Lyapunov-like transformations

M. Seetharama Gowda

Department of Mathematics and Statistics
University of Maryland, Baltimore County

Baltimore, Maryland

gowda@math.umbc.edu

AMS Sectional Meeting, Washington, D.C. March 18, 2012

Joint work with Roman Sznajder, Jiyuan Tao, ...

Motivation

 $S^n =$ Set of all $n \times n$ real symmetric matrices,

$$K = \mathcal{S}^n_+ = \{X \in \mathcal{S}^n : X \succeq 0\}$$
 (Positive semidefinite cone).

Lyapunov's Theorem (1893)

For any $A \in \mathbb{R}^{n \times n}$, TFAE:

- *A* is positive stable.
- There exists $X \succ 0$ with $AX + XA^T \succ 0$.
- $\frac{dx}{dt} + Ax(t) = 0$ is asymptotically stable.

Connection to semidefinite LCPs

Gowda and Song 2000:

Let $L_A(X) = AX + XA^T \ (X \in \mathcal{S}^n)$ — Lyapunov transformation.

The previous conditions are equivalent to:

For any $Q \in \mathcal{S}^n$, there exists $X \succeq 0$ such that

$$Y := L_A(X) + Q \succeq 0 \text{ and } \langle X, Y \rangle = 0.$$

A key property of L_A is:

$$X, Y \succeq 0, \langle X, Y \rangle = 0 \Rightarrow \langle L_A(X), Y \rangle = 0.$$

Stein's Theorem (1952)

For any $A \in \mathbb{R}^{n \times n}$, TFAE:

- A is Schur stable.
- There exists $X \succ 0$ with $X AXA^T \succ 0$.
- x(k+1) = Ax(k), k = 1, 2, ..., is asymptotically stable.

Gowda and Parthasarathy 2000

Let $S_A(X) := X - AXA^T$ — Stein transformation.

The above conditions are equivalent to:

For any $Q \in \mathcal{S}^n$, there exists $X \succeq 0$ such that

$$Y := S_A(X) + Q \succeq 0 \text{ and } \langle X, Y \rangle = 0.$$

A key property of S_A is:

$$X, Y \succeq 0, \langle X, Y \rangle = 0 \Rightarrow \langle S_A(X), Y \rangle \leq 0.$$

Can we extend these results to proper cones?

Let K be a proper cone in a real Hilbert space H.

A linear transformation $L: H \rightarrow H$ is a **z**-transformation if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \leq 0.$$

and Lyapunov-like on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

Here, $K^* = \{ y \in H : \langle y, x \rangle \ge 0 \ \forall \ x \in K \}.$

Outline

- Proper cones and examples
- z and Lyapunov-like transformations
- Lie algebraic characterization

Characterizations of Lyapunov-like transformations on

- Polyhedral cones
- Symmetric cones
- completely positive cones

- Bilinearity relations and rank
- A Schur type result
- Complementarity problems
- P and GUS properties on symmetric cones
- A conjecture
- A result for Lyapunov-like transformations
- A result for z-transformations

Cones

Throughout, H is a real finite dimensional Hilbert space.

 $K \subseteq H$ is

- convex if $0 \le t \le 1$ and $x, y \in K \Rightarrow (1 t)x + ty \in K$.
- cone if 0 < t and $x \in K \Rightarrow tx \in K$.

A closed convex cone K is a proper cone if

- K is pointed: $x, -x \in K \Rightarrow x = 0$ and
- \bullet K is *solid*: interior of K is nonempty.

Examples of proper cones

Example 1: $H = \mathbb{R}^n$, $K = \mathbb{R}^n_+$ (Nonnegative orthant)

Example 2: $H = S^n$ (set of all real $n \times n$ symmetric matrices),

$$K = \mathcal{S}^n_+ = \{X \in \mathcal{S}^n : X \succeq 0\}$$
 (Semidefinite cone)

Example 3: $H = \mathbb{R}^n \ (n > 1)$, $K = \mathcal{L}^n_+$ (Ice-cream cone),

$$K = \{x \in \mathbb{R}^n : x_1 \ge \sqrt{\sum_{i=1}^n |x_i|^2}\}$$

Example 4: H=Euclidean Jordan algebra,

$$K = \{x \circ x : x \in H\}$$
 (symmetric cone)

Example 5: $C \subseteq \mathbb{R}^n$ is a closed convex cone with interior.

