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 APPLICATIONS OF DEGREE THEORY TO
 LINEAR COMPLEMENTARITY PROBLEMS

 M. SEETHARAMA GOWDA

 In this paper, we consider two applications of degree theory to linear complementarity
 problems. In the first application, we study the stability of an LCP at a solution point.
 Specifically we prove the stability of an LCP corresponding to a P0-matrix at an isolated
 solution. Using a recent degree formula due to Stewart 1991, we strengthen a stability result
 of Gowda and Pang 1992. In the second application, we use the same degree formula of
 Stewart to describe the number of solutions of LCP(M, q) when M is a negative almost
 N-matrix. This analysis leads to a Lipschitzian characterization of the solution map d>:
 q -* SOL(M, q) corresponding to a nondegenerate negative matrix.

 1. Introduction. Given a matrix M E R'xn and a vector q E R", the Linear
 Complementarity Problem LCP(M, q) is to find a vector x in Rn such that

 (1) x>0, Mx + q O, and XT(Mx + q) = 0.

 The advantage of studying such a problem is well documented in the literature. See,
 e.g., Murty 1987 and Cottle, Pang and Stone 1992.

 The degree theory (see, e.g., Lloyd 1978 or Ortega and Rheinboldt 1970) has been
 effectively used to study linear complementarity problems specifically dealing with the
 existence of solutions and cardinality of the solution set (see Kojima and Saigal 1979,
 1981, Howe and Stone 1983, Howe 1983, Garcia, Gold and Turnbull 1983) and also
 with the stability issues (see Ha 1987).

 In this paper, we present two applications of degree theory. The first application
 deals with the stability of an LCP at a solution point. (For definitions, see ?3.) Our
 main result here is that when M is a P0-matrix, a solution x* is stable for LCP(M, q)
 if and only if x* is isolated. As a consequence, we show that when M is a P0-matrix
 and q is any vector, the number of solutions of LCP(M, q) is either zero or one or
 infinity, a result that was first observed by Cottle and Guu 1991. Moreover, by using a
 degree formula due to Stewart 1991, we strengthen a stability result of Gowda and
 Pang 1992.

 In our second application, we once again use the degree formula of Stewart 1991 to
 completely describe the number of solutions of LCP(M, q) when M is either an
 N-matrix of first category or a negative almost N-matrix. This analysis improves the
 earlier results of Kojima and Saigal 1981, Mohan and Sridhar 1989, and Mohan,
 Parthasarathy and Sridhar 1991.

 The motivation for our second application comes from the problem of finding
 matrices M for which the (multivalued) solution map q>: q > SOL(M,q) is
 Lipschitzian. (See ?6 for the definition.) It was shown in Gowda 1992 that P-matrices
 and negative N-matrices have this Lipschitzian property and that every G-matrix
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 APPLICATIONS OF DEGREE THEORY

 satisfying the Lipschitzian property is a P-matrix. Using our precise knowledge of the
 number of solutions of LCP(M, q) corresponding to a negative almost N-matrix, we
 show that when M is a nondegenerate negative matrix, the solution map I is
 Lipschitzian if and only if M is an N-matrix.
 A few words about the notation: Throughout this paper, Iqll\ denotes the Euclidean

 norm of the vector q and IIMII denotes the operator norm of the matrix M. The unit
 ball in R' is denoted by B. We write IEl for the number of elements in the set E. We
 denote the set of all solutions of LCP(M, q) by SOL(M, q). Corresponding to any
 solution x* of LCP(M, q), we let

 I = {i: x* > 0), J = {i: (Mx* + q) > 0},
 (2)

 K = {i: x = (Mx* + q)i = 0}.

 The set I will be called the support set of x* and the submatrix M,, of M will be
 called the supporting submatrix of x*. (If I is empty, we let M,, be the identity
 matrix.) For any set S in Rn, S and dS denote, respectively, the closure and the
 boundary of S. Also, dist(0, S) = inf{llsll: s E S}.

 2. Degree theory. The purpose of this section is to review the basic concepts of
 degree theory, introduce LCP-related degree concepts and to state the recent degree
 formula of Stewart.

 The standard references for degree theory are Lloyd 1978 and Ortega and
 Rheinboldt 1970.

