Z matrices, linear transformations, and tensors

M. Seetharama Gowda

Department of Mathematics and Statistics

University of Maryland, Baltimore County

Baltimore, Maryland, USA

gowda@umbc.edu

International Conference on Tensors, Matrices, and their Applications Tianjin, China

May 21-24, 2016

This is an expository talk on \mathbb{Z} matrices, transformations on proper cones, and tensors. The objective is to show that these have very similar properties.

Outline

- The Z-property
- M and strong (nonsingular) M-properties
- The P-property
- Complementarity problems
- Zero-sum games
- Dynamical systems

Some notation

- R^n : The Euclidean n-space of column vectors.
- R_+^n : Nonnegative orthant, $x \in R_+^n \Leftrightarrow x \ge 0$.
- R_{++}^n : The interior of R_+^n , $x \in_{++}^n \Leftrightarrow x > 0$.
- $\langle x, y \rangle$: Usual inner product between x and y.
- $R^{n \times n}$: The space of all $n \times n$ real matrices.
- $\sigma(A)$: The set of all eigenvalues of $A \in \mathbb{R}^{n \times n}$.

The Z-property

 $A = [a_{ij}]$ is an $n \times n$ real matrix

- A is a Z-matrix if $a_{ij} \leq 0$ for all $i \neq j$. (In economics literature, -A is a Metzler matrix.)
- We can write A = rI B, where $r \in R$ and $B \ge 0$. Let $\rho(B)$ denote the spectral radius of B.
- A is an M-matrix if $r \geq \rho(B)$,
- ullet nonsingular (strong) M-matrix if r>
 ho(B).

The P-property

 \bullet A is a P-matrix if all its principal minors are positive.

Theorem: The following are equivalent:

- A is a P-matrix.
- $x*Ax \le 0 \Rightarrow x = 0.$
- \bullet max_i $x_i(Ax)_i > 0$ for all $x \neq 0$.

Here, x * y denotes the componentwise product of vectors x and y.

Z together with P

Theorem: The following are equivalent for a Z-matrix A:

- m A is a P-matrix.
- m A is a nonsingular M -matrix.
- There exists a vector d > 0 such that Ad > 0.
- $m{ ilde{\square}}$ A is invertible and A^{-1} is a nonnegative matrix.

The book on Nonnegative matrices by Berman and Plemmons lists 52 equivalent conditions.

The linear complementarity problem

Given $A \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$, $\mathsf{LCP}(A, q)$:

Find $x \in \mathbb{R}^n$ such that

$$x \ge 0, y := Ax + q \ge 0, \text{ and } \langle x, y \rangle = 0.$$

Theorem:

- ullet A is a P-matrix iff LCP(A,q) has a unique solution for all q.
- Suppose A is a Z-matrix. If $\{x \ge 0, Ax + q \ge 0\}$ is nonempty, then its least element solves LCP(A, q).

Zero-sum matrix game

Two players I and II start with a matrix A and

Strategy set
$$\Delta := \{x \in R^n_+ : \sum_{1}^n x_i = 1\}.$$

I chooses $x \in \Delta$ and II chooses $y \in \Delta$.

Then, payoff for I is $\langle Ax, y \rangle$ and payoff for II is $-\langle Ax, y \rangle$.

Theorem: There exist 'optimal strategies' $p, q \in \Delta$ such that

$$\langle Ax, q \rangle \leq \langle Ap, q \rangle \leq \langle Ap, y \rangle$$
 for all $xy \in \Delta$.

The value of the game $v(A) := \langle Ap, q \rangle$.

$$v(A) := \max_{x \in \Delta} \min_{y \in \Delta} \langle Ax, y \rangle = \min_{y \in \Delta} \max_{x \in \Delta} \langle Ax, y \rangle.$$

Completely mixed games

The game is *completely mixed* if p > 0 and q > 0 for all optimal strategy pairs.

Theorem: (Kaplansky, 1945) *If the game is completely mixed, then the game has unique optimal strategies.*

Theorem: (Raghavan, 1978) Suppose A is a Z-matrix. Then, v(A) > 0 iff A is a P-matrix. In this case, the game is completely mixed.

