M. Seetharama Gowda (Joint work with Juyoung Jeong)

Department of Mathematics University of Maryland Baltimore County Baltimore, Maryland 21250, USA

ILAS 2023, Madrid, 13 June 2023

Contents

- Motivation
- Definition
- Examples
- Concepts and results
- Reduced system
- Transfer principles
- Fenchel conjugate and subdifferential formulas

Motivation

Consider the following semidefinite optimization problem over S^n :

$$\max \{ \langle C, S \rangle : X \succeq 0, 1 \le \lambda_{max}(X) \le 2 \},\$$

where S^n is the space of all $n \times n$ real symmetric matrices,

 $X \succeq 0$ means X is positive semidefinite, and

 $\lambda_{max}(X) = \text{maximum eigenvalue of } X.$

It turns out that this problem is equivalent to

$$\max\{\langle \lambda(C), q \rangle : 0 \le q \in \mathbb{R}^n : q_1 \ge q_2 \ge \dots \ge q_n, \ 1 \le q_1 \le 2\}$$

which is a (linear programming) problem in \mathbb{R}^n .

Moreover, as a consequence of a result due to Ramirez, Seeger, and Sossa, if X^* solves the former problem, then C and X^* commute.

So, we went from a problem in S^n to a problem in R^n and at the same time obtained a commutativity relation.

Can we address such a transfer of optimization problems from one space to another and also get commutativity in a general setting? The key features in the above example are: S^n and R^n are real inner product spaces, (the eigenvalue map) $\lambda: \mathcal{S}^n \to \mathcal{R}^n$ satisfies

$$\langle X, Y \rangle \le \langle \lambda(X), \lambda(Y) \rangle$$

with a condition for equality. We formulate the definition of Fan-Theobald-von Neumann system based on these.

Fan-Theobald-von Neumann system

 \mathcal{V} and \mathcal{W} are real inner product spaces,

 $\lambda: \mathcal{V} \to \mathcal{W}$ is a map.

For $u \in \mathcal{V}$, its λ -orbit is $[u] = \{x \in \mathcal{V} : \lambda(x) = \lambda(u)\}.$

 $(\mathcal{V}, \mathcal{W}, \lambda)$ is a **FTvN system** if

$$\max \left\{ \langle c, x \rangle : x \in [u] \right\} = \langle \lambda(c), \lambda(u) \rangle \quad (\forall c, u \in \mathcal{V}). \tag{1}$$

From this we get **FTvN inequality**:

$$\langle x, y \rangle \le \langle \lambda(x), \lambda(y) \rangle \quad (x, y \in \mathcal{V}).$$

If equality holds, we say x and y commute in the FTvN system.

Example 1

 \mathcal{V} - any real inner product space,

$$\mathcal{W} = \mathcal{R}$$
, and $\lambda(x) = ||x||$.

For
$$u \in V$$
, $[u] = \{x \in V : ||x|| = ||u||\}.$

Then, $(\mathcal{V}, \mathcal{R}, \lambda)$ is a FTvN system.

Here, the FTvN inequality becomes

the Cauchy-Schwarz inequality.

Example 2

 $\mathcal{V} = \mathcal{W} = \mathcal{R}^n$ with usual inner product.

 $\lambda(x) = x^{\downarrow}$ (decreasing rearrangment of x).

For $u \in \mathbb{R}^n$, $[u] = \{Pu : P \text{ is a permutation matrix}\}$

Then, $(\mathcal{R}^n, \mathcal{R}^n, \lambda)$ is a FTvN system.

Here, the FTvN inequality becomes:

The Hardy-Littlewood-Pólya rearrangement inequality:

$$\langle x, y \rangle \le \langle x^{\downarrow}, y^{\downarrow} \rangle.$$

 $\mathcal{V} = \mathcal{H}^n$ (space of all $n \times n$ Hermitian matrices), $\mathcal{W} = \mathcal{R}^n$.

0000000

 $\lambda(X) = \text{vector of eigenvalues of } X \text{ written in the decreasing order.}$

For $X \in \mathcal{S}^n$, $[X] = \{UXU^* : U \text{ unitary}\}$,

Then, $(\mathcal{H}^n, \mathcal{R}^n, \lambda)$ is a FTvN system. Here, the FTvN inequality is:

Ky Fan/Richter inequality $\langle X, Y \rangle \leq \langle \lambda(X), \lambda(Y) \rangle$.

