On the non-homogeneity and the bilinearity rank of a completely positive cone

M. Seetharama Gowda

Department of Mathematics and Statistics

University of Maryland, Baltimore County

Baltimore, Maryland

gowda@math.umbc.edu

ISMP - Berlin

August 23, 2012

Research Report available at www.math.umbc.edu/~gowda.

Definition of completely positive cone

Consider \mathbb{R}^n with the usual inner product.

 \mathcal{C} in \mathbb{R}^n is a closed cone that is not necessarily convex.

 \mathcal{S}^n is the set of all $n \times n$ real symmetric matrices.

The completely positive cone of $\mathcal C$ is

$$\mathcal{K} := \left\{ \sum uu^T : u \in \mathcal{C} \right\}.$$

The copositive cone of \mathcal{C} is:

$$\mathcal{E} := \{ A \in \mathcal{S}^n : A \text{ is copositive on } \mathcal{C} \}.$$

A copositive on \mathcal{C} means: $x^T A x \geq 0$ for all $x \in \mathcal{C}$.

When $\mathcal{C} = \mathbb{R}^n$, $\mathcal{K} = \mathcal{E} = \mathcal{S}^n_+$ (semidefinite cone).

When $C = \mathbb{R}^n_+$, \mathcal{K} is the cone of completely positive matrices and \mathcal{E} is the cone of copositive matrices.

Burer (2009):

Any nonconvex quadratic minimization problem over the nonnegative orthant with linear and binary constraints can be reformulated as a linear program over the cone of completely positive matrices.

Eichfelder and Povh (2011):

Any nonconvex quadratic minimization problem over a nonempty set with linear and binary constraints can be reformulated as a linear program over a completely positive cone.

$$\min x^T M x + 2c^T x$$
 such that
$$Ax = b,$$

$$x_j \in \{0, 1\} \text{ for all } j \in J,$$

$$x \in S$$

Reformulation in S^{n+1} :

$$\min \langle \widehat{M}, Y \rangle$$

$$L(Y) = B$$

$$Y \in \mathcal{K},$$

where
$$\widehat{M} = \left[\begin{array}{cc} 0 & c^T \\ c & M \end{array} \right]$$
 and

$$\mathcal{K} = closure \left\{ \sum_{k} \lambda_{k} \begin{pmatrix} 1 \\ x_{k} \end{pmatrix} \begin{pmatrix} 1 \\ x_{k} \end{pmatrix}^{T} : \lambda_{k} \geq 0, \ x_{k} \in S \right\}.$$

Since,

$$\mathcal{K} = \left\{ \sum uu^T : u \in \overline{cone(\{1\} \times S)} \right\},$$

this is a linear program over the completely positive cone of $C = \overline{cone(\{1\} \times S)}$.

Motivated by the good properties of the semidefinite cone, we ask if a completely positive cone can be

- self-dual
- irreducible
- homogeneous.

Our results

For any closed cone C in \mathbb{R}^n ,

$$\mathcal{K} := \left\{ \sum uu^T : u \in \mathcal{C} \right\}$$
 denotes the

completely positive cone of C.

We show

- \mathcal{K} is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.
- S^n_+ is the only self-dual completely positive cone.
- ullet When ${\mathcal C}$ has nonempty interior, ${\mathcal K}$ is irreducible.
- ullet When ${\mathcal C}$ is a proper convex cone, ${\mathcal K}$ is non-homogeneous.

(\mathcal{C} proper means: \mathcal{C} is convex, pointed and $int(\mathcal{C}) \neq \emptyset$.)

Some preliminary results

- $\mathcal{K} \subseteq \mathcal{S}^n_+ \subseteq \mathcal{E}$.
- \mathcal{K} is pointed, that is, $\mathcal{K} \cap -\mathcal{K} = \{0\}$.
- \mathcal{E} is the dual of \mathcal{K} .
- If int(C) is nonempty, then K and E are proper.
- $\operatorname{Ext}(\mathcal{K}) = \{uu^T : 0 \neq u \in \mathcal{C}\}.$
- $\operatorname{int}(\mathcal{K}) = \{ \sum u_i u_i^T : u_i \in \operatorname{int}(\mathcal{C}), \operatorname{span}\{u_1, \dots, u_n\} = \mathbb{R}^n \}.$

Gowda-Sznajder-Tao 2012: Suppose $\mathcal C$ is a proper cone. Then every automorphism of $\mathcal K$ is of the form

$$L(X) = QXQ^T \quad (X \in \mathcal{S}^n)$$

for some automorphism Q of C.

Self-duality

Theorem: \mathcal{K} is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.

