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ABSTRACT 

In the study of linear complementary problem, it is known that pseudomonotone 
matrices belong to the class P, nQ,,. In this note we show that under certain 
conditions, such as invertibility or normality, the transpose of a pseudomonotone 
matrix belongs to the class Qo. 

1. INTRODUCTION 

Given an n X n real matrix M and a column vector q E [w”, the linear 

complementarity problem, denoted by LCP(M, q), is to find a vector x such 

that 

(a) x > 0, Mx + q > 0, and 

(b) xT(Mx + q) = 0. 

Condition (a) refers to the feasibility of LCP(M, q). A matrix M is said to be 
a QO-matrix (or belong to the class QO> if for all q. the feasibility of 

LCP(M,q) ’ pl. lm les its solvability. In this note, we address the following 
question: 

For which matrices M in the class QO does MT belong to QO? 

Simple examples (see Section 3) show that the transpose of a Q,-matrix need 
not be a Q,-matrix. However, if M is a copositive plus matrix (or a P-matrix 
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or a Z-matrix), then M E Q,, and MT E Q. (cf. [6, 8, 21). In [4] (also in [5]), 
we introduced pseudomonotone matrices and showed that such matrices are 
copositive and row sufficient, and (hence) belong to PO nQ,,, where P,, is the 
class of all matrices with nonnegative principal minors. Within the class of 
pseudomonotone matrices, we provide a partial answer to the above question. 
We show for example that under some very simple conditions such as 
invertibility or normality, the transpose of a pseudomonotone matrix belongs 
to Qa. A result of Cottle, Pang, and Venkateswaran [3] shows that for such 
matrices M, LCP( MT, 9) h as nonempty convex solution set whenever 
LCP(MT, 9) is feasible. Furthermore, Lemke’s algorithm can be applied to 
solve LCP( MT, 9). 

2. PRELIMINARIES 

We say that a matrix M is pseudomonotone (on rW:) if 

x,y>O, (y-~)~MxaO 3 (y-+My>O. (2.1) 

It is easily seen that positive semidefinite matrices are pseudomonotone. It is 
shown in [4] that pseudomonotone matrices have the copositive star prop- 
erty: 

xTMx > 0 pr 2 O), (2.2) 

x > 0, Mx>O, rTMx = 0 ==a MTx<O. (2.3) 

Also, copositive star matrices, i.e., matrices satisfying the above conditions, 
are in QO [4, Corollary 21. W e refer to [4] for further properties of pseu- 
domonotone matrices. We say that M E Q if for all 9, LCP(M, 9) has a 
solution. If for a matrix M, the zero vector is the only solution of LCP( M, O), 
then M is said to be an R,-matrix. Finally, a matrix M is said to be row 
suficient if 

x~(M~x)~GO (Vi=1,2,...,n) =j x,(M~x)~=O (Vi=1,2 ,..., n), 

(2.4) 

and column suficient if MT is row sufficient. It is known (see [3, Theorem 
61) that if M is row sufficient, then LCP(Mr, 9) has convex solution set for 



PSEUDOMONOTONE MATRICES 131 

all q. In what follows, for any vector z with components zi (i = 1,2,. . , n), 
we write z+ to denote the vector with components max(zi, 0) (i = 1,2,. . . , n). 

3. RESULTS 

We start with an example to show that the transpose of a pseudomono- 
tone matrix need not be in Q. and hence need not be pseudomonotone. 

EXAMPLE 1. Let 

M=[; vJ> 9=[ -;I. 

Given x, y, u, v > 0 and 

it follows that 

(3.1) 

(3.2) 

Hence A4 is pseudomonotone. However, it is easily seen that the problem 
LCP(MT, 4) ‘f f 1 easible but not solvable. Thus MT g Qa. Since pseudomono- 
tone matrices belong to Q. [4, Corollary 31, it follows that MT is not 

pseudomonotone. 

THEOREM 1. Suppose that M is pseudomonotone. Then, under each of 

the following conditions, MT satisfies the copositive star property and hence 

belongs to Q,,. 

(a> The diagonal of M consists only of zeros. 

(b) The system 0 f d > 0, IITd = 0 has no solution. 
(c) M is invertible. 
(d) ME R,. 

(e) M is normal, i.e., MMT= MTM. 
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t’roof. Since a pseudomonotone matrix is copositive [4, Proposition 11, 
we need to show that the condition (2.3) holds for Mr. Let 

O#d>,O, MTd>,O, and dTMTd = 0. (3.3) 

We show that under each of the above conditions (a)-(e), Md < 0. 
(a): In this case, we have for every coordinate vector ei (which has one at 

the ith spot and zeros elsewhere), 

BY 

(d - ei)TMei = e:M’d > 0. 

pseudomonotonicity, (d - ei)TMd > 0, i.e., e’Md < 0. Thus Md < 0. 
(b): When this holds, (MTd>, > 0 f or some i. Ignoring the trivial case 

n = 1, let x = e, + Aej, where j # i and A > 0 are arbitrary. Then, for all 
small E > 0, we have 

By pseudomonotonicity, Cd - l xJTMd > 0, i.e, xTMd < 0. This gives 

(Md), + A( Md)j < 0. 

