Z- transformations in complementarity theory and dynamical systems

M. Seetharama Gowda

Department of Mathematics and Statistics

University of Maryland, Baltimore County

Baltimore, Maryland

gowda@math.umbc.edu

Taipei Workshop on Nonlinear Analysis and Optimization

November 28-30,2012

Outline

- Continuous linear dynamical systems
- A theorem of Lyapunov
- Discrete linear dynamical systems
- A theorem of Stein
- Constrained linear systems
- (Proper) cones
- A result of Schneider-Vidyasagar
- z and Lyapunov-like transformations

- Linear complementarity problems
- Semidefinite and cone-LCPs
- Restatement of theorems of Lyapunov and Stein
- A generalization to z-transformations
- The P-matrix property
- Euclidean Jordan algebras
- A conjecture for **z**-transformations
- Verification of the conjecture for special transformations
- Characterizations of Lyapunov-like transformations

Continuous linear dynamical systems

Given $A \in \mathbb{R}^{n \times n}$, consider

$$\frac{dx}{dt} + Ax(t) = 0, \ x(0) = x_0 \in \mathbb{R}^n.$$

Lyapunov's theory is concerned with the stability of the above system.

When is the above system asymptotically stable?

That is, when will the trajectory $x(t) = e^{-tA}x(0) \rightarrow 0$ from any starting point x(0)? Some definitions/notations:

- *A* is positive stable: Eigenvalues of *A* lie in the open right half-plane.
- S^n = Set of all $n \times n$ real symmetric matrices.

For $X \in S^n$, $X \succeq 0$ means X is positive semidefinite and $X \succ 0$ means X is positive definite.

Lyapunov's Theorem (1893)

For $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- \checkmark A is positive stable.
- There exists $X \succ 0$ with $AX + XA^T \succ 0$.
- $\frac{dx}{dt} + Ax(t) = 0$ is asymptotically stable.

Discrete linear dynamical systems

Given $A \in \mathbb{R}^{n \times n}$, consider

x(k+1) = Ax(k), k = 0, 1, 2, ..., and $x(0) \in \mathbb{R}^n$.

When is the above system asymptotically stable?

That is, when will the trajectory $x(k) = A^k x(0) \rightarrow 0$

from any starting point x(0)?

A definition:

• *A* is Schur stable: All eigenvalues of *A* lie in the open unit disk.

Stein's Theorem (1952)

For $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- A is Schur stable.
- There exists $X \succ 0$ with $X AXA^T \succ 0$.

•
$$x(k+1) = Ax(k)$$
, $k = 0, 1, 2, ...$, is asymptotically stable.

Note that the results of Lyapunov and Stein are very similar.

Is there a unifying result?

Constrained linear systems

Given a closed set K, when will the continuous linear system evolve in K?

That is, $e^{-tA}(K) \subseteq K$ for all $t \ge 0$?

Viability theorems

Nagumo (1942), Bony (1969), Brezis (1970).

For our discussion, we consider a result of

Schneider-Vidyasagar (1970) on proper cones.

Cones

Throughout,

H denotes a real finite dimensional Hilbert space.

 $K \subseteq H$ is

- convex if $0 \le t \le 1$ and $x, y \in K \Rightarrow (1-t)x + ty \in K$.
- cone if $0 \le t$ and $x \in K \Rightarrow tx \in K$.

A closed convex cone K is a proper cone if

- K is pointed: $x, -x \in K \Rightarrow x = 0$ and
- K is *solid*: interior of K is nonempty.

Examples of proper cones

Example 1: $H = R^n$, $K = R^n_+$ (Nonnegative orthant)

Example 2: $H = S^n$ (set of all real $n \times n$ symmetric matrices), $K = S^n_+ = \{X \in S^n : X \succeq 0\}$ (Semidefinite cone)

Example 3: $H = R^n (n > 1)$, $K = \mathcal{L}^n_+$ (Ice-cream cone),

$$K = \{ x \in \mathbb{R}^n : x_1 \ge \sqrt{\sum_{i=1}^n |x_i|^2} \}$$

Example 4: *H*=Euclidean Jordan algebra,

 $K = \{x \circ x : x \in H\}$ (symmetric cone)

Example 5: $C \subseteq R^n$ is a closed convex cone with nonempty interior.