 $K = \{\sum uu^T : u \in C\}$ (completely positive cone of C)

Special cases:

$$C = \mathbb{R}^n \Rightarrow K = \mathcal{S}^n_+.$$

 $C = \mathbb{R}^n_+ \Rightarrow K = \text{(standard) completely positive cone.}$

Example 6: $||\cdot||$ is a norm on \mathbb{R}^n ,

 $\phi: \mathbb{R}^n \to \mathbb{R}$ is a linear functional, $||\phi|| > 1$.

 $K = \{x \in \mathbb{R}^n : ||x|| \le \phi(x)\}$ (Bishop-Phelps cone)

Lyapunov-like transformations

H is a Hilbert space, K is a proper cone.

 $L: H \rightarrow H$ is a linear transformation.

L is a ullet Z-transformation on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \leq 0.$$

ullet L is a Lyapunov-like transformation on K if

$$x \in K, y \in K^*, \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

Notation: $\mathbf{Z}(\mathbf{K})$ and $\mathbf{LL}(\mathbf{K}) = Z(K) \cap -Z(K)$ – lineality space of Z(K).

Examples

Example 1: $H = \mathbb{R}^n$, $K = \mathbb{R}^n_+$ (Nonnegative orthant)

 $A = [a_{ij}]$ is a Z-matrix iff $a_{ij} \leq 0$ for all $i \neq j$,

Lyapunov-like iff A is diagonal.

Example 2: $H = S^n$, $K = S^n_+$ (Positive semidefinite cone),

$$K = \{X \in \mathcal{S}^n : X \succeq 0\}.$$

For any $A \in \mathbb{R}^{n \times n}$, $L_A(X) = AX + XA^T$ $(X \in \mathcal{S}^n)$

is a Lyapunov transformation.

Then L_A is Lyapunov-like on \mathcal{S}^n_+ .

Characterizations

H is a finite dimensional Hilbert space and K is a proper cone.

Schneider-Vidyasagar, 1970 TFAE:

- ullet L is Lyapunov-like on K
- $e^{tL}(K) \subseteq K$ for all $t \in R$
- Every forward/backward trajectory of $\frac{dx}{dt} + L(x) = 0$ that starts in K stays in K.

Related to Nagumo's viability theorem 1942; Bony 1969; Brezis 1970)

Our observation: These are further equivalent to

- $e^{tL} \in Aut(K)$ for all $t \in R$
- ullet $L \in Lie(Aut(K))$

Here, Aut(K) is the automorphism group of K and Lie(Aut(K)) is the corresponding Lie algebra.

Specialized characterizations

Example 2: $H = S^n$, $K = S^n_+$ (Positive semidefinite cone),

$$K = \{X \in \mathcal{S}^n : X \succeq 0\}.$$

For any $A \in \mathbb{R}^{n \times n}$, $L_A(X) = AX + XA^T$ $(X \in \mathcal{S}^n)$.

Then L_A is Lyapunov-like on \mathcal{S}^n_+ .

In fact, on S_+^n , every Lyapunov-like transformation arises this way (Damm 2004).

Example 3: $H = \mathcal{L}^n$, $K = \mathcal{L}^n_+$ (Ice-cream cone),

$$K = \{x \in \mathbb{R}^n : x_1 \ge \sqrt{\sum_{i=1}^n |x_i|^2}\}$$

 $A \in \mathbb{R}^{n \times n}$ is Lyapunov-like on \mathcal{L}^n iff

$$A = \left[\begin{array}{cc} a & b^T \\ b & D \end{array} \right],$$

where $a \in R$, $D + D^T = 2aI$. (Tao, 2006)

Euclidean Jordan algebras

 $(V, \langle \cdot, \cdot \rangle, \circ)$ is a Euclidean Jordan algebra if V is a finite dimensional real inner product space and the bilinear Jordan product $x \circ y$ satisfies:

 $K = \{x^2 : x \in V\}$ is the symmetric cone in V.

Any EJA is a product of the following:

- $S^n = \text{Herm}(\mathcal{R}^{n \times n}) n \times n$ real symmetric matrices.
- **▶** Herm($C^{n \times n}$) $n \times n$ complex Hermitian matrices.
- Herm($Q^{n \times n}$) $n \times n$ quaternion Hermitian matrices.
- ▶ Herm $(\mathcal{O}^{3\times 3})$ 3 × 3 octonion Hermitian matrices.
- \mathcal{L}^n Jordan spin algebra.

