On the Transpose of a Pseudomonotone Matrix and the LCP

M. Seetharama Gowda*

Department of Mathematics and Statistics
University of Maryland, Baltimore County
Baltimore, Maryland 21228

Submitted by Richard W. Cottle

ABSTRACT

In the study of linear complementary problem, it is known that pseudomonotone matrices belong to the class $\mathbf{P}_0 \cap \mathbf{Q}_0$. In this note we show that under certain conditions, such as invertibility or normality, the transpose of a pseudomonotone matrix belongs to the class \mathbf{Q}_0 .

1. INTRODUCTION

Given an $n \times n$ real matrix M and a column vector $q \in \mathbb{R}^n$, the *linear* complementarity problem, denoted by LCP(M,q), is to find a vector x such that

- (a) $x \ge 0$, $Mx + q \ge 0$, and
- (b) $x^{T}(Mx+q)=0$.

Condition (a) refers to the feasibility of LCP(M, q). A matrix M is said to be a \mathbf{Q}_0 -matrix (or belong to the class \mathbf{Q}_0) if for all q, the feasibility of LCP(M, q) implies its solvability. In this note, we address the following question:

For which matrices M in the class \mathbf{Q}_0 does M^T belong to \mathbf{Q}_0 ?

Simple examples (see Section 3) show that the transpose of a Q_0 -matrix need not be a Q_0 -matrix. However, if M is a copositive plus matrix (or a P-matrix

^{*}Bitnet: gowda@umbc. Internet: gowda@umbc1.umbc.edu.

or a Z-matrix), then $M \in \mathbf{Q}_0$ and $M^T \in \mathbf{Q}_0$ (cf. [6, 8, 2]). In [4] (also in [5]), we introduced pseudomonotone matrices and showed that such matrices are copositive and row sufficient, and (hence) belong to $\mathbf{P}_0 \cap \mathbf{Q}_0$, where \mathbf{P}_0 is the class of all matrices with nonnegative principal minors. Within the class of pseudomonotone matrices, we provide a partial answer to the above question. We show for example that under some very simple conditions such as invertibility or normality, the transpose of a pseudomonotone matrix belongs to \mathbf{Q}_0 . A result of Cottle, Pang, and Venkateswaran [3] shows that for such matrices M, LCP(M^T , q) has nonempty convex solution set whenever LCP(M^T , q) is feasible. Furthermore, Lemke's algorithm can be applied to solve LCP(M^T , q).

2. PRELIMINARIES

We say that a matrix M is pseudomonotone (on \mathbb{R}^n_+) if

$$x, y \ge 0, \quad (y - x)^T M x \ge 0 \quad \Rightarrow \quad (y - x)^T M y \ge 0.$$
 (2.1)

It is easily seen that positive semidefinite matrices are pseudomonotone. It is shown in [4] that pseudomonotone matrices have the *copositive star* property:

$$x^T M x \geqslant 0 \qquad (\forall x \geqslant 0), \tag{2.2}$$

$$x \ge 0$$
, $Mx \ge 0$, $x^T Mx = 0 \Rightarrow M^T x \le 0$. (2.3)

Also, copositive star matrices, i.e., matrices satisfying the above conditions, are in \mathbf{Q}_0 [4, Corollary 2]. We refer to [4] for further properties of pseudomonotone matrices. We say that $M \in \mathbf{Q}$ if for all q, LCP(M, q) has a solution. If for a matrix M, the zero vector is the only solution of LCP(M, 0), then M is said to be an \mathbf{R}_0 -matrix. Finally, a matrix M is said to be row sufficient if

$$x_i(M^Tx)_i \le 0 \quad (\forall i = 1, 2, ..., n) \implies x_i(M^Tx)_i = 0 \quad (\forall i = 1, 2, ..., n),$$
(2.4)

and column sufficient if M^T is row sufficient. It is known (see [3, Theorem 6]) that if M is row sufficient, then $LCP(M^T, q)$ has convex solution set for

all q. In what follows, for any vector z with components z_i (i = 1, 2, ..., n), we write z^+ to denote the vector with components $\max\{z_i, 0\}$ (i = 1, 2, ..., n).

3. RESULTS

We start with an example to show that the transpose of a pseudomonotone matrix need not be in \mathbf{Q}_0 and hence need not be pseudomonotone.