Equality case due to **Theobald**.

Similarly for S^n (space of all $n \times n$ real symmetric matrices).

 $\mathcal{V}=M_n$ (all $n \times n$ matrices) with $\langle X,Y \rangle := \operatorname{Re} tr(X^*Y)$, $\mathcal{W}=\mathcal{R}^n$, and $\lambda(X)=s(X)$ (vector of singular values of X written in the decreasing order).

For
$$X \in M_n$$
, $[X] = \{UXV : U, V \text{ unitary}\}$,

Then, $(M_n, \mathcal{R}^n, \lambda)$ is a FTvN system.

Here, the FTvN inequality is:

von Neumann's inequality $\langle X,Y\rangle \leq \langle s(X),s(Y)\rangle$.

- $(\mathcal{V},\mathcal{R}^n,\lambda)$ where \mathcal{V} is a Euclidean Jordan algebra of rank n, $\mathcal{W}=\mathcal{R}^n,\,\lambda(x)$ is the eigenvector of x.
- Systems induced by complete, isometric hyperbolic polynomials.
- Normal decomposition systems (includes Eaton triples).
- Infinite dimensional system (l_2, l_2, λ) .

Hyperbolic polynomials

 ${\mathcal V}$ is a real finite dimensional space, $e\in{\mathcal V}, \ p$ is a real homogeneous polynomial of degree n on ${\mathcal V}. \ p$ is **hyperbolic with respect to** e if $p(e)\neq 0$ and for every $x\in{\mathcal V},$ roots of p(te-x)=0 are all real. For any $x\in{\mathcal V},$ let $\lambda(x)$ denote the vector of roots of p(te-x)=0 written in the decreasing order. Assuming p is complete (which means that $\lambda(x)=0\Rightarrow x=0$), ${\mathcal V}$ can be made into an inner product space:

$$\langle x, y \rangle := \frac{1}{4} \Big[||\lambda(x+y)||^2 - ||\lambda(x-y)||^2 \Big].$$

Then λ is norm-preserving and $\langle x,y\rangle \leq \langle \lambda(x),\lambda(y)\rangle$. Under an 'isometric' condition (Bauschke et al), $(\mathcal{V},\mathcal{R}^n,\lambda)$ becomes a FTvN system.

Elementary properties of λ

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system.

Then,

- \bullet λ is norm-preserving, positively homogeneous, and Lipschitz,
- For every $c \in \mathcal{V}$, $f(x) := \langle \lambda(c), \lambda(x) \rangle$ is sublinear,
- $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$ iff $\lambda(x+y) = \lambda(x) + \lambda(y)$.

•000000

Spectral set

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system.

A spectral set in $\mathcal V$ is of the form $E=\lambda^{-1}(Q)$ for some $Q\subseteq\mathcal W.$

Theorem: Let E be spectral in V. Then,

- closure/interior/boundary of E is spectral.
- If V is finite dimensional, then convex hull of E is spectral and sum of two convex spectral sets is spectral.
- If V is a Hilbert space, then the closed convex hull of E is spectral and sum of two compact convex spectral sets is spectral.

Spectral function

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. A **spectral function** on \mathcal{V} is of the form $\Phi = \phi \circ \lambda$ for some $\phi : \mathcal{W} \to \mathcal{R}$.

Then.

- A set E is spectral in V iff its indicator/characteristic function is spectral.
- A real-valued function Φ on V is spectral iff its epigraph is spectral in the product FTvN space $(\mathcal{R} \times \mathcal{V}, \mathcal{R} \times \mathcal{W}, \Lambda)$, where $\Lambda(t,x)=(t,\lambda(x))$.

Center, unit element

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. Then,

- x and y commute in \mathcal{V} if $\langle x,y\rangle = \langle \lambda(x),\lambda(y)\rangle$.
- Center of FTvN system is $\mathcal{C} := \{x \in \mathcal{V} : x \text{ commutes with every } y \in \mathcal{V}\}.$
- A nonzero e in \mathcal{V} is a **unit element** if center $\mathcal{C} = \mathcal{R} e$.