Example 4: H=Euclidean Jordan algebra,

 $K = \{x \circ x : x \in H\}$ (symmetric cone)

L is Lyapunov-like on K iff

$$L = L_a + D,$$

where $L_a(x) = a \circ x$ and D is a derivation,

that is,
$$D(x \circ y) = D(x) \circ y + x \circ D(y)$$
.

(Gowda-Tao-Ravindran, 2010)

Example 5: $C \subseteq \mathbb{R}^n$ is a proper closed convex cone in \mathbb{R}^n ,

 $K = \{\sum uu^T : u \in C\}$ (completely positive cone of C).

L is Lyapunov-like on K iff $L = L_A$, where

A is Lyapunov-like on C.

(Gowda-Sznajder-Tao, 2011)

Polyhedral cones

L is Lyapunov-like on a proper polyhedral cone iff every extreme vector of the cone is an eigenvector of L.

(Gowda-Tao, 2011)

Bilinearity relations

Let $H = \mathbb{R}^n$ and K proper.

The optimality conditions for a primal-dual cone-linear program are of the form

$$Ax = b$$

$$A^{T}y + s = c$$

$$x \in K, s \in K^{*}, \langle x, s \rangle = 0.$$

To make the above system square, it is desirable to have n independent bilinear relations describing the set

$$C(K) := x \in K, s \in K^*, \langle x, s \rangle = 0.$$

Bilinearity rank of a cone

Rudolf et al, 2011:

A matrix Q is called a bilinearity relation on K if

$$(x,s) \in C(K) \Rightarrow x^T Q s = 0.$$

The bilinearity rank of K is:

 $\beta(K)$ = Dimension of the set of all bilinearity relations.

Note that Q is a bilinearity relation iff Q^T is Lyapunov-like on K.

Thus, for a proper cone in H,

$$\beta(K) = dim \, Lie(Aut(K)).$$

Bilinearity rank of symmetric cones

- (i) In $Herm(R^{n\times n})$, $\beta(K)=n^2$.
- (ii) In $Herm(C^{n\times n})$, $\beta(K) = 2n^2 1$.
- (iii) In $Herm(Q^{n\times n})$, $\beta(K)=4n^2$.
- (iv) In $Herm(O^{3\times 3})$, $\beta(K) = 79$.
- (v) In \mathcal{L}^n , $\beta(K) = \frac{n^2 n + 2}{2}$.

(Gowda-Tao 2011)

Schur type results

Conjecture: Suppose K is an irreducible proper cone in H,

 $L: H \to H$ is Lyapunov-like on K and $L(K) \subseteq K$.

Then L is a multiple of the Identity transformation.

Conjecture is true for

- H is a simple Euclidean Jordan algebra, K is its symmetric cone.
- $H = S^n$, K is the completely positive cone (of a proper cone in \mathbb{R}^n).
- ullet If every principle subtransformation of L is Lyapunov-like.

Gowda-Tao 2011

Complementarity problems

Let $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$.

 $x \ge 0$ means $x \in \mathbb{R}^n_+$.

(Standard) Linear complementarity Problem LCP(M, q):

Find $x \in \mathbb{R}^n$ such that

$$x \ge 0$$
, $Mx + q \ge 0$, and $\langle Mx + q, x \rangle = 0$.

Primal-dual LPs and bimatrix game problems can be posed this way.

(LCP book by Cottle, Pang, and Stone 1992)

Semidefinite and cone LCPs

 $L:\mathcal{S}^n \to \mathcal{S}^n$ linear, $Q \in \mathcal{S}^n$.

 $\mathsf{SDLCP}(L,Q)$: Find $X \in \mathcal{S}^n$ such that

$$X \succeq 0, L(X) + Q \succeq 0, \text{ and } \langle X, L(X) + Q \rangle = 0.$$

H is a real Hilbert space, K is a proper cone in H.

 $L: H \to H$ is linear and $q \in H$.

cone-LCP(L, K, q):

Find $x \in H$ such that

$$x \in K$$
, $L(x) + q \in K^*$, and $\langle x, L(x) + q \rangle = 0$.

Back to Euclidean Jordan algebras

V is a EJA and K is its symmetric cone.

We write $x \ge 0$ when $x \in K$.