Proof. If $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$, then $\mathcal{K} = \mathcal{S}^n_+$ is self-dual.

If \mathcal{K} is self-dual, then $\mathcal{K} \subseteq \mathcal{S}_+^n \subseteq \mathcal{E} \Rightarrow \mathcal{K} = \mathcal{S}_+^n$.

Now, for any nonzero $x \in \mathbb{R}^n$, xx^T is an extreme direction of $\mathcal{S}^n_+ = \mathcal{K}$.

By a known characterization, $xx^T = uu^T$ for some $u \in \mathcal{C}$.

But then, $x = \pm u$. So, $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.

Irreducibility

A closed cone K in S^n is reducible if there exist nonzero closed cones K_1 and K_2 and subspaces H_1 and H_2 such that $K_1 \subseteq H_1$, $K_2 \subseteq H_2$, with

$$K = K_1 + K_2$$
, $S^n = H_1 + H_2$, and $H_1 \cap H_2 = \{0\}$.

If K is not reducible, we say that it is *irreducible*.

Example. In \mathbb{R}^2 , consider the standard unit vectors

$$e_1$$
 and e_2 and let $\mathcal{C} = \{\lambda e_1, \mu e_2 : \lambda, \mu \geq 0\}$.

The corresponding completely positive cone is

$$\mathcal{K} = \{\lambda e_1 e_1^T + \mu e_2 e_2^T : \lambda, \mu \geq 0\}.$$
 This is reducible.

Theorem: If C has nonempty interior, then K is irreducible.

Proof. Suppose \mathcal{C} has nonempty interior and \mathcal{K} is reducible; let K_i and H_i be as above. For any $0 \neq u \in \mathcal{C}$, uu^T is an extreme vector of \mathcal{K} . If $uu^T = x_1 + x_2$ with $x_i \in K_i \subseteq \mathcal{K}$, we must have $x_1 = uu^T$ (say) and $x_2 = 0$.

Then, $C = C_1 \cup C_2$, where

$$\mathcal{C}_1 := \{ u \in \mathcal{C} : uu^T \in K_1 \} \text{ and } \mathcal{C}_2 := \{ u \in \mathcal{C} : uu^T \in K_2 \}.$$

Baire category theorem implies C_1 (say) has interior. Then the corresponding completely positive cone K_1 is proper and so $K_1 - K_1 = S^n$. As $K_1 \subseteq K_1$, we must have $K_1 - K_1 = S^n$.

Then, $H_1 = S^n$ and $H_2 = \{0\}$, a contradiction.

Non-homogeneity

A cone K (with interior) in \mathbb{R}^n or \mathcal{S}^n is said to be homogeneous if for any $x,y\in int(\mathcal{K})$, there is an $L\in Aut(K)$ such that L(x)=y.

- A self-dual homogeneous cone is a symmetric cone.
- Every such cone arises as the cone of squares in a Euclidean Jordan algebra.

 \mathbb{R}^n_+ , \mathcal{S}^n_+ , second order cone are examples of symmetric cones.

Theorem: If C is a proper cone in \mathbb{R}^n (n > 1), then

 ${\cal K}$ cannot be homogeneous.

Sketch of the proof. Suppose K is homogeneous.

Pick two bases $\{u_1, u_2, \dots, u_n\}$ and $\{v, u_2, \dots, u_n\}$.

in $int(\mathcal{C})$. Define $X := u_1u_1^T + u_2u_2^T + \cdots + u_nu_n^T$ and

 $Y_k := vv^T + \frac{1}{k}(u_2u_2^T + \cdots + u_nu_n^T)$. These are in $int(\mathcal{K})$.

There exist $L_k \in Aut(\mathcal{K})$ of the form $L_k(X) = Q_k X Q_k^T$

with $Q_k \in Aut(\mathcal{C})$ such that $Q_k X Q_k = L_k(X) = Y_k$. So, for all k,

$$Q_k(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q_k^T = vv^T + \frac{1}{k}(u_2u_2^T + \dots + u_nu_n^T).$$

Case 1: Q_k unbounded. A normalization argument leads to

$$Q(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q^T = 0$$

and to a contradiction.

Case 2: Q_k bounded. Taking appropriate limits,

$$Q(u_1u_1^T + u_2u_2^T + \dots + u_nu_n^T)Q^T = vv^T.$$

As $vv^T \in Ext(\mathcal{K})$, we must have $Qu_i = \lambda_i v$ for all i.

Then Q has rank one,....

Bilinearity relations

Let K be a proper cone in \mathbb{R}^n .