Theorem:

 \mathcal{C} is a closed subspace of \mathcal{V} and λ is linear on it. If V is a Hilbert space, then $V = C + C^{\perp}$. Moreover, in the FTvN space (C, W, λ) , the center is C and in the FTvN space $(\mathcal{C}^{\perp}, \mathcal{W}, \lambda)$, the center is $\{0\}$.

An example

In
$$(\mathcal{H}^n, \mathcal{H}^n, \lambda)$$
,

- spectrality = unitary invariance.
- X and Y commute in the FTvN system iff

$$X = Udiag(\lambda(X))U^*$$
 and $Y = Udiag(\lambda(Y))U^*$

for some unitary matrix U.

(Note: $\lambda(X)$ and $\lambda(Y)$ have decreasing components.)

- Center = All multiples of the identity matrix.
- The Identity matrix is a unit.

In the FTvN system $(\mathcal{V}, \mathcal{W}, \lambda)$, for any spectral set E, $c \in \mathcal{V}$, $\phi : \mathcal{W} \to \mathcal{R}$, and $\Phi = \phi \circ \lambda$.

$$\sup_{x \in E} \left\{ \langle c, x \rangle + (\phi \circ \lambda)(x) \right\} = \sup_{y \in \lambda(E)} \left\{ \langle \lambda(c), y \rangle + \phi(y) \right\}.$$

Attainment of one supremum implies that of the other. Moreover, if the supremum on the left is attained at x^* , then c commutes with x^* .

In terms of the Fenchel conjugate, above equality is equivalent to

$$(\phi \circ \lambda)_E^*(c) = \phi_{\lambda(E)}^*(\lambda(c)),$$

and, in a specialized form, to

$$(\phi \circ \lambda)^* = \phi^* \circ \lambda.$$

In a FTvN system $(\mathcal{V}, \mathcal{W}, \lambda)$,

- x is **majorized** by y if $x \in \text{conv}[y]$. We write $x \prec y$.
- A linear transformation $D: \mathcal{V} \to \mathcal{V}$ is **doubly stochastic** if $Dx \prec x$ for all $x \in \mathcal{V}$.
- An invertible linear transformation $A: \mathcal{V} \to \mathcal{V}$ is an automorphism if $\lambda(Ax) = \lambda(x)$ for all $x \in \mathcal{V}$.

Theorem: D is a doubly stochastic transformation on $(\mathcal{V}, \mathcal{W}, \lambda)$ with adjoint D^* (whenever defined). Then,

- $D(E) \subseteq E$ for any convex spectral set E.
- $u \in \mathcal{C} \Rightarrow Du = u, D^*u = u$. If e is a unit then, De = e, $D^*e = e$.
- If A is linear and invertible, then A is an automorphism iff A and A^{-1} are doubly stochastic.
- ullet If ${\mathcal V}$ is finite dimensional, then any convex combination of automorphisms is doubly stochastic.

Reduced system of a FTVN system

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system. Then

- a FTvN system $(\mathcal{W},\mathcal{W},\mu)$ is a **reduced system** of $(\mathcal{V},\mathcal{W},\lambda)$ if
 - $range(\mu) \subseteq range(\lambda)$,
 - $\bullet \ \mu \circ \lambda = \lambda.$

In this setting,

- $range(\mu) = range(\lambda)$,
- $\bullet \ \mu \circ \mu = \mu.$

Examples: $(\mathcal{R}^n, \mathcal{R}^n, \mu)$ with $\mu(x) = x^{\downarrow}$ is a reduced system of $(\mathcal{H}^n, \mathcal{R}^n, \lambda)$.

Every normal decomposition system is a reduced system of itself.

Theorem:

Suppose (W, W, μ) is a reduced system of (V, W, λ) with W finite dimensional. Then.

- \bullet $\lambda(x+y) \prec \lambda(x) + \lambda(y)$.
- $x \prec y$ implies $\lambda(x) \prec \lambda(y)$. The converse holds if \mathcal{V} is finite dimensional.

