On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras

M. Seetharama Gowda

Department of Mathematics and Statistics

University of Maryland, Baltimore County

Baltimore, Maryland

gowda@math.umbc.edu

GTORA Conference, Chennai

January 5-7,2012

This is joint work with J. Tao and G. Ravindran.

Based on forthcoming paper in Linear Algebra and Its Applications:

On the **P**-property of **z** and Lyapunov-like transformations

on Euclidean Jordan algebras.

Outline

- Motivation and a conjecture
- Euclidean Jordan algebras
- z and Lypaunov-like transformations
- Validity of the conjecture for Lyapunov-like transformations
- A result for **z**-transformations

Motivation

Recall a result from complementarity problems:

The following are equivalent for $M \in \mathcal{R}^{n \times n}$:

 \checkmark All principal minors of M are positive.

$$x * Mx \le 0 \Rightarrow x = 0.$$

▶ LCP(M,q) has a unique solution for all $q \in R^n$.

LCP(M,q): Find $x \in R^n$ such that

 $x \ge 0$, $Mx + q \ge 0$, and $\langle Mx + q, x \rangle = 0$.

When M is a **z**-matrix, i.e., when all off-diagonal entries of M are non-positive, the

above statements are further equivalent to:

- **•** LCP(M,q) has a solution for all q.
- There exists a d > 0 such that Md > 0.
- M is positive stable: Real part of any eigenvalue of M is positive.

 S^n - All $n \times n$ real symmetric matrices. S^n_+ - All PSD matrices in S^n . Notation: $X \succeq 0$ if $X \in S^n_+$. $\langle X, Y \rangle := trace(XY)$. $X \circ Y := \frac{XY+YX}{2}$ - Jordan product. Semidefinite LCP: $L : S^n \to S^n$ linear, $Q \in S^n$. SDLCP(L, Q): Find $X \in S^n$ such that

 $X \succeq 0, L(X) + Q \succeq 0, \text{ and } \langle X, L(X) + Q \rangle = 0.$

For $A \in \mathbb{R}^{n \times n}$, $L_A(X) := AX + XA^T$ - Lyapunov transformation on S^n . $S_A(X) := X - AXA^T$ - Stein transformation on S^n . L denotes either L_A or S_A .

Gowda-Song (2000), Gowda-Parthasarathy (2000): The following are equivalent:

$$[XL(X) = L(X)X, X \circ L(X) \preceq 0] \Rightarrow X = 0.$$

- **SDLCP**(L, Q) has a solution for all Q.
- There exists $D \succ 0$ with $L(D) \succ 0$.
- L is positive stable.

The above result is very similar to the matrix theory result for **z**-matrices.

- Why is this happening?
- Do L_A and S_A have some sort of z-property?

Can the two results be unified and extended?

Note: Both \mathcal{R}^n and \mathcal{S}^n are Euclidean Jordan algebras!

 $(V, \langle \cdot, \cdot \rangle, \circ)$ is a Euclidean Jordan algebra if *V* is a finite dimensional real inner product space and the bilinear Jordan product $x \circ y$ satisfies:

•
$$x \circ y = y \circ x$$

• $x \circ (x^2 \circ y) = x^2 \circ (x \circ y)$
• $\langle x \circ y, z \rangle = \langle x, y \circ z \rangle$

 $K = \{x^2 : x \in V\}$ is the symmetric cone in V. Notation: $x \ge 0$ if $x \in K$ and x > 0 if $x \in int(K)$. Any EJA is a product of the following:

- $S^n = \text{Herm}(\mathcal{R}^{n \times n})$ $n \times n$ real symmetric matrices.
- Herm $(\mathcal{C}^{n \times n})$ $n \times n$ complex Hermitian matrices.
- Herm($Q^{n \times n}$) $n \times n$ quaternion Hermitian matrices.
- ▶ Herm($\mathcal{O}^{3\times3}$) 3 × 3 octonion Hermitian matrices.
- \checkmark \mathcal{L}^n Jordan spin algebra.

For $a \in V$, $L_a(x) := a \circ x$.

a and b operator commute if $L_a L_b = L_b L_a$.