Dynamical systems

Given A, consider the continuous linear dynamical system

$$\frac{dx}{dt} + Ax = 0, \ x(0) \in \mathbb{R}^n.$$

Its trajectory in R^n : $x(t) = e^{-tA}x(0)$ for all $t \in R$.

Theorem: A is a Z-matrix iff $e^{-tA}(R_+^n) \subseteq R_+^n$ for all $t \ge 0$.

Theorem: Suppose A is a Z-matrix. Then, the following are equivalent:

- There exists d > 0 such that Ad > 0.
- ullet A is a P-matrix.
- ullet A is positive stable: All eigenvalues of A have positive real parts.
- For any $x(0) \in \mathbb{R}^n$, $x(t) \to 0$ as $t \to \infty$.

Proper cones

- *H*: Finite dimensional real inner product space.
- $\langle x, y \rangle$: inner product between $x, y \in H$.
- K: Proper cone in H.
 (closed convex pointed cone with nonempty interior)
- The dual cone $K^* := \{x \in H : \langle x, y \rangle \ge 0 \ \forall \ y \in K\}.$

Z and Lyapunov-like transformations

K is a proper cone in H, $L: H \rightarrow H$ is linear.

ullet L is a Z-transformation on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \leq 0.$$

We write $L \in Z(K)$.

(Schneider-Vidyasagar: L is cross-positive if $-L \in Z(K)$.)

ullet L is a Lyapunov-like transformation on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

We write $L \in LL(K)$.

Examples

- $H = S^n$: Space of all $n \times n$ real symmetric matrices.
- $\bullet \langle X, Y \rangle := trace(XY).$
- $K = \mathcal{S}^n_+$: cone of positive semidefinite matrices in \mathcal{S}^n .
- For any $A \in \mathbb{R}^{n \times n}$,

$$S_A(X) := X - AXA^T$$
 and $L_A(X) := AX + XA^T$.

(S_A -Stein transformation, L_A -Lyapunov transformation)

• $S_A \in Z(\mathcal{S}^n_+)$ and $L_A \in LL(\mathcal{S}^n_+)$.

Properties equivalent to the Z-property on a proper cone K:

(Schneider-Vidyasagar, 1970)

- $e^{-tL}(K) \subseteq K$ for all $t \ge 0$.
- $L = \lim_{n \to \infty} (t_n I S_n)$ where $S_n(K) \subseteq K$ and $t_n \in R$.

Properties equivalent to the LL-property on a proper cone K:

- $e^{tL}(K) \subseteq K$ for all $t \in R$.
- $L \in Lie(Aut(K))$ (Lie algebra characterization).

Lyapunov rank of K:= dimension of Lie(Aut(K)).

Useful in conic optimization.

Lyapunov rank

If the Lyapunov rank of K is more than the dimension n of the ambient space, then the complementarity system

$$x \in K, \ y \in K^*, \ \langle x, y \rangle = 0$$

can be expressed in terms of n linearly independent bilinear relations.

For example, in R^n , when $x \ge 0$, $y \ge 0$,

$$\langle x, y \rangle = 0 \Leftrightarrow x_i y_i = 0 \ \forall \ i.$$

This idea is useful in linear programs over cones.

Theorem: (Stern 1981, Gowda-Tao 2006)

The following are equivalent for a \mathbb{Z} -transformation:

- There exists $d \in int(K)$ such that $L(d) \in int(K)$.
- L^{-1} exists and $L^{-1}(K) \subseteq K$.
- ullet L is positive stable.
- ullet All real eigenvalues of L are positive.
- For any $q \in H$, there exists x such that $x \in K, L(x) + q \in K^*, \ \langle x, L(x) + q \rangle = 0.$

Recall:
$$K^* := \{ y \in H : \langle y, x \rangle \ge 0 \ \forall x \in K \}.$$

Euclidean Jordan algebras

For a matrix $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- A is a P-matrix: $x * Ax < 0 \Rightarrow x = 0$.
- All principal minors of A are positive.

