Fan-Theobald-von Neumann systems

M. Seetharama Gowda (Joint work with Juyoung Jeong)

Department of Mathematics University of Maryland Baltimore County Baltimore, Maryland 21250, USA

Contents

- Motivation
- Definition
- Examples
- Concepts and results
- Reduced system
- Transfer principles
- Fenchel conjugate and subdifferential formulas

Motivation

Motivation/Definition

Consider the following semidefinite optimization problem over S^n :

$$\max \{ \langle C, S \rangle : X \succeq 0, 1 \le \lambda_{max}(X) \le 2 \},\$$

where S^n is the space of all $n \times n$ real symmetric matrices,

 $X \succeq 0$ means X is positive semidefinite, and

 $\lambda_{max}(X) = \text{maximum eigenvalue of } X.$

It turns out that this problem is equivalent to

$$\max\{\langle \lambda(C), q \rangle : 0 \le q \in \mathcal{R}^n : q_1 \ge q_2 \ge \dots \ge q_n, \ 1 \le q_1 \le 2\}$$

which is a (linear programming) problem in \mathbb{R}^n .

Moreover, as a consequence of a result due to Ramirez, Seeger, and Sossa, if X^* solves the former problem, then C and X^* commute.

So, we went from a problem in S^n to a problem in \mathbb{R}^n and at the same time obtained a commutativity relation.

Can we address such a transfer of optimization problems from one space to another and also get commutativity in a general setting? The key features in the above example are: S^n and R^n are real inner product spaces, (the eigenvalue map) $\lambda: \mathcal{S}^n \to \mathcal{R}^n$ satisfies

$$\langle X, Y \rangle \le \langle \lambda(X), \lambda(Y) \rangle$$

with a condition for equality. We formulate the definition of Fan-Theobald-von Neumann system based on these.

Motivation/Definition

Fan-Theobald-von Neumann system

 ${\mathcal V}$ and ${\mathcal W}$ are real inner product spaces,

 $\lambda: \mathcal{V} \to \mathcal{W}$ is a map.

Motivation/Definition

For $u \in \mathcal{V}$, its λ -orbit is $[u] = \{x \in \mathcal{V} : \lambda(x) = \lambda(u)\}.$

 $(\mathcal{V}, \mathcal{W}, \lambda)$ is a **FTvN system** if

$$\max \left\{ \langle c, x \rangle : x \in [u] \right\} = \langle \lambda(c), \lambda(u) \rangle \quad (\forall c, u \in \mathcal{V}).$$
 (1)

From this we get **FTvN inequality**:

$$\langle x, y \rangle \le \langle \lambda(x), \lambda(y) \rangle \quad (x, y \in \mathcal{V}).$$

If equality holds, we say x and y **commute** in the FTvN system.

 \mathcal{V} - any real inner product space,

$$\mathcal{W} = \mathcal{R}$$
, and $\lambda(x) = ||x||$.

For
$$u \in \mathcal{V}$$
, $[u] = \{x \in \mathcal{V} : ||x|| = ||u||\}.$

Then, $(\mathcal{V}, \mathcal{R}, \lambda)$ is a FTvN system.

Here, the FTvN inequality becomes

the Cauchy-Schwarz inequality.

 $\mathcal{V} = \mathcal{W} = \mathcal{R}^n$ with usual inner product.

 $\lambda(x) = x^{\downarrow}$ (decreasing rearrangment of x).

For $u \in \mathcal{R}^n$, $[u] = \{Pu : P \text{ is a permutation matrix}\}$

Then, $(\mathcal{R}^n, \mathcal{R}^n, \lambda)$ is a FTvN system.

Here, the FTvN inequality becomes:

The Hardy-Littlewood-Pólya rearrangement inequality:

$$\langle x, y \rangle \le \langle x^{\downarrow}, y^{\downarrow} \rangle.$$

 $\mathcal{V} = \mathcal{H}^n$ (space of all $n \times n$ Hermitian matrices), $\mathcal{W} = \mathcal{R}^n$.

 $\lambda(X) = \text{vector of eigenvalues of } X \text{ written in the decreasing order.}$

For $X \in \mathcal{S}^n$, $[X] = \{UXU^* : U \text{ unitary}\}$,

Then, $(\mathcal{H}^n, \mathcal{R}^n, \lambda)$ is a FTvN system. Here, the FTvN inequality is:

 $\text{Ky Fan/Richter inequality } \langle X,Y\rangle \leq \langle \lambda(X),\lambda(Y)\rangle.$

Equality case due to **Theobald**.

