xij ∈ Vij . (1)

3 Stepan Karamardian, 1933-1994

Armenian, studied in Syria; MS from University of Illinois (1962), PhD from University of Cali-

fornia, Berkeley (1966, under George Dantzig); faculty at University of California, Irvine, Dean of

School of Management (1982-1991); Co-founded American University of Armenia.
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