Example 1. Let

$$M = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \qquad q = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Given $x, y, u, v \ge 0$ and

$$\begin{bmatrix} u - x \\ v - y \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (v - y)(x + y) \geqslant 0, \tag{3.1}$$

it follows that

$$\begin{bmatrix} u - x \\ v - y \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = (v - y)(u + v) \geqslant 0.$$
 (3.2)

Hence M is pseudomonotone. However, it is easily seen that the problem $LCP(M^T,q)$ if feasible but not solvable. Thus $M^T \notin \mathbf{Q}_0$. Since pseudomonotone matrices belong to \mathbf{Q}_0 [4, Corollary 3], it follows that M^T is not pseudomonotone.

THEOREM 1. Suppose that M is pseudomonotone. Then, under each of the following conditions, M^T satisfies the copositive star property and hence belongs to \mathbf{Q}_0 .

- (a) The diagonal of M consists only of zeros.
- (b) The system $0 \neq d \geqslant 0$, $M^T d = 0$ has no solution.
- (c) M is invertible.
- (d) $M \in \mathbf{R}_0$.
- (e) M is normal, i.e., $MM^T = M^TM$.

Proof. Since a pseudomonotone matrix is copositive [4, Proposition 1], we need to show that the condition (2.3) holds for M^T . Let

$$0 \neq d \geqslant 0$$
, $M^T d \geqslant 0$, and $d^T M^T d = 0$. (3.3)

We show that under each of the above conditions (a)–(e), $Md \le 0$.

(a): In this case, we have for every coordinate vector e_i (which has one at the *i*th spot and zeros elsewhere),

$$(d-e_i)^T M e_i = e_i^T M^T d \geqslant 0.$$

By pseudomonotonicity, $(d - e_i)^T M d \ge 0$, i.e., $e_i^T M d \le 0$. Thus $M d \le 0$.

(b): When this holds, $(M^Td)_i > 0$ for some i. Ignoring the trivial case n = 1, let $x = e_i + \lambda e_j$, where $j \neq i$ and $\lambda \geqslant 0$ are arbitrary. Then, for all small $\epsilon > 0$, we have

$$(d - \epsilon x)^{T} M(\epsilon x) = \epsilon [(M^{T}d)_{i} + \lambda (M^{T}d)_{j} - \epsilon x^{T} Mx] \ge 0.$$

By pseudomonotonicity, $(d - \epsilon x)^T M d \ge 0$, i.e, $x^T M d \le 0$. This gives

$$(Md)_i + \lambda (Md)_j \leq 0.$$

Since λ is arbitrary, $(Md)_i \leq 0$ and $(Md)_i \leq 0$. Hence $Md \leq 0$.

- (c): When this holds, (b) holds, and once again $Md \leq 0$.
- (d): When $M \in \mathbf{R}_0$, we merely show that (b) holds. Let $d \ge 0$, $M^T d = 0$. Then $d^T M d = 0$. By the copositivity of M, we have for any $x \ge 0$

$$x^{T}(M+M^{T})d = \lim_{\lambda \to 0^{+}} \lambda^{-1}(\lambda x + d)^{T} M(\lambda x + d) \geqslant 0.$$

This gives $(M + M^T)d \ge 0$, so $Md \ge 0$. Hence d is a solution of the problem LCP(M,0). Since $M \in \mathbb{R}_0$, d = 0.

(e): If $M^Td = 0$, then by normality, Md = 0. (Recall that $d^TMM^Td = d^TM^TMd$.) If $M^Td \neq 0$, then $(M^Td)_i > 0$ for some *i*. In this situation, we proceed as in (b) and get $Md \leq 0$.

Since a pseudomonotone matrix is copositive star, one is led to ask whether the transpose of a pseudomonotone matrix is pseudomonotone under any of conditions (a)–(e). We answer this question for 2×2 matrices; the answer is not known for higher order matrices.

THEOREM 2. Let $M \in \mathbb{R}^{2 \times 2}$ and pseudomonotone. Then, under each of conditionss (a)–(e) in Theorem 1, M^T is pseudomonotone.

LEMMA 1. Let the matrix

$$N = \begin{bmatrix} 1 & c \\ b & 0 \end{bmatrix}$$

be such that

- (i) $b + c \ge 0$,
- (ii) $b \le 0$ when $c \ge 0$,
- (iii) $c \le 0$ when $b \ge 0$.

Then N and N^T are pseudomonotone.