Similarly for S^n (space of all $n \times n$ real symmetric matrices).

$$\mathcal{V}=M_n$$
 (all $n\times n$ complex matrices) with $\langle X,Y\rangle:=Re\,tr(X^*Y)$, $\mathcal{W}=\mathcal{R}^n$, and $\lambda(X)=s(X)$ (vector of singular values of X written in the decreasing order).

For
$$X \in M_n$$
, $[X] = \{UXV : U, V \text{ unitary}\}$,

Then, $(M_n, \mathcal{R}^n, \lambda)$ is a FTvN system.

Here, the FTvN inequality is:

von Neumann's inequality $\langle X, Y \rangle \leq \langle s(X), s(Y) \rangle$.

Other Examples

 $(V,\langle\cdot,\cdot\rangle,\circ)$ is a **Euclidean Jordan algebra** (in short, EJA) if

V is a finite dimensional real inner product space

and the bilinear Jordan product $x \circ y$ satisfies:

- $\bullet \ x \circ y = y \circ x$
- $\bullet \ x \circ (x^2 \circ y) = x^2 \circ (x \circ y)$
- $\bullet \ \langle x \circ y, z \rangle = \langle x, y \circ z \rangle$

 $K = \{x^2 : x \in V\}$ is the symmetric cone in V. (It is a self-dual, homogeneous cone.)

 $e \ (\neq 0)$ is a unit element if $x \circ e = x$ for all x.

Any EJA is a product of the following:

- $S^n = \operatorname{Herm}(\mathcal{R}^{n \times n})$ $n \times n$ real symmetric matrices.
- $\mathcal{H}^n = \operatorname{Herm}(\mathcal{C}^{n \times n})$ $n \times n$ complex Hermitian matrices.
- $Q^n = \operatorname{Herm}(Q^{n \times n})$ $n \times n$ quaternion Hermitian matrices.
- $\mathcal{O}^3 = \operatorname{Herm}(\mathcal{O}^{3 \times 3})$ 3×3 octonion Hermitian matrices.
- ullet \mathcal{L}^n Jordan spin algebra.

In a EJA, for
$$a \in \mathcal{V}$$
, $L_a(x) := a \circ x : \mathcal{V} \to \mathcal{V}$.

We say a and b operator commute in $\mathcal V$ if

$$L_aL_b=L_bL_a.$$

(On \mathcal{H}^n , this is the same as matrix commutativity.)

In a EJA, a nonzero element c is an idempotent if $c^2=c$. It is a primitive idempotent

if it is not the sum of two other idempotents.

Jordan frame: A finite set $\{e_1, e_2, \dots, e_n\}$ of mutually orthogonal primitive idempotents summing to (the unit) e.

As all Jordan frames have the same cardinality, we let rank of $\mathcal{V}=n$.

In a EJA of rank n, every element x has a spectral decomposition

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n,$$

where $\{e_1, e_2, \dots, e_n\}$ is a Jordan frame,

 x_1, x_2, \ldots, x_n are real numbers (called the eigenvalues of x).

- $\lambda(x) := (x_1, x_2, \dots, x_n)^{\downarrow}$ is the eigenvalue vector of x.
- $\lambda: \mathcal{V} \to \mathcal{R}^n$ is the eigenvalue map.
- trace $(x) := x_1 + x_2 + \cdots + x_n$.

From now on, we replace the given inner product on ${\mathcal V}$ by

the canonical inner product $\langle x, y \rangle := \operatorname{trace}(x \circ y)$.

$$\langle x, y \rangle \le \langle \lambda(x), \lambda(y) \rangle$$

with equality if and only if x and y have their spectral decompositions

$$x = x_1e_1 + x_2e_2 + +x_ne_n$$
 and $y = y_1e_1 + y_2e_2 + \cdots + y_ne_n$,

where
$$x_1 \geq x_2 \geq \cdots \geq x_n$$
 and $y_1 \geq y_2 \geq \cdots \geq y_n$.

(A consequence of equality: x and y operator commute.)