 Following Ortega and Rheinboldt (1970, Chapter 6), corresponding to a bounded
 open set fl in Rn, a continuous function F: f -> Rn, and an n-vector p e F(dl) we
 denote the degree of F at p relative to fl by deg(F, fl, p). (In this situation, we shall
 say that deg(F, Qf, p) is defined.) Since p is always zero in our discussion, we write
 deg(F, l) as a shorthand for deg(F, Qf, 0). We list below a few properties that are
 relevant to our discussion.

 PROPERTIES OF DEGREE.

 (1) If deg(F, fl) 4 0, then the equation F(x) = 0 has a solution in fl.
 (2) Suppose that deg(F, f) is defined. If G is a continuous function on fl such that

 (3) sup I|G(x) - F(x) I < dist(0, F(dQ))

 then deg(G, ft) is defined and is equal to deg(F, Qf).
 (3) (Homotopy invariance property). Suppose that H: [0, 1] x fl -> Rn is continu-

 ous and 0 < H(t, dfl) for all t E [0, 1]. Then deg(H(0, ? ), fl) = deg(H(1, ? ), fQ).
 (4) (Domain decomposition property). Suppose that deg(F, fl) is defined and fl is

 a disjoint union of finite number of open sets li. Then deg(F, fl) = )i deg(F, fi).
 (5) (Excision property). Suppose that deg(F, Q) is defined and A is a compact

 subset of fl such that there are no solutions of F(x) = 0 in A. Then deg(F, f) =
 deg(F, fl \ A).

 (6) Let x* be an isolated solution of the equation F(x) = 0. Then deg(F, fQ) is the
 same for any bounded open set f containing x* with the additional property that Q
 contains no other solution of F(x) = 0. In this situation, we call deg(F, fl) the index
 of F at x* and denote it by index(F, x*). If F is differentiable at x* with a
 nonsingular Jacobian matrix F'(x*), then

 index(F, x*) = sgn det F'(x*).
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 M. S. GOWDA

 STEWART'S FORMULA. Let M E Rnxn and q E Rn. In order to make use of the
 degree theory, we formulate LCP(M, q) as an equation F(x) = 0 where

 (5) F(x) := x A (Mx + q) := (min{x,, (Mx + q)i})

 (i.e., F(x) is the componentwise minimum of x and Mx + q).
 If x* is an isolated solution of LCP(M, q), then index(F, x*) is defined. To

 indicate the dependence of F on M and q, we write index(M, q, x*) for index(F, x*).
 Suppose that the isolated solution x* is also nondegenerate (which means that

 x* + Mx* + q > 0). Then (cf. Mangasarian 1980, Corollary 3.2) the supporting ma-
 trix MnI (with I as in (2)) is nonsingular and F is differentiable at x* with
 det F'(x*) = det M,,. In this situation,

 (6) index(M, q, x*) = sgn det M,.

 (We remark that the above formula holds whether I is empty or not.)
 The new formula due to Stewart 1991 makes it possible to compute the index even

 when the solution x* is not nondegenerate. Let us say that an isolated solution x* of
 LCP(M, q) is semi-nondegenerate if the corresponding supporting submatrix is non-
 singular. We assume that x* is such a solution and I, J, and K are given by (2). Let
 Ms denote the Schur complement of M, in the matrix

 MI MIK
 MKI MKK

 i.e., let MSI = MKK - MKIMIIMIK. (If K is empty, we let Ms be the identity matrix.
 If I is empty, Mjs is taken as MKK.) Then Stewart's formula is

 (7) index(M, q, x*) = (sgndet M,,)index(M, 0,0).

 We note that in the above formula, index(Ms, 0, 0) is defined because when x* is
 an isolated solution, LCP(Ms, 0) has only one solution, namely, zero (cf. Mangasar-
 ian 1980, Theorem 3.8).