 $K = \{\sum uu^T : u \in C\}$ (completely positive cone of *C*) Special cases:

$$C = R^n \Rightarrow K = \mathcal{S}^n_+.$$

 $C = R_{+}^{n} \Rightarrow K =$ (standard) completely positive cone.

Example 6: $|| \cdot ||$ is a norm on \mathbb{R}^n ,

 $\phi: \mathbb{R}^n \to \mathbb{R}$ is a linear functional, $||\phi|| > 1$. $K = \{x \in \mathbb{R}^n : ||x|| \le \phi(x)\}$ (Bishop-Phelps cone)

Viability in a proper cone

H is a finite dimensional real Hilbert space,

K is a proper cone, $L: H \rightarrow H$ is linear, and

 $K^* := \{x \in H : \langle x, y \rangle \ge 0, \forall y \in K\}$ denotes the dual of K.

Schneider-Vidyasagar (1970): The following are equivalent:

- Every forward trajectory of $\frac{dx}{dt} + L(x) = 0$ that starts in *K* stays in *K*.
- $e^{-tL}(K) \subseteq K$ for all $t \ge 0$ in R.

$$x \in K, \ y \in K^*, \ \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \le 0.$$

Special case

$$H = R^n$$
, $K = R^n_+$, and $A = [a_{ij}] \in R^{n \times n}$.

The following are equivalent:

- Every forward trajectory of $\frac{dx}{dt} + Ax = 0$ that starts in R_+^n stays in R_+^n .
- $a_{ij} \leq 0$ for all $i \neq j$.

Some definitions:

- $A = [a_{ij}]$ is a z-matrix if $a_{ij} \leq 0$ for all $i \neq j$.
- A is a Metzler matrix if -A is a z-matrix.

Z and Lyapunov-like transformations

 \boldsymbol{K} is a proper cone in \boldsymbol{H} and

- $L: H \rightarrow H$ is a linear transformation.
- $\bullet\ L$ is a Z-transformation on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \le 0.$$

 $\bullet\ L$ is a Lyapunov-like transformation ON K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

Restatement of S-V result

Consider the following for any $L: H \to H$ with K proper:

- (a) Every forward trajectory of $\frac{dx}{dt} + L(x) = 0$ that starts in *K* stays in *K*.
- (b) L is a Z-transformation ON K.
- (c) Every forward/backward trajectory of $\frac{dx}{dt} + L(x) = 0$ that starts in *K* stays in *K*.
- (d) L is a Lyapunov-like transformation ON K.

Then $(a) \Leftrightarrow (b)$ and $(c) \Leftrightarrow (d)$.

Examples

Example 1: $H = S^n$, $K = S^n_+$ (Positive semidefinite cone), For any $A \in R^{n \times n}$, $L_A(X) = AX + XA^T$ $(X \in S^n)$ is the so-called Lyapunov transformation. Then L_A is Lyapunov-like on S^n_+ .

Example 2: $H = S^n$, $K = S^n_+$ (Positive semidefinite cone), For any $A \in R^{n \times n}$, $S_A(X) = X - AXA^T$ ($X \in S^n$) is the so-called Stein transformation. Then S_A is a Z-transformation on S^n_+ .

A connection to Lie algebras

For a proper cone K in H, let

Aut(K) denote the automorphism group of K and Lie(Aut(K)) denote the corresponding Lie algebra.

Then the following are equivalent:

- \checkmark L is Lyapunov-like on K
- $e^{tL} \in Aut(K)$ for all $t \in R$
- $L \in Lie(Aut(K))$

In Rudolf et al., Math. Programming, 2011, Lyapunov-like transformations are called Bilinearity relations.

Also, bilinearity rank of K is defined as the

dimension of the space of all such relations.

Clearly,

bilinearity rank of K is the same as dim(Lie(Aut(K))).

Complementarity problems

```
Let M \in \mathbb{R}^{n \times n} and q \in \mathbb{R}^n.
```

```
In \mathbb{R}^n, x \ge 0 means x \in \mathbb{R}^n_+.
```

(Standard) Linear complementarity Problem LCP(M, q): Find $x \in \mathbb{R}^n$ such that

 $x \ge 0$, $Mx + q \ge 0$, and $\langle Mx + q, x \rangle = 0$.