- If \mathcal{V} is a EJA of rank n, then $(\mathcal{V}, \mathcal{R}^n, \lambda)$ is a FTvN system.
- * Lim-Kim-Faybusovich, Baes, Lewis, Gowda-Tao

Hyperbolic polynomials

 ${\mathcal V}$ is a real finite dimensional space, $e\in{\mathcal V}, \, p$ is a real homogeneous polynomial of degree n on ${\mathcal V}.\,\, p$ is **hyperbolic with respect to** e if $p(e)\neq 0$ and for every $x\in{\mathcal V}$, roots of p(te-x)=0 are all real. For any $x\in{\mathcal V}$, let $\lambda(x)$ denote the vector of roots of p(te-x)=0 written in the decreasing order. Assuming p is complete (which means that $\lambda(x)=0\Rightarrow x=0$), ${\mathcal V}$ can be made into an inner product space:

$$\langle x, y \rangle := \frac{1}{4} \Big[||\lambda(x+y)||^2 - ||\lambda(x-y)||^2 \Big].$$

Then λ is norm-preserving and $\langle x,y\rangle \leq \langle \lambda(x),\lambda(y)\rangle$. Under an 'isometric' condition (Bauschke et al., 2001), $(\mathcal{V},\mathcal{R}^n,\lambda)$ becomes a FTvN system.

Normal decomposition systems (NDS)

Let $\mathcal V$ be a real inner product space, $\mathcal G$ be a closed subgroup of the orthogonal group of $\mathcal V$, and $\gamma:\mathcal V\to\mathcal V$ be a map satisfying the following conditions:

- (a) γ is \mathcal{G} -invariant, that is, $\gamma(Ax) = \gamma(x)$ for all $x \in \mathcal{V}$ and $A \in \mathcal{G}$.
- (b) For each $x \in \mathcal{V}$, there exists $A \in \mathcal{G}$ such that $x = A\gamma(x)$.
- (c) For all $x, y \in \mathcal{V}$, we have $\langle x, y \rangle \leq \langle \gamma(x), \gamma(y) \rangle$.

Then, $(\mathcal{V}, \mathcal{G}, \gamma)$ is called a *normal decomposition system*.

Lewis 1996, Group invariance and convex matrix analysis, SIAM
 J. Matrix Anal.

In a normal decomposition system,

(i) For any two elements x and y in \mathcal{V} , we have

$$\max_{A \in \mathcal{G}} \, \langle Ax, y \rangle = \langle \gamma(x), \gamma(y) \rangle \,.$$

Also, $\langle x,y\rangle=\langle \gamma(x),\gamma(y)\rangle$ holds for two elements x and y if and only if there exists an $A\in\mathcal{G}$ such that $x=A\gamma(x)$ and $y=A\gamma(y)$.

(ii) The range of γ , denoted by F, is a closed convex cone in \mathcal{V} .

Hence: If (V, \mathcal{G}, γ) is a NDS, then (V, V, γ) is a FTvN system.

Eaton triple

Let $\mathcal V$ be a finite dimensional real inner product space, $\mathcal G$ be a closed subgroup of the orthogonal group of $\mathcal V$, and F be a closed convex cone in $\mathcal V$ satisfying the following conditions:

- (a) $Orb(x) \cap F \neq \emptyset$ for all $x \in \mathcal{V}$, where $Orb(x) := \{Ax : A \in \mathcal{G}\}.$
- (b) $\langle x, Ay \rangle \leq \langle x, y \rangle$ for all $x, y \in F$ and $A \in \mathcal{G}$.

Then, $(\mathcal{V}, \mathcal{G}, F)$ is called an *Eaton triple*.

- Eaton-Perlman 1977, Reflection groups, generalized Schur functions, and the geometry of majorization, Ann. Probab.
- Eaton 1987, Group induced orderings with some applications in statistics, CWI Newsletter.

Normal decomposition system = Eaton triple

It is known that in an Eaton triple $(\mathcal{V}, \mathcal{G}, F)$,

 $Orb(x) \cap F$ consists of exactly one element for each $x \in \mathcal{V}$.

Defining $\gamma: \mathcal{V} \to \mathcal{V}$ with $Orb(x) \cap F = \{\gamma(x)\}$, $(\mathcal{V}, \mathcal{G}, \gamma)$ becomes

a normal decomposition system. Also, given a

finite dimensional normal decomposition system $(\mathcal{V},\mathcal{G},\gamma)$,

with $F := \gamma(\mathcal{V})$, $(\mathcal{V}, \mathcal{G}, F)$ becomes an Eaton triple.

Thus, finite dimensional normal decomposition systems are equivalent to Eaton triples.

Elementary properties of λ

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system.

Then,

- ullet λ is norm-preserving, positively homogeneous, and Lipschitz,
- ullet For every $c\in\mathcal{V}$, $f(x):=\langle\lambda(c),\lambda(x)
 angle$ is sublinear,
- $\bullet \ \langle x,y\rangle = \langle \lambda(x),\lambda(y)\rangle \ \text{iff} \ \lambda(x+y) = \lambda(x) + \lambda(y).$

Spectral set

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system.