Question: When do we have Lidskii type inequality

$$\lambda(x) - \lambda(y) \prec \lambda(x - y).$$

Theorem: Let $(\mathcal{W}, \mathcal{W}, \mu)$ be a reduced system of $(\mathcal{V}, \mathcal{W}, \lambda)$, Q be spectral in W, and $E = \lambda^{-1}(Q)$. Then,

- $\lambda^{-1}(Q^{\Diamond}) = (\lambda^{-1}(Q))^{\Diamond}$, where \Diamond denotes closure/interior/boundary operation.
- Let V and W be finite dimensional. Then.
 - E is convex iff Q is convex.
 - $\overline{\operatorname{conv}} \lambda^{-1}(Q) = \lambda^{-1}(\overline{\operatorname{conv}} Q).$
 - For convex spectral sets Q_1 and Q_2 in W,

$$\lambda^{-1}(Q_1 + Q_2) = \lambda^{-1}(Q_1) + \lambda^{-1}(Q_2).$$

Theorem: Let (W, W, μ) be a reduced system of (V, W, λ) , $\phi: \mathcal{W} \to \mathcal{R}$ be spectral, $\Phi := \phi \circ \lambda$. Then

- When W is finite dimensional, convexity of ϕ implies that of Φ.
- When V and W are finite dimensional, Φ is convex iff ϕ is convex.

This extends a celebrated result of Davis which says that a unitarily invariant function on \mathcal{H}^n (the space of all n \times n complex Hermitian matrices) is convex if and only if its restriction to diagonal matrices is convex.

Fenchel conjugate and subdifferential formulas

Let X be a real inner product space, $f: X \to \mathcal{R} \cup \{\infty\}$.

Given $a \in S \subseteq X$ with $f(a) < \infty$.

recall the **subdifferential** of f at a relative to S:

$$\partial_S f(a) = \{ d \in X : f(x) - f(a) \ge \langle d, x - a \rangle \, \forall x \in S \}$$

and the **Fenchel conjugate** of f relative to S:

$$f_S^*(z) = \sup\{\langle z, x \rangle - f(x) : x \in S\} \quad (z \in X).$$

Theorem:

Let $(\mathcal{V}, \mathcal{W}, \lambda)$ be a FTvN system, S be spectral in \mathcal{V} ,

 $\phi: \mathcal{W} \to \mathcal{R} \cup \{\infty\}$, and $\Phi:=\phi \circ \lambda$. Then,

- $\bullet \ \Phi_S^*(z) = \phi_{\lambda(S)}^* \big(\lambda(z) \big) \quad (z \in \mathcal{V}).$
- $\bullet \ y \in \partial_S \Phi(a) \Leftrightarrow \lambda(y) \in \partial_{\lambda(S)} \phi(\lambda(a)), \ y \ \text{and} \ a \ \text{commute}.$

Moreover, when $(\mathcal{W}, \mathcal{W}, \mu)$ is a reduced system of $(\mathcal{V}, \mathcal{W}, \lambda)$ and

 ϕ is spectral on \mathcal{W} , we can replace $\lambda(S)$ by $[\lambda(S)]$.

In particular, with $S = \mathcal{V}$, get $(\phi \circ \lambda)^* = \phi^* \circ \lambda$, etc.

Note: The above two items are equivalent to the defining condition of FTvN system.

Let E be a spectral set in a FTvN system.

For any $a \in E$, let

$$N_E(a) := \{ d \in \mathcal{V} : \langle d, x - a \rangle \le 0 \ \forall x \in E \}$$

denote the **normal cone** of E at a. Then every d in $N_E(a)$ commutes with a.

Example: If x^* solves the variational inequality problem VI(f, E), then x^* commutes with $-f(x^*)$.

References

- (1) M.S. Gowda, Optimizing certain combinations of linear/distance functions over spectral sets, arXiv:1902.06640v2 (2019).
- (2) M.S. Gowda, Commutation principles for optimization problems on spectral sets in Euclidean Jordan algebras, Opt. Lett., 16, 1119–1128 (2022).
- (3) M.S. Gowda and J. Jeong, Commutativity, majorization, and reduction in FTvN systems, Results Math., 78:72 (2023).
- (4) J. Jeong and M.S. Gowda, Transfer principles, Fenchel and subdifferential formulas in FTvN systems, Manuscript, May 2023.