How to generalize the *P*-property?

 $(V, \langle \cdot, \cdot \rangle, \circ)$ is a Euclidean Jordan algebra if V is a finite dimensional real inner product space and the bilinear Jordan product $x \circ y$ satisfies:

Examples

Any EJA is a product of the following simple algebras:

- $S^n = \text{Herm}(\mathcal{R}^{n \times n})$: All $n \times n$ real symmetric matrices.
- **▶** Herm($C^{n \times n}$): $n \times n$ complex Hermitian matrices.
- **▶** Herm($Q^{n \times n}$): $n \times n$ quaternion Hermitian matrices.
- ▶ Herm($\mathcal{O}^{3\times3}$): 3×3 octonion Hermitian matrices.
- \mathcal{L}^n $(n \ge 3)$: The Jordan spin algebra.

 $K = \{x^2 : x \in V\}$ is the symmetric cone of V.

It is a self-dual, homogeneous cone.

Characterization of LL transformations on a EJA:

Theorem: (Tao-Gowda, 2013) *The following are equivalent:*

- ullet L is Lyapunov-like on the symmetric cone of V ,
- $L = L_a + D$, where $a \in V$ and $D : V \to V$ is a derivation. Here,

$$L_a(x) := a \circ x \text{ and } D(x \circ y) = D(x) \circ y + x \circ D(y).$$

Corollary: (Damm, 2004) On S^n , L is Lyapunov-like iff it is of the form L_A for some $A \in R^{n \times n}$.

The P-property

On an EJA V, a and b operator commute if

$$L_a L_b = L_b L_a.$$

A linear L:V o V has the **P**-property if

[x and L(x) operator commute, $x \circ L(x) \leq 0$] $\Rightarrow x = 0$.

Theorem: (Gowda, Tao, and Ravindran, 2012)

Suppose L is Lyapunov-like on the symmetric cone of V .

- ullet L has P-property if and only if
- There exists $d \in int(K)$ such that $L(d) \in int(K)$.

Conjecture: This result holds for Z-transformations.

Lyapunov's theorem revisited

Recall: $L_A(X) := AX + XA^T$ on S^n .

Corollary: For any $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- L_A has P-property on \mathcal{S}^n_+ .
- There exists $X \succ 0$ such that $AX + XA^T \succ 0$.
- A is positive stable.

Here, $X \succ 0$ means that X is symmetric and positive definite.

Linear games on self-dual cones

Let K be self-dual that is, $K = K^*$ in H. For $e \in int(K)$,

define
$$\Delta := \{x \in K : \langle x, e \rangle = 1\}.$$

(We think of Δ as the strategy set.)

Given a linear transformation $L: H \rightarrow H$,

by von Neumann's min-max theorem, there exist

'optimal strategies' p and q such that

$$\langle L(x), q \rangle \le \langle L(p), q \rangle \le \langle L(p), y \rangle$$

for all strategies $x, y \in \Delta$.

 $v(L) := \langle L(p), q \rangle$ is called the value of L.

A generalization of Raghavan's result:

Theorem: (Gowda-Ravindran, 2015) Let K be self-dual and $L \in Z(K)$. Then the following are equivalent:

- v(L) > 0.
- There exists $d \in int(K)$ such that $L(d) \in int(K)$.
- m L is positive stable.

In this case, L is completely mixed.

Moreover, if L is Lyapunov-like and $v(L) \neq 0$, then

L is completely mixed.

Z-tensor

- A tensor is a multidimensional analog of a matrix.
- Let $A := [a_{i_1 i_2 \cdots i_m}]$ be an mth order, n-dimensional tensor.
- The entries $a_{iii\cdots i}$, $1 \le i \le n$, are the diagonal entries of \mathcal{A} and the rest are 'off-diagonal' entries.
- A nonnegative tensor has all entries nonnegative.
- A tensor is a Z-tensor if all its off-diagonal entries are non-positive. Such a tensor can be written as $\mathcal{A} = r\mathcal{I} \mathcal{B}$, where $r \in R$, \mathcal{I} is the identity tensor, and \mathcal{B} is a nonnegative tensor.