A spectral set in $\mathcal V$ is of the form $E=\lambda^{-1}(Q)$ for some $Q\subseteq\mathcal W.$

Theorem: Let E be spectral in V. Then,

- closure/interior/boundary of E is spectral.
- If $\mathcal V$ is finite dimensional, then convex hull of E is spectral and sum of two convex spectral sets is spectral.
- If V is a Hilbert space, then the closed convex hull of E is spectral and sum of two compact convex spectral sets is spectral.

Spectral function

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. A **spectral function** on \mathcal{V} is of the form $\Phi = \phi \circ \lambda$ for some $\phi : \mathcal{W} \to \mathcal{R}$.

Then.

- A set E is spectral in V iff its indicator/characteristic function is spectral.
- A real-valued function Φ on V is spectral iff its epigraph is spectral in the product FTvN space $(\mathcal{R} \times \mathcal{V}, \mathcal{R} \times \mathcal{W}, \Lambda)$, where $\Lambda(t,x)=(t,\lambda(x))$.

Center, unit element

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. Then,

- x and y commute in \mathcal{V} if $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.
- Center of FTvN system is $\mathcal{C} := \{x \in \mathcal{V} : x \text{ commutes with every } y \in \mathcal{V}\}.$
- A nonzero e in \mathcal{V} is a **unit element** if center $\mathcal{C} = \mathcal{R}e$.

Theorem:

 \mathcal{C} is a closed subspace of \mathcal{V} and λ is linear on it. If V is a Hilbert space, then $V = C + C^{\perp}$. Moreover. in the FTvN space $(\mathcal{C}, \mathcal{W}, \lambda)$, the center is \mathcal{C} and in the FTvN space $(\mathcal{C}^{\perp}, \mathcal{W}, \lambda)$, the center is $\{0\}$.

An example

In the FTvN system $(\mathcal{H}^n, \mathcal{R}^n, \lambda)$,

- spectrality = unitary invariance.
- X and Y commute in the FTvN system iff

$$X = U diag(\lambda(X)) U^* \quad \text{and} \quad Y = U diag(\lambda(Y)) U^*$$

for some unitary matrix U.

(Note: $\lambda(X)$ and $\lambda(Y)$ have decreasing components.)

- Center = All multiples of the identity matrix.
- The Identity matrix is a unit.

Majorization

In a FTvN system $(\mathcal{V}, \mathcal{W}, \lambda)$,

- x is **majorized** by y if $x \in \text{conv}[y]$. We write $x \prec y$.
- A linear transformation $D: \mathcal{V} \to \mathcal{V}$ is **doubly stochastic** if $Dx \prec x$ for all $x \in \mathcal{V}$.
- An invertible linear transformation $A: \mathcal{V} \to \mathcal{V}$ is an automorphism if $\lambda(Ax) = \lambda(x)$ for all $x \in \mathcal{V}$.

Theorem: D is a doubly stochastic transformation on $(\mathcal{V}, \mathcal{W}, \lambda)$ with adjoint D^* (whenever defined). Then,

- $D(E) \subseteq E$ for any convex spectral set E.
- $u \in \mathcal{C} \Rightarrow Du = u, \ D^*u = u.$ If e is a unit then, $De = e, \ D^*e = e.$
- If A is linear and invertible, then A is an automorphism iff A and A^{-1} are doubly stochastic.
- If V is finite dimensional, then any convex combination of automorphisms is doubly stochastic.

Reduced system of a FTVN system

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. Then

- a FTvN system $(\mathcal{W}, \mathcal{W}, \mu)$ is a **reduced system** of $(\mathcal{V}, \mathcal{W}, \lambda)$ if
 - $range(\mu) \subseteq range(\lambda)$,
 - $\bullet \ \mu \circ \lambda = \lambda.$

In this setting,

- $range(\mu) = range(\lambda)$,
- \bullet $\mu \circ \mu = \mu$.

Examples: $(\mathcal{R}^n, \mathcal{R}^n, \mu)$ with $\mu(x) = x^{\downarrow}$ is a reduced system of $(\mathcal{H}^n, \mathcal{R}^n, \lambda)$.

Every normal decomposition system is a reduced system of itself.

Theorem:

Suppose (W, W, μ) is a reduced system of (V, W, λ) with W finite dimensional. Then.

- $\bullet \lambda(x+y) \prec \lambda(x) + \lambda(y).$
- $x \prec y$ implies $\lambda(x) \prec \lambda(y)$. The converse holds if \mathcal{V} is finite dimensional

Question: When do we have Lidskii type inequality

$$\lambda(x) - \lambda(y) \prec \lambda(x - y).$$

True for hyperbolic polynomials: Gurvitz via Lax conjecture.