Primal-dual linear programs and bimatrix game problems can be posed this way.

(Reference: Cottle, Pang, and Stone 1992)

Semidefinite and cone LCPs

 $L: S^n \to S^n$ linear, $Q \in S^n$. SDLCP(L, Q): Find $X \in S^n$ such that

 $X \succeq 0, L(X) + Q \succeq 0, \text{ and } \langle X, L(X) + Q \rangle = 0.$

H is a real Hilbert space, *K* is a proper cone in *H*, $L: H \rightarrow H$ is linear, and $q \in H$. **Cone-LCP**(L, K, q): Find $x \in H$ such that

 $x \in K$, $L(x) + q \in K^*$, and $\langle x, L(x) + q \rangle = 0$.

Lyapunov's theorem and SDLCPs

Gowda-Song 2000:

For any $A \in \mathbb{R}^{n \times n}$, let $L_A(X) = AX + XA^T \ (X \in S^n)$

denote the corresponding Lyapunov transformation.

The following are equivalent:

- A is positive stable.
- There exists $X \succ 0$ with $AX + XA^T \succ 0$.
- $\frac{dx}{dt} + Ax(t) = 0$ is asymptotically stable.
- For any $Q \in S^n$, SDLCP (L_A, Q) has a solution.

Stein's theorem and semidefinite LCPs

Gowda-Parthasarathy 2000

Let $S_A(X) := X - AXA^T$ — Stein transformation.

For any $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- A is Schur stable.
- There exists $X \succ 0$ with $X AXA^T \succ 0$.
- x(k+1) = Ax(k), k = 0, 1, 2, ..., is asymptotically stable.
- ▶ For all Q, SDLCP (S_A, Q) has a solution.

Generalization to Z-transformations

K is a proper cone in $H, L: H \rightarrow H$ linear.

```
Notation: In H, d > 0 means d \in int(K).
```

Stern (1981), Gowda-Tao (2009):

For a **z**-transformation, the following are equivalent:

- There exists d > 0 such that L(d) > 0.
- \blacksquare All eigenvalues of L lie in the open right half-plane.
- $L^{-1}(K) \subseteq K.$
- ▶ For all $q \in H$, Cone-LCP(L, K, q) has a solution.

To get Lyapunov's result: Take $H = S^n$, $K = S^n_+$, and $L_A(X) = AX + XA^T$.

To get Stein's result:

Take $H = S^n$, $K = S^n_+$, and $S_A(X) = X - AXA^T$.

Connections to the P-property

Setting: $H = R^n$, $K = R^n_+$, $M \in R^{n \times n}$.

Notation: $x \le 0$ means all components of x are nonpositive. x * y is the componentwise product (Hadamard product). Fiedler-Ptak (1962): The following are equivalent:

- \blacksquare All principal minors of M are positive.
- *M* has the P-property: $x * (Mx) \le 0 \Rightarrow x = 0$.

Moreover, when M is a **z**-matrix, the above

are equivalent to:

• There exists d > 0 such that Md > 0.

Murty (1966): The following are equivalent:

$$x * (Mx) \le 0 \Rightarrow x = 0$$

▶ For all $q \in R^n$, LCP(M,q) has a unique solution.

Question: Is it possible to introduce the **P**-property for general proper cones?

Satisfactory answer in Euclidean Jordan algebras.

Euclidean Jordan algebras

 $(V, \langle \cdot, \cdot \rangle, \circ)$ is a Euclidean Jordan algebra if *V* is a finite dimensional real Hilbert space and the bilinear Jordan product $x \circ y$ satisfies:

 $K = \{x^2 : x \in V\}$ is a closed convex self-dual homogeneous cone called the symmetric cone of V.

Jordan, Neumann, Wigner (1934):

Any EJA is a product of the following:

- $S^n = \text{Herm}(\mathcal{R}^{n \times n})$ $n \times n$ real symmetric matrices.
- Herm $(\mathcal{C}^{n \times n})$ $n \times n$ complex Hermitian matrices.
- Herm($Q^{n \times n}$) $n \times n$ quaternion Hermitian matrices.
- Herm($\mathcal{O}^{3\times3}$) 3 × 3 octonion Hermitian matrices.
- \checkmark \mathcal{L}^n Jordan spin algebra.