 DEGREE OF AN RO-MATRIX. A matrix M with the property that the zero vector is
 the only solution of LCP(M, 0) is called an R0-matrix. It is easy to show (see for
 example, Proposition 3.9.23 in Cottle, Pang and Stone 1992) that corresponding to
 such a matrix, SOL(M, q) is uniformly bounded as q varies over a bounded set in Rn.
 In particular, SOL(M, q) is bounded for every q. Taking any bounded open set fl
 containing SOL(M, q), we see that deg(F, fl) (with F given by (5)) is defined and, in
 view of the Excision property of degree, is independent of L. We claim that this
 degree is independent of q also. To see this, consider any two vectors q1 and q2 and
 define the homotopy H(t, x) = x A {Mx + tql + (1 - t)q2}. Let D be any bounded
 open set containing all the sets SOL(M, tql + (1 - t)q2) as t varies over the interval
 [0, 1]. The claim follows from the Homotopy invariance property applied to the pair
 (H, D). Hence corresponding to any R0-matrix M we can associate an integer, called
 the degree of M, by

 deg M := deg(F, fl)

 where q is any vector, F is defined by (5) and fn is any bounded open set containing
 SOL(M, q). Now let M be an R0-matrix and q be a vector such that SOL(M, q) is
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This content downloaded from 
�������������129.2.19.100 on Wed, 03 Feb 2021 16:57:19 UTC�������������� 

All use subject to https://about.jstor.org/terms



 APPLICATIONS OF DEGREE THEORY

 finite. Then by the Domain decomposition and the Excision properties,

 (8) deg M = E index(M, q, x).
 xESOL(M, q)

 When q is nondegenerate with respect to M (i.e., each solution of LCP(M, q) is
 nondegenerate), it is known that LCP(M, q) has a finite number of solutions and the
 supporting submatrix of each solution is nonsingular. In this case the above formula
 reads, because of (6),

 (9) deg M = E sgn det MI

 where the sum varies over all solutions of LCP(M, q). Stewart's extension (Stewart
 1991) consists in replacing a nondegenerate vector by a semi-nondegenerate vector (it
 is a vector q for which LCP(M, q) has finite number of solutions and the supporting
 submatrix of each solution is nonsingular). Thus if q is semi-nondegenerate with
 respect to M, then from (7) and (8),

 (10) deg M = , (sgn det M,)deg M,s.

 where the summation varies over all solutions of LCP(M, q).
 The above formula is particularly useful when M is a nondegenerate matrix, i.e.,

 when all the principal minors of M are nonzero. In this situation, every vector q, for
 which LCP(M, q) is solvable, is semi-nondegenerate (Murty 1972, Theorem 3.2).

 REMARK. While describing the LCP-related degree concepts above, we used the
 'min' function (5). In the LCP theory, other mappings have also been used. For
 example, LCP(M, q) is equivalent to the equation M(x+) + q - x-= 0 where
 x+= max{x,0), etc. One can study degree theory via (variants of) the mapping
 x - M(x+) + q - x-. See for example, Kojima and Saigal 1979, 1981, Howe 1983,
 Howe and Stone 1983, Cottle, Pang and Stone 1992, and Garcia, Gould and Turnbull
 1983, Ha 1987. It turns out that in all these formulations, formula (6) is used as the
 basis of degree analysis. In view of this, the formulas (6)-(10) are valid for mappings
 other than the 'min' mapping. This observation allows us to use the degree theoretic
 results given in the references cited above.

 3. Stability at a solution point. Let x* be a solution of LCP(M, q). We say that
 LCP(M, q) is stable at x* (Ha 1985, Jansen and Tijs 1987) (or that x* is a stable
 solution of LCP(M, q)) if x* is an isolated solution of LCP(M, q) and corresponding
 to every e > 0, there exists a 8 > 0 such that

 (x* + EB) n SOL(M',q') z 0

 for all (M', q') E RnXn x Rn satisfying the condition IIM' - MIl + lIq' - qll < S. This
 simply means that when (M', q') is close to (M, q), LCP(M', q') will have solutions
 near x*.