Transfer principles

Theorem: Let (W, W, μ) be a reduced system of (V, W, λ) , Q be spectral in W, and $E = \lambda^{-1}(Q)$. Then,

- $\lambda^{-1}(Q^{\Diamond}) = (\lambda^{-1}(Q))^{\Diamond}$, where \Diamond denotes closure/interior/boundary operation.
- Let V and W be finite dimensional. Then.
 - E is convex iff Q is convex.
 - \bullet $\overline{\operatorname{conv}} \lambda^{-1}(Q) = \lambda^{-1}(\overline{\operatorname{conv}} Q).$
 - For convex spectral sets Q_1 and Q_2 in W,

$$\lambda^{-1}(Q_1 + Q_2) = \lambda^{-1}(Q_1) + \lambda^{-1}(Q_2).$$

- When W is finite dimensional, convexity of ϕ implies that of Φ.
- When V and W are finite dimensional, Φ is convex iff ϕ is convex.

This extends a celebrated result of Davis which says that a unitarily invariant function on \mathcal{H}^n (the space of all n×n complex Hermitian matrices) is convex if and only if its restriction to diagonal matrices is convex.

An optimization result

Theorem: In the FTvN system $(\mathcal{V}, \mathcal{W}, \lambda)$, for any spectral set E,

$$c \in \mathcal{V}$$
, and $\phi : \mathcal{W} \to \mathcal{R}$,

$$\sup_{x \in E} \big\{ \langle c, x \rangle + (\phi \circ \lambda)(x) \big\} = \sup_{y \in \lambda(E)} \big\{ \langle \lambda(c), y \rangle + \phi(y) \big\}.$$

Attainment of one supremum implies that of the other. Moreover, if the supremum on the left is attained at x^* , then c commutes with x^* .

Note: Putting $\phi = 0$ and E = [u], the above equality leads to our definition of FTvN system.

Fenchel and subdifferential formulas

Let X be a real inner product space, $f: X \to \mathcal{R} \cup \{\infty\}$.

Given $a \in S \subseteq X$ with $f(a) < \infty$,

recall the **subdifferential** of f at a relative to S:

$$\partial_S f(a) = \{ d \in X : f(x) - f(a) \ge \langle d, x - a \rangle \, \forall x \in S \}$$

and the **Fenchel conjugate** of f relative to S:

$$f_S^*(z) = \sup\{\langle z, x \rangle - f(x) : x \in S\} \quad (z \in X).$$

Theorem:

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system, S be spectral in \mathcal{V} ,

$$\phi: \mathcal{W} \to \mathcal{R} \cup \{\infty\}$$
, and $\Phi := \phi \circ \lambda$. Then,

- $\bullet \ \Phi_S^*(z) = \phi_{\lambda(S)}^*(\lambda(z)) \quad (z \in \mathcal{V}).$
- $y \in \partial_S \Phi(a) \Leftrightarrow \lambda(y) \in \partial_{\lambda(S)} \phi(\lambda(a)), \ y \text{ and } a \text{ commute.}$

Moreover, when $(\mathcal{W}, \mathcal{W}, \mu)$ is a reduced system of $(\mathcal{V}, \mathcal{W}, \lambda)$ and ϕ is spectral on \mathcal{W} , we can replace $\lambda(S)$ by $[\lambda(S)]$.

In particular, with $S = \mathcal{V}$, get $(\phi \circ \lambda)^* = \phi^* \circ \lambda$, etc.

Note: The above two items are equivalent to the defining condition of FTvN system.

A geometric commutation principle

Let E be a spectral set in a FTvN system.

For any $a \in E$, let

$$N_E(a) := \{ d \in \mathcal{V} : \langle d, x - a \rangle \le 0 \ \forall x \in E \}$$

denote the **normal cone** of E at a. Then every d in $N_E(a)$ commutes with a.

Example: If x^* solves the variational inequality problem VI(f, E), then x^* commutes with $-f(x^*)$.

(1) M.S. Gowda, Optimizing certain combinations of linear/distance functions over spectral sets,

arXiv:1902.06640v2 (2019).

- (2) M.S. Gowda, Commutation principles for optimization problems on spectral sets in Euclidean Jordan algebras, Opt. Lett., 16, 1119–1128 (2022).
- (3) M.S. Gowda and J. Jeong, Commutativity, majorization, and reduction in FTvN systems, Results Math., 78:72 (2023).
- (4) J. Jeong and M.S. Gowda, Transfer principles, Fenchel and subdifferential formulas in FTvN systems, arXiv:2307.08478v1 (2023).

