Some structural properties of copositive and completely positive cones

M. Seetharama Gowda

Department of Mathematics and Statistics
University of Maryland, Baltimore County

Baltimore, Maryland, USA

gowda@umbc.edu

RICAM Workshop -- Dec. 9, 2019

Setting

Consider \mathbb{R}^n with the usual inner product.

 \mathcal{S}^n is the space of all $n \times n$ real symmetric matrices with inner product $\langle X, Y \rangle := tr(XY)$.

Throughout, H denotes a (finite dimensional) real Hilbert space, such as \mathbb{R}^n or \mathcal{S}^n .

Copositive and completely positive cones

 \mathcal{C} in \mathbb{R}^n is a closed cone that is not necessarily convex.

(Cone: $x \in \mathcal{C}, \lambda \geq 0 \Rightarrow \lambda x \in \mathcal{C}$.)

 $A \in \mathcal{S}^n$ is copositive on \mathcal{C} means: $x^T A x \geq 0$ for all $x \in \mathcal{C}$.

The copositive cone of $\mathcal C$ is:

$$\mathcal{E}_{\mathcal{C}} := \{ A \in \mathcal{S}^n : A \text{ is copositive on } \mathcal{C} \}.$$

The completely positive cone of $\mathcal C$ is

$$\mathcal{K}_{\mathcal{C}} := \left\{ \sum_{u \in S} uu^T : S \subset \mathcal{C}, S \text{ finite} \right\}.$$

Both $\mathcal{E}_{\mathcal{C}}$ and K are closed convex cones in \mathcal{S}^n .

- When $\mathcal{C}=\mathbb{R}^n$, $\mathcal{K}_{\mathcal{C}}=\mathcal{E}_{\mathcal{C}}=\mathcal{S}^n_+$ (semidefinite cone).
- When $C = \mathbb{R}^n_+$, \mathcal{K}_C is the *standard* cone of completely positive matrices and \mathcal{E}_C is the *standard* cone of copositive matrices.

Various problems in optimization could be (re)formulated as linear programs over completely positive or copositive cones. For example,

Burer (2009):

Any nonconvex quadratic minimization problem over the nonnegative orthant with linear and binary constraints can be reformulated as a linear program over a completely positive cone. Motivated by the good properties of the semidefinite cone, we look for structural properties of completely positive cones (copositive cones). In particular, we ask:

When is a completely positive cone $\mathcal{K}_{\mathcal{C}}$

- self-dual?
- irreducible?
- homogeneous?
- ullet What is the automorphism group of $\mathcal{K}_{\mathcal{C}}$?
- ullet Is there a way to quantify 'goodness' of $\mathcal{K}_{\mathcal{C}}$?

Some definitions

Let K be a closed cone in H.

- K is pointed if $K \cap -K = \{0\}$.
- K is a proper cone if K is a closed convex pointed cone with nonempty interior.
- \bullet $K^* := \{x \in H : \langle x, y \rangle \ge 0 \text{ for all } y \in K\} \text{ is the Dual of } K.$
- ullet K is self-dual if $K=K^*$.
- ullet A is an automorphism of K if

A is linear and invertible on H with A(K) = K.

ullet K is homogeneous if K is a proper cone and for any $x,y\in int(K)$, there is $A\in Aut(K)$ such that Ax=y.

• K is **reducible** if there exist nonzero closed cones K_1 and K_2 such that

$$K = K_1 + K_2$$
 and $span(K_1) \cap span(K_2) = \{0\}.$

If K is not reducible, then it is *irreducible*.

Our results

Recall: For any closed cone C in \mathbb{R}^n , \mathcal{K}_C is the completely positive cone of C. We show

- ullet $\mathcal{K}_{\mathcal{C}}$ is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.
- ullet \mathcal{S}^n_+ is the only self-dual completely positive cone.
- When C has nonempty interior, K_C is irreducible.
- When C is a proper cone, K_C is non-homogeneous.

We relate $\operatorname{Aut}(\mathcal{C})$ and $\operatorname{Aut}(\mathcal{K}_{\mathcal{C}})$ when \mathcal{C} is a proper cone.

We introduce 'Lypaunov rank' to quantify 'goodness'.