Say that $a, b \in V$ operator commute if $L_a L_b = L_b L_a$,

where $L_a(x) = a \circ x$.

Let L be linear on V and $q \in V$.

$$LCP(L, K, q) : x \ge 0, L(x) + q \ge 0, \langle L(x) + q, x \rangle = 0.$$

- **GUS**-property: Unique solution in all LCP(L, K, q).
- **●** P-property: $[x \text{ and } L(x) \text{ operator commute, } x \circ L(x) \leq 0] \Rightarrow x = 0.$
- **Q**-property: For all $q \in V$, LCP(L, K, q) has a solution.
- S-property: There exists d > 0 such that L(d) > 0.

Gowda, Sznajder, Tao (2004):

$$\mathsf{GUS} \Rightarrow \mathsf{P} \Rightarrow \mathsf{Q} \Rightarrow \mathsf{S}.$$

Recall

- **2-property:** $[x, y \in K, \langle x, y \rangle = 0] \Rightarrow \langle L(x), y \rangle \leq 0.$
- Lyapunov-like: $[x, y \in K, \langle x, y \rangle = 0] \Rightarrow \langle L(x), y \rangle = 0.$

Example: L_A is Lyapunov-like and S_A has **Z**-property.

$$(L_A(X) = AX + XA^T \text{ and } S_A(X) = X - AXA^T \text{ on } S^n.)$$

Stern (1981), Gowda-Tao (2009):

For a **z**-transformation, the following are equivalent:

- S-property
- Positive stable property
- $L^{-1}(K) \subseteq K$.
- Q-property

This extends the results of Lyapunov and Stein.

Conjecture: For a z-transformation, P = Q

Conjecture holds for matrices on \mathbb{R}^n , L_A and S_A on S^n .

New Results on a EJA

Theorem A

For a Lyapunov-like transformation, P=Q.

A sketch of the Proof:

Assume L is Lyapunov-like and positive stable.

Suppose $x \neq 0$ operator commutes with L(x) and $x \circ L(x) \leq 0$.

Write spectral decompositions

$$x = \sum x_i e_i$$
 and $L(x) = \sum y_i e_i$

with $x_i y_i \leq 0$ for all i and $x_i \neq 0$ for i = 1, 2, ... k.

Let $c := e_1 + e_2 + \cdots + e_k$ and $W := \{x : x \circ c = x\}.$

Then $L(W) \subseteq W$ and so restriction L' of L to W is also positive stable.

Thus L' has positive trace.

But the Lyapunov-like property together with $x_i y_i \le 0$ for all i implies that trace of L' is non-positive.

This is a contradiction.

Theorem B

Let L be a **z**-transformation with L(e) > 0. Then **P=Q**.

Sketch of the proof:

Suppose $x \neq 0$ operator commutes with L(x) and $x \circ L(x) \leq 0$.

Write $x = \sum x_i e_i$ and $L(x) = \sum y_i e_i$ with $x_i y_i \leq 0$ for all i.

Define $A = [a_{ij}]$, where $a_{ij} := \langle L(e_i), e_j \rangle$.

Then A is a **z**-matrix, Au > 0, where u is the vector of ones and $p * A^T p \le 0$ in R^n , where p is the vector with components x_i .

By matrix theory results, A is a P-matrix.

Hence A^T is a P-matrix and $p*A^Tp \leq 0 \Rightarrow p=0$,

This implies that x = 0, leading to a contradiction.

Open problems

- ullet Conjecture: For any Z-transformation, P=Q.
- Characterize the **GUS**-property for **Z**-transformations.
- When is S_A **GUS**?

References

- (1) Damm, Positive groups on H^n are completely positive, LAA, 2004.
- (2) Gowda-Parthasarathy, On the complementarity, LAA 2000.
- (3) Gowda-Song, Semidefinite LCPs, Math Programming, 2000.
- (4) Gowda-Sznajder-Tao, On the automorphism group, LAA 2012.

- (5) Gowda-Tao-Ravindran, On complementarity properties, LAA, 2012.
- (6) Gowda-Tao, Bilinearity rank of a proper cone..., Tech Report, Dec. 2011.
- (7) Rudolf et al, Bilinearity optimality conditions..., Math Programming, 2011.
- (8) Schneider-Vidyasagar, Cross-positive matrices, SIAM Numer. Anal., 1970.