Let L be linear on V and $q \in V$. LCP $(L, K, q) : x \ge 0, L(x) + q \ge 0, \langle L(x) + q, x \rangle = 0.$

- **GUS**-property: Unique solution in all LCP(L, K, q).
- P-property: $[x \text{ and } L(x) \text{ operator commute, } x \circ L(x) \leq 0] \Rightarrow x = 0.$
- **Q**-property: For all $q \in V$, LCP(L, K, q) has a solution.
- **S**-property: There exists d > 0 such that L(d) > 0.

Gowda, Sznajder, Tao (2004):

$$\mathsf{GUS} \Rightarrow \mathsf{P} \Rightarrow \mathsf{Q} \Rightarrow \mathsf{S}.$$

- **Z-property:** $[x, y \in K, x \perp y] \Rightarrow \langle L(x), y \rangle \leq 0.$
- Lyapunov-like: $[x, y \in K, x \perp y] \Rightarrow \langle L(x), y \rangle = 0.$

Example: L_A is Lyapunov-like and S_A has Z-property. ($L_A(X) = AX + XA^T$ and $S_A(X) = X - AXA^T$ on S^n .)

Schneider-Vidyasagar (1970) Z-property is equivalent to:

•
$$exp(-tL)(K) \subseteq K$$
 for all $t \ge 0$.

• $\dot{x} + L(x) = 0, x(0) \in K \Rightarrow x(t) \in K$ for all $t \ge 0$.

Stern (1981), Gowda-Tao (2009):

For a **z**-transformation, the following are equivalent:

- **s**-property
- Positive stable property
- $L^{-1}(K) \subseteq K.$
- Q-property

Conjecture: For a **Z**-transformation, **P**=**Q**

Conjecture holds for matrices on \mathcal{R}^n , L_A and S_A on \mathcal{S}^n .

Will show:

Conjecture holds for all Lyapunov-like transformations and those **Z**-transformations with L(e) > 0, where *e* is the unit element in *V*.

New Results

A characterization of Lyapunov-like transformations: The following are equivalent:

L is Lyapunov-like.

•
$$e^{tL}(K) = K$$
 for all $t \in \mathcal{R}$.

- \checkmark L belongs to the Lie algebra of Aut(K).
- $L = L_a + D$, where $L_a(x) = a \circ x$ and D is a derivation.

Derivation:

$$D(x \circ y) = D(x) \circ y + x \circ D(y)$$
 for all $x, y \in V$.

Theorem A

For a Lyapunov-like transformation, **P**=**Q**.

A sketch of the Proof:

Assume *L* is Lyapunov-like and positive stable.

Suppose $x \neq 0$ operator commutes with L(x) and $x \circ L(x) \leq 0$.

Write spectral decompositions

 $x = \sum x_i e_i$ and $L(x) = \sum y_i e_i$

with $x_i y_i \leq 0$ for all i and $x_i \neq 0$ for i = 1, 2, ..., k.

- Let $c := e_1 + e_2 + \dots + e_k$ and $W := \{x : x \circ c = x\}.$
- Then $L(W) \subseteq W$ and so restriction L' of L to W
- is also positive stable.
- Thus L' has positive trace.
- But the Lyapunov-like property together with $x_i y_i \leq 0$
- for all i implies that trace of L' is non-positive.
- This is a contradiction.

Theorem B

Let L be a z-transformation with L(e) > 0. Then P=Q.

Sketch of the proof:

Suppose $x \neq 0$ operator commutes with L(x) and $x \circ L(x) \leq 0$.

Write $x = \sum x_i e_i$ and $L(x) = \sum y_i e_i$

with $x_i y_i \leq 0$ for all *i*.

Define $A = [a_{ij}]$, where $a_{ij} := \langle L(e_i), e_j \rangle$. Then A is a **z**-matrix, Au > 0, where u is the vector of ones and $p * A^T p \le 0$ in \mathbb{R}^n , where p is the vector with components x_i .

By matrix theory results, A is a P-matrix. Hence A^T is a P-matrix and $p * A^T p \le 0 \Rightarrow p = 0$, This implies that x = 0, leading to a contradiction.

Open problems

- Conjecture: For any Z-transformation, $\mathbf{P} = \mathbf{Q}$.
- Characterize the **GUS**-property for Z-transformations.
- When is S_A GUS?