Some basic properties

- $\mathcal{K}_{\mathcal{C}} \subseteq \mathcal{S}_{+}^{n} \subseteq \mathcal{E}_{\mathcal{C}}$.
- $\mathcal{K}_{\mathcal{C}}$ is pointed, that is, $\mathcal{K}_{\mathcal{C}} \cap -\mathcal{K}_{\mathcal{C}} = \{0\}$.
- $\mathcal{E}_{\mathcal{C}}$ is the dual of $\mathcal{K}_{\mathcal{C}}$ in \mathcal{S}^n .
- If int(C) is nonempty, then K_C and E_C are proper.
- $\operatorname{Ext}(\mathcal{K}_{\mathcal{C}}) = \{uu^T : 0 \neq u \in \mathcal{C}\}.$
- $\operatorname{int}(\mathcal{K}_{\mathcal{C}}) = \{ \sum u_i u_i^T : u_i \in \operatorname{int}(\mathcal{C}), \operatorname{span}\{u_1, \dots, u_n\} = \mathbb{R}^n \}.$

Self-duality

Theorem: $\mathcal{K}_{\mathcal{C}}$ is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.

Proof. If $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$, then $\mathcal{K}_{\mathcal{C}} = \mathcal{S}^n_+$ is self-dual.

If $\mathcal{K}_{\mathcal{C}}$ is self-dual, then $\mathcal{K}_{\mathcal{C}} \subseteq \mathcal{S}_{+}^{n} \subseteq \mathcal{E}_{\mathcal{C}} \Rightarrow \mathcal{K}_{\mathcal{C}} = \mathcal{S}_{+}^{n}$.

Now, for any nonzero $x \in \mathbb{R}^n$, xx^T is an extreme vector of $\mathcal{S}^n_+ = \mathcal{K}_{\mathcal{C}}$.

By a known characterization, $xx^T = uu^T$ for some $0 \neq u \in \mathcal{C}$.

But then, $x = \pm u$. So, $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.

Irreducibility

Example. In \mathbb{R}^n , consider the standard unit vectors e_1, e_2, \ldots, e_n ; let \mathcal{C} be the cone generated by these. Then, the corresponding completely positive cone is the cone of nonnegative diagonal matrices in \mathcal{S}^n . This is isomorphic to \mathbb{R}^n_+ , hence reducible.

Note that in this example, interior of C is empty.

Theorem: If C has nonempty interior, then K_C is irreducible.

Proof. Suppose \mathcal{C} has nonempty interior and $\mathcal{K}_{\mathcal{C}}$ is reducible in \mathcal{S}^n . Let $\mathcal{K}_{\mathcal{C}} = K_1 + K_2$, where K_1 and K_2 are nonzero closed cones with $\operatorname{span}(K_1) \cap \operatorname{span}(K_2) = \{0\}$. For any $0 \neq u \in \mathcal{C}$, uu^T is an extreme vector of \mathcal{D}

For any $0 \neq u \in \mathcal{C}$, uu^T is an extreme vector of $\mathcal{K}_{\mathcal{C}}$. If $uu^T = x_1 + x_2$ with $x_i \in K_i \subseteq \mathcal{K}_{\mathcal{C}}$, we must have $x_1 = uu^T$ (say) and $x_2 = 0$. Then, $C = C_1 \cup C_2$, where

$$\mathcal{C}_1 := \{ u \in \mathcal{C} : uu^T \in K_1 \} \text{ and } \mathcal{C}_2 := \{ u \in \mathcal{C} : uu^T \in K_2 \}.$$

Baire category theorem implies \mathcal{C}_1 (say) has nonempty interior. Then the corresponding completely positive cone $\mathcal{K}_{\mathcal{C}_1}$ is proper and so

$$\mathcal{K}_{\mathcal{C}_1} - \mathcal{K}_{\mathcal{C}_1} = \mathcal{S}^n$$
. As $\mathcal{K}_{\mathcal{C}_1} \subseteq K_1$,

we must have $K_1 - K_1 = S^n$, that is, $span(K_1) = S^n$.

Then, $span(K_2) = \{0\}$, a contradiction.

Non-homogeneity

Recall: A proper cone K in H is homogeneous if for any $x,y\in int(K)$, there is an $L\in Aut(K)$ such that L(x)=y.

- A self-dual homogeneous cone is a symmetric cone.
- Every such cone arises as the cone of squares in a Euclidean Jordan algebra.