 In order to explain the connection between stability and degree theory, suppose
 that x* is the only solution of LCP(M, q) in the closure of some bounded open set
 Q. Then index(M, q, x*) (which is equal to deg(F, fl) for F given in (5)) is defined.
 Furthermore, if corresponding to the matrix M' and the vector q' the function

 G(x) = x A (M'x + q')
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 M. S. GOWDA

 satisfies the condition (3), then deg(G, l) = deg(F, fl). From the simple inequality
 la A b - a A cl < lb - cl which holds for all real numbers a, b, and c, it is easily
 seen that for x E fl,

 IIF(x) - G(x)I| =||x A (Mx + q) -x A (M'x + q')||

 < (Mx + q) - (M'x + q')

 < (L + 1)(i1M- M'll + lIq - q'll)

 where L is a bound on Ilxll as x varies over f. It is clear that if the pair (M', q') is
 close to (M, q), then (3) holds. Thus, if deg(F, fl) is nonzero then deg(G, fl) is
 nonzero for all (M', q') close to (M, q). It follows that G(x) = 0 has a solution in L.
 This amounts to saying that if x* is isolated and index(M, q, x*) is nonzero, then x* is
 a stable solution of LCP(M, q). (Precisely the same result is obtained by Ha 1987
 using a "Minty-like" map.)

 Our first result concerns a P0-matrix. To be specific, we show below that when M is
 a P0-matrix and x* is an isolated solution of LCP(M, q), index(M, q, x*) = 1 so that
 x* is a stable solution. Before stating the result we recall that a matrix M is a
 Po-matrix if every principal minor of M is nonnegative and it is a P-matrix if every
 principal minor is positive.

 THEOREM 1. Let M be a Po-matrix and x* be a solution of LCP(M, q). Then x* is
 stable if and only if it is isolated.

 PROOF. It is enough to prove the 'if' part. Suppose that x* is an isolated solution
 of LCP(M, q) and let fl be any bounded open neighbourhood of x* such that x* is
 the only solution of LCP(M, q) in f. Define (M, q) by

 Mx := Mx + ex, :q q - ex*

 where e is a small positive number. Let

 F(x) := x A (Mx + q), F(x) := x A (x +).

 Then for all small e > 0, condition (3) holds with G =F so that deg(F, ) =
 deg(F, f). Now the matrix M is a P-matrix. Furthermore, x* is the unique solution
 of LCP(M, q) which is in fl and which is nondegenerate. It is easily seen from (6)
 that deg(F, f) = 1. It follows that index(M, q, x*) = deg(F, fl) = 1 and the proof is
 complete. o

 The next result was first observed by Cottle and Guu (1991). Here we give a
 degree-theoretic proof.

 THEOREM 2. Let M be a Po-matrix and q be any vector. Then the number of
 solutions of LCP(M, q) is either zero or one or infinity.

 PROOF. It is clear that LCP(M,q) has a solution that is not isolated, then
 LCP(M,q) has infinitely many solutions. We prove the result by showing that
 LCP(M, q) has at most one isolated solution. Suppose the contrary and let x* and u*
 be two distinct isolated solutions of LCP(M, q). By Theorem 1, both solutions are
 stable. This means that if a matrix M is sufficiently close to M, then LCP(M, q) must
 have solutions close to both x* and u*. In particular, LCP(M, q) must have at least
 two solutions. But this is obviously false for the P-matrix M defined in the proof of
 the previous theorem. This completes the proof. D
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 APPLICATIONS OF DEGREE THEORY

 Our next theorem, although trivial to prove, contains as special cases some known
 stability results.

 THEOREM 3. Suppose that x* is an isolated solution of LCP(M, q) such that MI, is
 nonsingular and deg Msj = 0. Then x* is stable.

 PROOF. By (7), we see that index(M, q, x*) is nonzero. By the remarks made prior
 to Theorem 1, x* is stable. o
 REMARKS. In order to apply the above theorem, one has to know that the degree

 of Msj is nonzero. We list below three instances when the degree of an R0-matrix M
 is nonzero. (See, Howe and Stone 1983, Kojima and Saigal 1981.)
 (1) M is a P-matrix in which case deg M = 1.
 (2) M is a G-matrix which means that for some positive vector d, LCP(M, d) has a

 unique solution, namely, zero. In this case, deg M = 1. Note that the class G includes
 semimonotone matrices which are defined by the condition that for all positive
 vectors d, LCP(M, d) has a unique solution, namely, zero. We specifically note that
 copositive matrices and positive semidefinite matrices are semimonotone.

 (3) M is an N-matrix of first category which means that every principal minor of M
 is negative and M ? 0. Here deg M = -1.

 COROLLARY 1 (HA 1985). Suppose that x* is an isolated and nondegenerate
 solution of LCP(M, q). Then x* is stable.