Proof. We show that N is pseudomonotone; the proof of the pseudomonotonicity of N^T is similar. Let $x \ge 0$, $y \ge 0$ with $(y - x)^T Nx \ge 0$, so

$$(y-x)_1(x_1+cx_2)+(y-x)_2bx_1 \ge 0.$$
 (3.4)

Since N is copositive [from (i)], we can assume that $(y - x) \notin \mathbb{R}^2_+ \cup (-\mathbb{R}^2_+)$. We consider two cases.

Case 1: $(y-x)_1 > 0$, $(y-x)_2 < 0$. We have $y_1 > x_1 \ge 0$, $x_2 > y_2 \ge 0$. Subcase 1.1: $b \ge 0$. By (iii), $c \le 0$. Then (3.4) gives $(y-x)_1x_1 + (y-x)_2bx_1 \ge 0$. If $x_1 > 0$, then $(y-x)_1 + (y-x)_2b \ge 0$ and so

$$(y-x)^{T}Ny = (y-x)_{1}(y_{1}+cy_{2})+(y-x)_{2}by_{1}$$

$$= y_{1}\{(y-x)_{1}+(y-x)_{2}b\}+(y-x)_{1}cy_{2}$$

$$\geq x_{1}\{(y-x)_{1}+(y-x)_{2}b\}+(y-x)_{1}cx_{2}$$

$$= (y-x)^{T}Nx \geq 0.$$

If $x_1 = 0$, then (3.4) gives [in view of $c \le 0$, $x_2 > 0$, $(y - x)_1 > 0$] c = 0. From (ii), b = 0. But then, $(y - x)^T Ny = (y - x)_1 y_1 \ge 0$.

Subcase 2: b < 0. By (i), c > 0. From $(y - x)_2 < 0$, b < 0, c > 0, we get

$$(y-x)^T Ny = (y-x)_1 (y_1 + cy_2) + (y-x)_2 by_1 \ge 0.$$

Case 2: $(y-x)_1 < 0$, $(y-x)_2 > 0$. If b < 0, then by (i), c > 0. This leads to $(y-x)_1(x_1+cx_2)+(y-x)_2bx_1=0$. But this gives $y_1=x_1=0$, contradicting $(y-x)_1 < 0$. Thus $b \ge 0$. In this case, $c \le 0$. Since $x_1 > 0$, $y_1 < x_1$, $y_2 > x_2$, $c(y-x)_1 \ge 0$, we have

$$(y-x)^{T} Ny = (y-x)_{1} y_{1} + c(y-x)_{1} y_{2} + (y-x)_{2} b y_{1}$$

$$\geqslant (y-x)_{1} y_{1} + c(y-x)_{1} x_{2} \frac{y_{1}}{x_{1}} + (y-x)_{2} b y_{1}$$

$$= \frac{y_{1}}{x_{1}} \{ (y-x)_{1} x_{1} + c(y-x)_{1} x_{2} + (y-x)_{2} b x_{1} \}$$

$$= \frac{y_{1}}{x_{1}} (y-x)^{T} Nx \geqslant 0.$$

Hence in all cases, $(y - x)^T Ny \ge 0$. So N is pseudomonotone.

Proof of Theorem 2. We suppose that M is pseudomonotone and satisfies one of conditions (a)–(e). We first note that P^TMP is pseudomonotone for any nonnegative matrix P. In particular, P^TMP is pseudomonotone when P is a permutation matrix and when P is a nonnegative diagonal matrix. (When P is a nonnegative diagonal matrix, we refer to the transformation $M \mapsto P^TMP$ as scaling. We note that when P is a positive diagonal matrix, a matrix N is pseudomonotone if and only if P^TNP is pseudomonotone.) Let

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Since $M \in \mathbb{P}_0$ [4, Proposition 2],

$$a \geqslant 0$$
 and $d \geqslant 0$. (3.5)

If a = d, then $M^T = P^T M P$ for some permutation matrix P. In this case, M^T is pseudomonotone. If $a \neq d$ we consider three cases:

Case 1: $a \neq 0 \neq d$. By (3.5), a > 0 and d > 0. Let

$$P = \begin{bmatrix} 1/\sqrt{a} & 0 \\ 0 & 1/\sqrt{d} \end{bmatrix}.$$

Then $N = P^T M P$ is pseudomonotone and has equal matrices (namely, 1) on the main diagonal. By the previous argument, N^T is pseudomonotone and hence $M^T = (P^{-1})^T N^T P^{-1}$ is also pseudomonotone (since P^{-1} is nonnegative).