Given a tensor $\mathcal{A} := [a_{i_1 i_2 \cdots i_m}]$, we define the function $F: \mathbb{R}^n \to \mathbb{R}^n$ whose *i*th component is given by

$$F_i(x) = \sum_{i_2, i_3, \dots, i_m = 1}^n a_{i i_2 i_3 \dots i_m} x_{i_2} x_{i_3} \dots x_{i_m}.$$

Commonly used notation: $Ax^{m-1} := F(x)$.

Each component of F(x) is a homogeneous polynomial of degree m-1.

Given a tensor A,

• $\lambda \in C$ is an eigenvalue of \mathcal{A} if \exists nonzero $x \in C^n$ such that $\mathcal{A}x^{m-1} = \lambda \, x^{m-1}$.

 $\sigma(A) :=$ Set of all eigenvalues of A.

• Spectral radius $\rho(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\}$.

Theorem: (Yang-Yang, 2010)

For a nonnegative tensor, its spectral radius is an eigenvalue with a nonnegative eigenvector.

Tensor complementarity problems

Given a tensor \mathcal{A} and $q \in \mathbb{R}^n$, the

ullet Tensor complementarity problem $\mathsf{TCP}(\mathcal{A},q)$ is to

find $x \in \mathbb{R}^n$ such that

$$x \ge 0, y = F(x) + q \ge 0, \text{ and } \langle x, y \rangle = 0.$$

Note: $F(x) = Ax^{m-1}$ is a polynomial map.

Thus, TCP is a nonlinear complementarity problem.

Equation formulation: $\min\{x, F(x) + q\} = 0$.

Theorem: (Luo, Qi, Xiu, 2015)

Suppose \mathcal{A} is a Z-tensor. If $TCP(\mathcal{A},q)$ is feasible, then it is solvable.

A Mega theorem

Theorem: A = rI - B with B nonnegative, $F(x) = Ax^{m-1}$.

Then the following are equivalent:

- There exists d > 0 such that F(d) > 0.
- \mathcal{A} is positive stable: $Re(\lambda) > 0 \,\forall \, \lambda \in \sigma(\mathcal{A})$.
- \mathcal{A} is a strong M-tensor: $r > \rho(\mathcal{B})$.
- \mathcal{A} is a P-tensor: $\forall x \neq 0$, $\max_i x_i^{m-1} (\mathcal{A}x^{m-1})_i > 0$.
- **■** TCP(\mathcal{A}, q) is solvable for all q.
- **■** TCP(\mathcal{A}, q) has trivial solution for all $q \ge 0$.
- \blacksquare $R_+^n \subseteq F(R_+^n)$.
- For all $x \ge 0$, $\max_i x_i (\mathcal{A}x^{m-1})_i > 0$.

Mega theorem, continued

If A is of even order, we have further equivalence:

- F is surjective.
- For all $x \neq 0$, $\max_i x_i (\mathcal{A}x^{m-1})_i > 0$.

Open problem: Characterize Z-tensors \mathcal{A} for which $\mathsf{TCP}(\mathcal{A},q)$ has a unique solution for all q.

A viability result

Suppose A is a Z-tensor.

Then, -F(x) is 'cooperative' (that is, its derivative is a Metzler matrix at all points).

Theorem: Let x(t) solve the dynamical system

$$\frac{dx}{dt} + F(x) = 0, \ x(0) = x_0.$$

If
$$x(0) \in \mathbb{R}^n_+$$
, then $x(t) \in \mathbb{R}^n_+$ for all t .

This comes from an application of Nagumo's theorem on viability (also called Bony-Brezis theorem).

Asymptotic convergence

Theorem: Suppose A is a Z-tensor.

Then, $\frac{dx}{dt} + F(x) = 0$ is exponentially stable iff

 \mathcal{A} is a strong M-tensor.

Follows from a result in H.R. Feyzmahdavian et al,

"Exponential stability of positive homogeneous systems",

IEEE Trans Auto Control, 2013.

Tensor zero-sum games

No results yet.....