 PROOF. By (Mangasarian 1980, Corollary 3.2), M,, is invertible and M,, is the
 identity matrix. Since the degree of the identity matrix is one, the stability of x*
 follows. a

 Our next result deals with a fully semimonotone matrix and strengthens a result of
 Gowda and Pang 1992, Corollary 2. By definition, a matrix is fully semimonotone if
 every principal pivot transform Cottle, Pang and Stone 1992 of M is semimonotone.

 COROLLARY 2. Suppose that M is fully semimonotone and x* is an isolated solution
 LCP(M, q) such that the supporting submatrix is M,, nonsingular. Then
 index(M, q,x*) = +1.

 PROOF. By the index formula (7), we have

 index(M, q, x*) = (sgn det MI)deg MSj.

 We show that the degree of MS is 1 from which the result follows. Clearly, MS is a
 submatrix of the principal transform of M obtained by pivoting on M,,. Since any
 principal pivot transform of M is semimonotone and any submatrix of a semimono-
 tone matrix is semimonotone, we see that MSj is semimonotone (in addition to being
 an R0-matrix). As mentioned earlier, the degree of an Ro semimonotone matrix is 1.
 Thus we see that index(M, q, x*) = +1. D

 At this particular stage, we do not know if the nonsingularity assumption on the
 supporting submatrix can be removed.

 It is interesting to note that Theorem 3 settles, affirmatively, a conjecture of
 Broyden 1991. Let us say that a nondegenerate matrix M is odd if there is a
 nondegenerate vector q such that LCP(M, q) has odd number of solutions. Broyden
 conjectures that if the matrix MS, corresponding to a solution x* of LCP(M, q) (with
 M nondegenerate) is odd, then the solution is stable. This is immediate from the
 theorem because when Ms is odd, the degree of Ms is nonzero. (If the sum in (9)
 has an odd number of terms, then the left-hand side is nonzero.)
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 4. Cardinality of SOL(M, q) corresponding to an N-matrix. From stability re-
 sults we move on to results describing the cardinality of the solution set of a linear
 complementarity problem. We restrict our attention to nondegenerate matrices so
 that we can use Stewart's degree formula (10). For a given matrix M and any q, we
 write

 cI(q) = SOL(M, q).

 It is well known that when M is a P-matrix, IV(q)l = 1 for every vector q. The
 situation changes when M is an N-matrix, i.e., when all the principal minors of M are
 negative. If M is an N-matrix of second category (which means that M < 0), then it is
 known (Kojima and Saigal 1979) that

 0 if q 0,

 (11) l(q)l= 1 if q >0, q 0,
 2 if q>0.

 Concerning a matrix M which is an N-matrix of first category (means that M - 0)
 Kojima and Saigal 1981 (see also Mohan and Sridhar 1989) show, using degree
 theoretic arguments, that

 1 if q g 0 or q = 0,
 (12) 1(q) 1 or2 ifq> 0,q 0,

 3 if q > 0.

 As a refinement of the above, we describe in the following result, the precise
 number of solutions when 0 < q = 0. We freely use the known results Kojima and
 Saigal 1981 that the degree of a P-matrix is one and that the degree of an N-matrix is
 zero if the matrix is of second category and - 1 otherwise. We also observe that when
 x* is a nonzero solution of LCP(M, q) where M is an N-matrix, the Schur comple-
 ment Msj is a P-matrix and hence index(M, q, x*) = (sgn det M,j)deg MS, = - 1.

 THEOREM 4: Let M be an N-matrix such that M s O. Then for any q,

 '1 if q O orq = 0,

 (13) l<D( q\ <1 ifq > 0, q , L := {i: qi=} = 0, MLL ? O, (13) (q)I = 2<0,
 2 if q > 0, q - 0, L M= i: qi = 0} = 0, MLL < 0,
 ,3 ifq>0.

 PROOF. In view of (12), we need only to deal with a nonzero nonnegative vector q
 for which L = {i: qi = 0} I 0. Let q be such a vector. Since M is nondegenerate,
 there are a finite number of solutions to LCP(M, q) and all the solutions are isolated.
 Let a = index(M, q, 0). By the index formula (7), with x* = 0, I = 0, and K = L,
 we have a = index(ML, 0,0) = deg MLL. Since MLL is an N-matrix, a is zero if
 MLL < 0 and -1 otherwise.