V is a EJA and K is its symmetric cone.

We write $x \ge 0$ when $x \in K$.

Say that $a, b \in V$ operator commute if $L_a L_b = L_b L_a$, where $L_a(x) = a \circ x$.

Note: In S^n , X and Y operator commute iff XY = YX.

For *L* linear on *V* and $q \in V$, symmetric cone LCP is: LCP(*L*, *K*, *q*) : Find $x \in V$ such that $x \ge 0, L(x) + q \ge 0$, and $\langle L(x) + q, x \rangle = 0$. Some definitions for a linear L on V:

- **GUS**-property: Unique solution in all LCP(L, K, q).
- P-property: $[x \text{ and } L(x) \text{ operator commute, } x \circ L(x) \leq 0] \Rightarrow x = 0.$
- **Q**-property: For all $q \in V$, LCP(L, K, q) has a solution.
- **S**-property: There exists d > 0 such that L(d) > 0.

Gowda, Sznajder, Tao (2004): For any L,

$$\mathsf{GUS} \Rightarrow \mathsf{P} \Rightarrow \mathsf{Q} \Rightarrow \mathsf{S}.$$

Conjecture: For a z-transformation, $\mathbf{P} = \mathbf{S}$

Conjecture holds for matrices on R^n , L_A and S_A on S^n .

New Results on a EJA

Gowda, Tao, Ravindran (2012):

Theorem A

For a Lyapunov-like transformation on a EJA, **P=S**.

Theorem B

Let e denote the unit element in V.

For a z-transformation L with L(e) > 0, P=S.

The conjecture is still open for a general **Z**-transformation.

Lyapunov-like transformations

Characterizing **z**-transformations on a proper cone *K* is a difficult problem, since -L is a **z**-transformation whenever $L(K) \subseteq K$. Even the problem of finding the automorphism group of *K* is difficult. So, we turn to describing Lyapunov-like transformations on a proper cone.

On the nonnegative orthant, a matrix is Lyapunov-like

if and only if it is a diagonal matrix.

In the next several slides, we present some characterization results.

Damm (2004):

On S_{+}^{n} , every Lyapunov-like transformation is of the form L_{A} , where $L_{A}(X) = AX + XA^{T}$ $(X \in S^{n})$.

Tao (2006):

 $A \in \mathbb{R}^{n \times n}$ is Lyapunov-like on \mathcal{L}^n_+ iff

$$A = \left[\begin{array}{cc} a & b^T \\ b & D \end{array} \right],$$

where $a \in R$, $D + D^T = 2aI$.

Symmetric cone

Gowda-Tao-Ravindran (2010):

On a Euclidean Jordan algebra, L is Lyapunov-like on K iff

$$L = L_a + D,$$

where $L_a(x) = a \circ x$ and D is a derivation, that is, $D(x \circ y) = D(x) \circ y + x \circ D(y)$. Recall: For a proper cone C in \mathbb{R}^n ,

 $K = \{\sum uu^T : u \in C\}$ is the completely positive cone of C.

Gowda-Sznajder-Tao (2012):

L is Lyapunov-like on K iff $L = L_A$, where

A is Lyapunov-like on C.

Gowda-Tao (2011):

L is Lyapunov-like on a proper polyhedral cone iff every extreme vector of the cone is an eigenvector of *L*.

There are a number of important proper cones in the literature.

Problem:

Describe Lyapunov-like transformations on them and find the dimension of the space of all such transformations.

References

- (1) Gowda-Parthasarathy, On the complementarity, LAA 2000.
- (2) Gowda-Song, Semidefinite LCPs, Math Programming, 2000.
- (3) Gowda-Sznajder-Tao, On the automorphism group, LAA 2012.

- (4) Gowda-Tao-Ravindran, On complementarity properties, LAA, 2012.
- (5) Gowda-Tao, Bilinearity rank of a proper cone..., Tech Report, Dec. 2011.
- (6) Rudolf et al, Bilinearity optimality conditions..., Math Programming, 2011.
- (7) Schneider-Vidyasagar, Cross-positive matrices, SIAM Numer. Anal., 1970.