Case 2: $a \neq 0$, d = 0. From (3.5) we have a > 0. By suitable scaling, we can assume that a = 1. Then

$$M = \begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix}.$$

Since M is copositive, $b+c \ge 0$. We know that M is copositive star, and by Theorem 1, that M^T is also copositive star. Since $e_2^T M e_2 = 0$, we conclude that $b \le 0$ when $c \ge 0$ and $c \le 0$ when $b \ge 0$. Thus the matrix $N := M^T$ satisfies the conditions of the previous lemma. Therefore, M^T is pseudomonotone.

Case 3: a = 0, $d \neq 0$. In this case, by suitable scaling, we can make d = 1, so that

$$M = \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix}.$$

For a suitable permutation matrix P, P^TMP looks like the matrix of case 2. Since M is assumed to satisfy one of conditions (a)–(e), P^TMP also satisfies one of conditions (a)–(e). By case 2, P^TM^TP is pseudomonotone. Thus $M^T = PP^TM^TPP^T$ is also pseudomonotone.

So in all cases, M^T is pseudomonotone. This completes the proof.

REMARKS.

- (1) In view of a result of Pang [9, Theorem 4], condition (d) in Theorem 1 can be replaced by the equivalent condition $M \in \mathbb{Q}$.
- (2) The normality condition in Theorem 1 can be replaced by the hyponormality condition (defined by $||M^Tx|| \ge ||Mx||$ for all x).

(3) One might ask whether $M^T \in \mathbf{Q}$ when M is pseudomonotone and $M \in \mathbf{Q}$. This is false even for positive semidefinite matrices. For example, let

$$M = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}.$$

It is clear that M is positive semidefinite and belongs to \mathbf{R}_0 and hence to \mathbf{Q} [9, Lemma 1], while $\mathrm{LCP}(M^T, -e_1)$ is not even feasible.

- (4) It is shown in [5, Corollary 3] that every pseudomonotone matrix M is row sufficient, and hence M^T is column sufficient. By Theorem 6 in [3], the solution set of $LCP(M^T,q)$ is convex for all q. When M is pseudomonotone and one of conditions (a)–(e) in Theorem 1 holds, then $LCP(M^T,q)$ has nonempty convex solution set for every feasible q. Since in this case $M^T \in \mathbf{P}_0 \cap \mathbf{Q}_0$, $LCP(M^T,q)$ can be solved by Lemke's algorithm [1].
- (5) The arguments used in the proof of Theorem 1 along with Lemma 1 reveal the following result: A 2×2 pseudomonotone matrix has a pseudomonotone transpose if and only if it is not permutation similar to

$$\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$$

with a > 0, $0 \neq (b, c) \ge 0$. (This observation is due to one of the referees.)

We conclude this note by posing two open problems:

- (1) Suppose that M is pseudomonotone and invertible (or normal). Can we say that M^T is pseudomonotone? row sufficient?
- (2) Suppose that M is row sufficient and invertible (or normal). Can we say that M^T is in \mathbb{Q}_0 ?

I am grateful to one of the referees for suggestions which led to the formulation of Lemma 1 and to the short proof of Theorem 2.

REFERENCES

- M. Aganagić and R. W. Cottle, A constructive characterization of Q₀-matrices with nonnegative principal minors, *Math. Programming* 37:223-231 (1987).
- 2 R. Chandrasekharan, A special case of the complementary pivot problem, *Opsearch* 7:263–268 (1970).
- 3 R. W. Cottle, J.-S. Pang, and V. Venkateswaran, Sufficient matrices and the linear complementarity problem, *Linear Algebra Appl.* 114/115:231-249 (1989).

- 4 M. S. Gowda, Pseudomonotone and copositive star matrices, *Linear Algebra Appl*. 113:107-118 (1989).
- 5 M. S. Gowda, Affine Pseudomonotone Mappings and the Linear Complementarity Problem, Research Report, Univ. of Maryland, Baltimore County, May 1988; SIAM J. Matrix Anal. Appl., to appear.
- 6 C. E. Lemke, On complementary pivot theory, in *Mathematics of Decision Sciences*, Part I (G. B. Dantzig and A. F. Veinott, Jr., Eds.), Amer. Math. Soc., Providence, 1968, pp. 95-114.
- 7 O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
- 8 K. G. Murty, On the number of solutions to the complementarity problem and spanning properties of complementary cones, *Linear Algebra Appl.* 5:65–108 (1972).
- 9 J.-S. Pang, On Q-matrices, Math. Programming 17:243-247 (1979).

Received 6 April 1989; final manuscript accepted 20 December 1989