 \mathbb{R}^n_+ , \mathcal{S}^n_+ , and second order cone are examples of symmetric cones.

The automorphism group of $\mathcal{K}_{\mathcal{C}}$

Gowda-Sznajder-Tao (2013): Suppose C is a proper cone.

Then every automorphism of $\mathcal{K}_{\mathcal{C}}$ is of the form

$$L(X) = QXQ^T \quad (X \in \mathcal{S}^n)$$

for some automorphism Q of \mathcal{C} .

Example: Let $C = \mathbb{R}^n_+$. Then, every automorphism of \mathbb{R}^n_+ is given by Q = PD, where P is a permutation matrix and D is a positive diagonal matrix.

Theorem: If C is a proper cone in \mathbb{R}^n (n > 1), then \mathcal{K}_C cannot be homogeneous.

We need two lemmas. Here $L \in \mathbb{R}^{n \times n}$.

Lemma 1: Suppose $L(\mathcal{C})\subseteq\mathcal{C}$ with L(u)=0 for some $u\in int(\mathcal{C}).$ Then L=0.

Lemma 2: Suppose $L \in \overline{Aut(\mathcal{C})}$ and $L(d) \in int(\mathcal{C})$ for some $d \in int(\mathcal{C})$. Then, $L \in Aut(\mathcal{C})$.

Sketch of the proof of the theorem:

We know $\mathcal{K}_{\mathcal{C}}$ is proper. Suppose $\mathcal{K}_{\mathcal{C}}$ is homogeneous.

Pick two bases $\{u_1, u_2, \dots, u_n\}$ and $\{v, u_2, \dots, u_n\}$.

in $int(\mathcal{C})$. Define $X := u_1u_1^T + u_2u_2^T + \cdots + u_nu_n^T$ and

 $Y_k := vv^T + \frac{1}{k}(u_2u_2^T + \cdots + u_nu_n^T)$. These are in $int(\mathcal{K}_{\mathcal{C}})$.

There exist $L_k \in Aut(\mathcal{K}_{\mathcal{C}})$ of the form $L_k(X) = Q_k X Q_k^T$

with $Q_k \in Aut(\mathcal{C})$ such that $Q_k X Q_k = L_k(X) = Y_k$.

So, for all k,

$$Q_k(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q_k^T = vv^T + \frac{1}{k}(u_2u_2^T + \dots + u_nu_n^T).$$

Case 1: Q_k unbounded. Without loss of generality,

let $Q := \lim \frac{Q_k}{||Q_k||}$. A normalization argument

leads to

$$Q(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q^T = 0$$

and to $Qu_i=0$ for all i. This implies Q=0.

Case 2: Q_k bounded. Let $Q := \lim Q_k \in Aut(\mathcal{C})$. Taking limits,

$$Q(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q^T = vv^T.$$

As $vv^T \in Ext(\mathcal{K}_{\mathcal{C}})$, we must have $Qu_i = \lambda_i v$ for all i.

Then Q has rank one. Now, by Lemma 1, $\lambda_1 \neq 0$.

As C is proper, λ_1 cannot be negative.

When λ_1 is positive, by Lemma 2, $Q \in Aut(\mathcal{C})$. As Q has rank one, we get a contradiction.

Bilinearity relations

Let K be a proper cone in \mathbb{R}^n .

The optimality conditions for a primal-dual cone-linear program on K are of the form

$$Ax = b$$

$$A^{T}y + s = c$$

$$x \in K, s \in K^{*}, \langle x, s \rangle = 0.$$

To make the above system square, it is desirable to have n or more independent bilinear relations describing the complementarity condition.

Bilinearity rank of a cone

Let

$$C(K) := \{(x, s) : x \in K, s \in K^*, \langle x, s \rangle = 0\}.$$

Rudolf, Noyan, Papp, and Alizadeh (2011):

An $n \times n$ matrix Q is called a bilinearity relation on K if

$$(x,s) \in C(K) \Rightarrow x^T Q s = 0.$$

The bilinearity rank of K is:

 $\beta(K)$ = Dimension of the space of all bilinearity relations.

This notion can be extended to a proper cone in our (finite dimensional) real Hilbert space H.

Lyapunov-like transformations

Let K be a proper cone in H.

Gowda-Sznajder (2007):

A linear transformation L on H is said to be Lyapunov-like on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

Thus, L is Lyapunov-like on K iff L^T is a bilinearity relation on K and

 $\beta(K)$ =Dimension of the space of all Lyapunov-like transformations on K.