 It is clear that there could be at most one solution x# with I = 0, I U K =
 {1, 2,..., n}. Define fi as zero if there is no x# with this property or as index(M, q, x#)
 if there is such an x#. In view of the observation preceeding the theorem, f3 is either
 zero (when there is no x#) or -1. Finally we let y be E index(M, q, x) where the
 sum is taken over the set E of all solutions x with I # 0, I u K # {1, 2,..., n}. (If
 there is no such solution, we let y be zero.) Once again, y is either a negative integer
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 APPLICATIONS OF DEGREE THEORY

 (= -IEI) or zero. The degree formula (10) now reads,

 a +3 + y = -1.

 In view of the values taken by a, 8f and y, we see that the triple (a, 3, y) is either
 (-1, 0,0) or (0, - 1, 0) or (0,0, -1). In the first case, there is only one solution,
 namely zero. In the last two cases, apart from the zero solution there is another
 solution. These considerations complete the proof. o

 From considering matrices, all of whose minors have the same sign, namely P and
 N-matrices, we move on to almost P and almost N-matrices. In addition to having
 interesting LCP properties, these matrices appear in the study of univalent functions
 (see Parthasarathy and Ravindran 1990, Mohan, Parthasarathy and Sridhar 1991,
 Olech, Parthasarathy and Ravindran 1991). We say that a matrix M is

 (a) an almost P-matrix if M has negative determinant and every proper principal
 minor of M is positive,

 (b) an almost N-matrix if M has positive determinant and every proper principal
 minor of M is negative.

 The analysis of an almost P-matrix M is somewhat simplified in view of the
 observation that the inverse of such a matrix is an N-matrix. Since for any invertible
 R0-matrix M, deg M-1 = (sgn det M)deg M (Cottle, Pang and Stone 1992, Theorem
 6.6.23), we see that the degree of an almost P-matrix is zero if M-1 < 0 and one if
 M-1 0.

 5. The number of solutions corresponding to a negative almost N-matrix. Let M
 be a negative almost N-matrix. We note to begin with that LCP(M, q) has no solution
 when q . 0 and hence deg M = 0. We let pos(-M) denote the set -M(R+). It is
 clear that for q E pos(-M), there is only one x > 0 with q = -Mx so that Ms is
 uniquely defined where I denotes the support of x.

 THEOREM 5. Let M < 0 be an almost N-matrix. Then

 '1 ifq e f:= {r: r > 0, r > 0},
 4 ifq E E := {r: r > 0, M-lr < 0},

 () 1 l<(q)l = 3 if q E := {r: r > 0, M-r < O, r E pos(-M), (Ms) < 0),
 2 ifq 9 := {r: r > 0, M-lr < 0, r e pos(-M), (MS)-1 0},
 2 ifq e E:= {r: r > 0, r q pos(-M)}.

 PROOF. Since M < 0, I((q)l = 1 for q E &V. Now let q E V. Clearly, the zero
 vector and -M-lq are solutions of LCP(M, q). Since det M > 0, the formula (6)
 gives,

 index(M, q,0) = 1 = index(M, q, -M- lq).

 Let x be any other solution of LCP(M, q) with index sets I and K defined as in (2),
 so that I = 0, and I U K - {1, 2,..., n}. Since the Schur complement of a proper
 submatrix of an N-matrix is a P-matrix, it follows that the degree of MSj is 1. Since
 sgn det MuI = - 1, we see that index(M, q, x) = - 1. As noted before, the degree of
 M is zero. The degree formula (10) now shows that apart from the zero vector and
 -M-lq, there must be two more solutions to LCP(M, q). This shows that I|((q)l = 4
 when q E &.
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 M. S. GOWDA

 Now let q e (U 9. Then there is a unique x > 0 such that q = -Mx, 0 - x . O.
 If I and K are defined as in (2), then I 0 K K, I U K = {1,2,..., n}. It is easily
 seen that Ms is an almost P-matrix and sgn det MI, = -1. From the index formula
 (7), we see that index(M, q, x) is equal to zero if q E e and -1 if q E .. Let y be a
 nonzero solution of LCP(M, q) different from x. Let us once again use the letters I,
 J, and K to denote the index sets corresponding to y. Now I - 0, I U K =
 {1, 2,..., n}. Since M is an almost N-matrix, sgn det M, = - 1 and Mfs is a P-matrix.
 Thus index(M, q, y) = -1. If q E e, then the degree formula (10) (with deg M = 0)
 shows that in addition to the solutions zero and x, there must be one more solution.
 Thus there are three solutions when q E -W. Similar argument shows that there are
 exactly two solutions when q E 9.