The optimality conditions for a primal-dual cone-linear program on K are of the form

$$Ax = b$$

$$A^{T}y + s = c$$

$$x \in K, s \in K^{*}, \langle x, s \rangle = 0.$$

To make the above system square, it is desirable to have n or more independent bilinear relations describing the complementarity condition.

Bilinearity rank of a cone

Let

$$C(K) := \{(x, s) : x \in K, s \in K^*, \langle x, s \rangle = 0\}.$$

Rudolf, Noyan, Papp, and Alizadeh, 2011:

An $n \times n$ matrix Q is called a bilinearity relation on K if

$$(x,s) \in C(K) \Rightarrow x^T Q s = 0.$$

The bilinearity rank of K is:

 $\beta(K)$ = Dimension of the space of all bilinearity relations.

This notion can be extended to a proper cone in a real Hilbert space.

Lyapunov-like transformations

Let H be a finite dimensional real Hilbert space, K be a proper cone in H.

Gowda-Sznajder, 2007:

A linear transformation L on H is Lyapunov-like on K

if
$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0$$
.

Thus, L is Lyapunov-like on K iff L^T is a bilinearity relation on K and

 $\beta(K)$ =Dimension of the space of all Lyapunov-like transformations on K.

Examples

Example 1: On \mathbb{R}^n_+ , a matrix is Lyapunov-like iff it is a diagonal matrix.

Example 2: On S^n_+ , L is Lyapunov-like iff it is of the form

 $L_A(X) = AX + XA^T \ (X \in \mathcal{S}^n)$ for some $A \in \mathbb{R}^{n \times n}$.

Example 3: On a Euclidean Jordan algebra,

L is Lyapunov-like if and only if $L = L_a + D$, where

 $L_a(x) := a \circ x$ and D is a derivation.

Thanks to a result of Schneider-Vidyasagar, 1970,

The following are equivalent:

- L is Lyapunov-like on K.
- $e^{tL} \in Aut(K)$ for all $t \in \mathbb{R}$.
- L belongs to the Lie algebra of the group Aut(K).

Thus, for any proper cone K,

$$\beta(K) = dim(Lie(Aut(K))).$$

simple symmetric cones

Gowda-Tao 2011:

Herm(V) – Hermitian matrices in V and

K —- corresponding symmetric cone.

- (i) In $Herm(R^{n\times n})$, $\beta(K)=n^2$.
- (ii) In $Herm(C^{n \times n})$, $\beta(K) = 2n^2 1$.
- (iii) In $Herm(Q^{n\times n})$, $\beta(K)=4n^2$.
- (iv) In $Herm(O^{3\times 3})$, $\beta(K) = 79$.
- (v) In \mathcal{L}^n , $\beta(K) = \frac{n^2 n + 2}{2}$.

completely positive cone

For a proper cone C in \mathbb{R}^n , let K be the corresponding completely positive cone in S^n .

Gowda-Sznajder-Tao 2012: Every Lyapunov-like transformation on \mathcal{K} is of the form L_A , where $L_A(X) := AX + XA^T$

and A is Lyapunov-like on C.

Since $A \mapsto L_A$ is an isomorphism,

$$\beta(\mathcal{K}) = \beta(\mathcal{C}).$$

Example: Let $C = \mathbb{R}^n_+$.

Then K is the cone of completely positive matrices.

Since a matrix is Lyapunov-like on \mathbb{R}^n_+ if and only if

it is a diagonal matrix, it follows that $\beta(\mathbb{R}^n_+) = n$.

Thus, the bilinearity rank of the cone of completely positive matrices is n.

Note that the dimension of S^n is $\frac{n(n+1)}{2}$.

Results for the copositive cone

Recall: \mathcal{E} is the copositive cone of \mathcal{C} .

- (i) \mathcal{E} is self-dual if and only if $\mathbb{R}^n = \mathcal{C} \cup -\mathcal{C}$.
- (ii) If C has nonempty interior, then E is irreducible.
- (iii) If C is a proper cone in \mathbb{R}^n (n > 1), then E is not homogeneous.

References:

- (1) S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Math. Prog. A, 2009.
- (2) G. Eichfelder and J. Povh, On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets, Tech Report, 2010.
- (3) Gowda-Sznajder, Some global uniqueness and solvability results for LCPs over symmetric cones, SIAM Opt. 2007.

- (4) Gowda-Sznajder-Tao, The automorphism group of a completely positive cone, LAA, 2012.
- (5) Gowda-Tao, Bilinearity rank of a proper cone..., Tech Report, Dec. 2011.
- (6) Rudolf, Noyan, Papp, and Alizadeh, Bilinearity optimality conditions..., Math Prog., 2011.
- (7) Schneider-Vidyasagar, Cross-positive matrices, SIAM Numer. Anal., 1970.