K is a good cone if $\beta(K) \geq \dim(H)$.

Examples

Example 1: On \mathbb{R}^n_+ , a matrix is Lyapunov-like iff it is a diagonal matrix.

Example 2: On S_+^n , L is Lyapunov-like iff it is of the form

 $L_A(X) = AX + XA^T \ (X \in \mathcal{S}^n)$ for some $A \in \mathbb{R}^{n \times n}$.

Example 3: On a Euclidean Jordan algebra,

L is Lyapunov-like if and only if $L = L_a + D$, where

 $L_a(x) := a \circ x$ and D is a derivation.

Thanks to a result of Schneider-Vidyasagar (1970),

The following are equivalent:

- L is Lyapunov-like on K.
- $e^{tL} \in Aut(K)$ for all $t \in \mathbb{R}$.
- L belongs to the Lie algebra of the group Aut(K).

Thus, for any proper cone K,

$$\beta(K) = dim(Lie(Aut(K))).$$

Simple symmetric cones

Gowda-Tao (2014): V – Euclidean Jordan algebra, Herm(V) – Hermitian matrices in (the matrix algebra) V, and K – corresponding symmetric cone.

- (i) In $Herm(R^{n\times n})$, $\beta(K)=n^2$.
- (ii) In $Herm(C^{n \times n})$, $\beta(K) = 2n^2 1$.
- (iii) In $Herm(Q^{n\times n})$, $\beta(K)=4n^2$.
- (iv) In $Herm(O^{3\times 3})$, $\beta(K) = 79$.
- (v) In \mathcal{L}^n , $\beta(K) = \frac{n^2 n + 2}{2}$.

Note: In each case, $\beta(K) \geq \dim(V)$.

Gowda-Sznajder-Tao (2013):

Let C be a proper cone. Then, every Lyapunov-like

transformation on $\mathcal{K}_{\mathcal{C}}$ is of the form

$$L_A$$
, where $L_A(X) := AX + XA^T$ and A is

Lyapunov-like on \mathcal{C} . Since $A \mapsto L_A$ is an isomorphism,

$$\beta(\mathcal{K}_{\mathcal{C}}) = \beta(\mathcal{C}).$$

Example: Let $\mathcal{C} = \mathbb{R}^n_+$.

Then $\mathcal{K}_{\mathcal{C}}$ is the cone of completely positive matrices. Since a matrix is Lyapunov-like on \mathbb{R}^n_+ if and only if it is a diagonal matrix, it follows that $\beta(\mathbb{R}^n_+) = n$. Thus, the bilinearity rank of the cone of completely positive matrices is n. This is less than the dimension of the ambient space S^n . Hence, the cone of completely positive matrices is 'bad' in the sense that the primal-dual LP system cannot be made square by means of bilinearity relations alone.

Results for the copositive cone

Recall: $\mathcal{E}_{\mathcal{C}}$ is the copositive cone of \mathcal{C} .

- (i) $\mathcal{E}_{\mathcal{C}}$ is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.
- (ii) If C has nonempty interior, then \mathcal{E}_C is irreducible.
- (iii) If C is a proper cone in \mathbb{R}^n (n > 1), then \mathcal{E}_C is not homogeneous.

Beyond copositive and completely positive cones – Bishop-Phelps cones, spectral cones,

References:

- (1) Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Math Prog, 2009.
- (2) Burer, Copositive programming, Handbook..., 2012.
- (3) Eichfelder and Povh, On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets, Optimization Letters, 2013.
- (4) Gowda, On copositive and completely positive cones and Z-transformations, EJLA, 2012.
- (5) Gowda-Sznajder, On the irreducibility, self-duality, and non-homogeneity of completely positive cones, EJLA, 2013.

- (6) Gowda-Sznajder-Tao, The automorphism group of a completely positive cone, LAA, 2013.
- (7) Gowda-Tao, Bilinearity rank of a proper cone and Lyapunov-like transformations, Math Prog, 2014.
- (8) Rudolf, Noyan, Papp, and Alizadeh, *Bilinearity* optimality conditions..., Math Prog, 2011.
- (9) Schneider-Vidyasagar, *Cross-positive matrices*, SIAM Numer. Anal., 1970.