 Finally, let q E &. Since deg M = 0, apart from the zero vector, there must be at
 least one more solution to LCP(M, q). Let x be any nonzero solution with I and K
 defined as in (2). Since q 0 pos(-M), I U K {(1,2,..., n}. We note that I : 0,
 detMI = -1, and MSj is a P-matrix. Thus index(M, q, x) = -1 for any nonzero
 solution of LCP(M, q). Once again from the degree formula we conclude that apart
 from the zero vector there is exactly one other solution to LCP(M, q). This argument
 shows that I\(q)l = 2 when q eE . o

 REMARKS. The above theorem thus completely describes the number of solutions
 for any q when M is any n X n negative almost N-matrix. Parts of the above result
 were known. Mohan, Parthasarathy and Sridhar 1991 describe, for n > 4, the number
 of solutions of LCP(M, q) when q E V' u S u 6. Interestingly enough, they also
 give a characterization (for n > 4) of negative almost N-matrices in terms of the
 number of solutions of LCP(M, q). In view of Theorem 5 one may ask whether their
 characterization goes through even for n = 2 and n = 3. We do not know the answer.

 6. A Lipschitzian characterization of negative N-matrices. For a given matrix M
 we say that the solution mapping I>: q - SOL(M, q) is Lipschitzian if there is a
 positive number C such that the inclusion

 (15) ((q) c I(q') + Cllq' - qllB

 holds for all q and q' with ?(q) # 0 2 - (q'). The above inclusion simply means
 that for each solution x of LCP(M, q) there is a solution x' of LCP(M, q'), such that
 lix' xl C - x < l- ql.
 As noted in Gowda 1992, mappings corresponding to P-matrices and negative

 N-matrices have this property. If the matrix M is a G-matrix, then the matrix is a
 P-matrix if and only if the corresponding solution mapping is Lipschitzian (Gowda
 1992). Our aim in this section is to characterize negative N-matrices via the
 Lipschitzian property. We begin with a Lemma.

 LEMMA 1. Let M be an n x n negative almost N-matrix with n > 2. Then the
 solution mapping <D corresponding to M can never be Lipschitzian.

 PROOF. We first prove the existence of a vector q in the set - defined in
 Theorem 5. We let p be the vector in Rn consisting of ones in the first (n - 1) spots
 and zero in the last spot and let q = (-M)p. It is clear that 0 < q E pos(-M) and
 M--lq ? 0. Clearly, p is a solution of LCP(M, q) with I = {1,2,...,(n - 1)} and
 K = {n}. Hence Ms, is a 1 x 1 matrix. Since det M is positive and det M, is negative,
 we see by the Schur determinant formula, det M = (det Ms)(det M,), that M,s is a
 1 x 1 negative matrix. Hence (Mjs)-1 < 0. Thus we have shown that q belongs to the
 set -.
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 By Theorem 5, (P(q) has three elements. Apart from the zero vector, let u and v be
 the other two solutions. By scaling the vector q (if necessary), we can assume that

 (16) 1 < min{llull, Ilvl, Ilu - vii}.

 Now suppose, to get a contradiction, that (P is Lipschitzian so that for some constant
 C > 0, the inclusion (15) holds for all q' with ((q') 0. Now pick a q' in the set 6
 (defined in Theorem 5) such that

 liq - q'1l < 3C'

 (We can simply let q' = q + M(een) where e is small and positive and en denotes the
 vector with zeros in the first (n - 1) spots and one in the last spot.) By Theorem 5,
 D(q') has two elements one of which is zero. Let x be the other element. The
 inclusion (15) now reads

 {0, u, v} c {O, x} + Clq' - qliB c {0, x} + -B.

 Since 1 < min{llull, Ilull} we must have Ilu - xll < 3 and liv - xll < 3. But this leads to
 Ilu - vll < 2 which contradicts (16). This shows that the mapping C( cannot be
 Lipschitzian. o

 We now come to our final result.

 THEOREM 6. Let M be any n X n matrix. In the following statements, any two will
 imply the third.

 (a) M is a negative nondegenerate matrix.
 (b) M is an N-matrix.
 (c) ? corresponding to M is Lipschitzian.

 PROOF. The implication (a) + (b) = (c) follows from Theorem 14 in Gowda 1992.
 To see the implication (b) + (c) = (a), suppose that M is not a negative matrix. Then
 (by (12)) for all q .; 0, LCP(M, q) has a unique solution. In particular, LCP(M, q) has
 a unique solution for a nondegenerate q. By Corollary 5 in Gowda 1992, M is a
 P-matrix which contradicts (b). We now come to the proof of (a) + (c) = (b). We
 prove the implication by induction on n. Clearly the result is true for n = 1. Assume
 the result for all matrices of order k x k (k = 1, 2,..., n - 1) where n > 2. We now
 fix a matrix M c Rn Xn satisfying (a) and (c). We first show that every proper principal
 submatrix N of M is an N-matrix. Let N = M,, (where a is a proper subset of
 {1, 2,..., n}) and let A(r) = SOL(N, r) denote the corresponding solution mapping.
 Without loss of generality let a be the first lal natural numbers. Let /3 be the
 complement of a in {1, 2,..., n}, r, s E RIa1, and e be the vector of ones in RIlI. For
 m = 1,2,..., let

 m r m S m 0
 e me [ me [ me

 We claim that for all large m,

 (17) tF(rm) =[]:u e A(r)}. 0
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 M. S. GOWDA

 To see this, we observe, from the Lipschitzian property (15), the inclusion

 4)(rm) c (p(em) + CllrllB.

 Since M < 0, (I(em) = {0} for all m, we see from the above inclusion that (I(rm) is
 uniformly bounded for all m. It follows that for large m, the /-part of any solution of
 LCP(M, rm) is zero. This gives one inclusion towards the equality of sets in (17). The
 reverse inclusion follows immediately from the observation that since N is nondegen-
 erate, it is an Ro-matrix and hence A(r) is bounded. We thus have (17) for large m.
 Now fix r and s with A(r) + 0 #= A(s). The Lipschitzian property of M gives

 c((rm) C C((sm) + Cllr - slB

 for all m. By choosing a large m we can apply (17) and conclude that

 A(r) c A(s) + Cllr - sllB'

 where B' denotes the open unit ball in RI"l. The above inclusion says that A is
 Lipschitzian. Thus, the given proper principal submatrix N of M has properties (a)
 and (c). By induction, N is an N-matrix. At this stage, we have shown that every
 proper principal minor of M is negative. Since the solution mapping (P of M is
 Lipschitzian, by the above Lemma, M is not an almost N-matrix. Therefore, the
 determinant of M is nonpositive. Since M is also nondegenerate, the determinant of
 M must be negative so that M is an N-matrix. This completes the induction
 argument. We thus have the implication (a) + (c) = (b). n

 7. Concluding remarks and open problems. In this article, we have used degree
 theory to study stability and cardinality of the solution set in linear complementarity
 problems. The analysis, as done in this paper, is by no means complete. For example,
 the question of describing the number of solutions of LCP(M, q) when M - 0 is an
 almost N-matrix, was not dealt with in this paper. We intend, in a separate article, to
 go beyond the known description for such matrices (Mohan, Parthasarathy and
 Sridhar 1991).

 As we mentioned earlier, the motivation for studying negative almost N-matrices
 came from the problem of characterizing those matrices M for which the correspond-
 ing solution mapping ?( is Lipschitzian. This characterization problem is wide open.
 In fact, one specific unsolved problem is: Suppose that M is a Q-matrix such that the
 corresponding (P is Lipschitzian. Can we say that M is a P-matrix? A related problem
 pertaining to negative matrices is to decide whether the implication (a) + (c) = (b)
 holds in Theorem 6 without the nondegeneracy assumption.
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