Since A is arbitrary, (Md), < 0 and (Mdjj < 0. Hence Md f 0. 
(c): When this holds, (b) holds, and once again Md < 0. 
(d): When M E R,, we merely show that (b) holds. Let d > 0, MTd = 0. 

Then dTMd = 0. By the copositivity of M, we have for any x > 0 

This gives (M + MT)d > 0, so Md z 0. Hence d is a solution of the problem 
LCP(M, 0). Since M E R,, d = 0. 

(e): If MTd = 0, then by normality, Md = 0. (Recall that dTMMTd = 
d’M’Md.) If MTd # 0, then (MTd>, > 0 for some i. In this situation, we 
proceed as in (b) and get Md < 0. n 

Since a pseudomonotone matrix is copositive star, one is led to ask 
whether the transpose of a pseudomonotone matrix is pseudomonotone under 
any of conditions (a)-(e). We answer this question for 2 X2 matrices; the 
answer is not known for higher order matrices. 
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THEOREM 2. LA M E KY 2x2 and pseudomonotone. Then, under each of 

conditionss (a)-(e) in Theorem 1, MT is pseudomonotone. 

LEMMA 1. Let the matrix 

be such that 

(i) b + c > 0, 

(ii) b Q 0 when c > 0, 

(iii) c < 0 when b > 0. 

Then N and NT are pseudomonotone. 

Proof. We show that N is pseudomonotone; the proof of the pseu- 

domonotonicity of NT is similar. Let x > 0, y > 0 with (y - x)rNx > 0, SO 

(y - x)~(x~ +ccr,)+(y- x)2bx, > 0. (3.4) 

Since N is copositive [from (i)], we can assume that (ZJ - X) e [w: U( - R”, 1. 

We consider two cases. 

&se 1: (y-x),>O,(y-x),<O. Wehave yl>x,ZO, x,>y,>O. 

Subcase 1.1: b > 0. By (iii), c < 0. Then (3.4) gives (y - x),x, + 

(y - x),bx, > 0. If x1 > 0, then (y -xl, +(y - x),b 

> 0 and so 

If x1 = 0, then (3.4) gives [in view of c < 0, x2 > 0, 

(y - x)~ > 0] c = 0. From (ii), b = 0. But then, 

(y - xlTNy = (y - x)~Y~ > 0. 
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Subcase 2: b < 0. By (i), c > 0. From (y - x), < 0, b < 0, c > 0, 
we get 

Case 2: (y - x), < 0, (y - xl, > 0. If b < 0, then by (i), c > 0. This leads 
to (y - x)i(~i + cxa)+(y - x),bx, = 0. But this gives yi = xi = 0, 
contradicting (y - x), < 0. Thus b 2 0. In this case, c < 0. Since 
xi > 0, yi <xi, y2 > xa, c(y - x>] > 0, we have 

(Y-dTNY=(Y--4 lyl+ 4~ - “),~n +(Y -x)&y, 

=:uY-d 1x1-t C(Y - x)Ixz +(Y - x)&x,) 

Hence in all cases, (y - x)~N~ > 0. So N is pseudomonotone. n 

Proof of Theorem 2. We suppose that M is pseudomonotone and 
satisfies one of conditions (a)-(e). We first note that PTMP is pseudomono- 
tone for any nonnegative matrix P. In particular, PTMP is pseudomonotone 
when P is a permutation matrix and when P is a nonnegative diagonal 
matrix. (When P is a nonnegative diagonal matrix, we refer to the transfor- 
mation M - PTMP as scaling. We note that when P is a positive diagonal 
matrix, a matrix N is pseudomonotone if and only if PTNP is pseudomono- 
tone.) Let 

Since M E P, [4, Proposition 21, 

a20 and da0. (3.5) 
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If a = d, then MT = PTMP for some permutation matrix P. In this case, MT 
is pseudomonotone. If a + d we consider three cases: 

Case 1: 

Case 2: 

Case 3: 

a # 0 Z d. By (3.51, a > 0 and d > 0. Let 

Then N = PTMP is pseudomonotone and has equal matrices 
(namely, 1) on the main diagonal. By the previous argument, NT is 
pseudomonotone and hence MT =(P-‘)TNTP-’ is also pseu- 
domonotone (since P-’ is nonnegative). 
a # 0, d = 0. From (3.5) we have a > 0. By suitable scaling, we 
can assume that a = 1. Then 

MC ’ b 
[ 1 c 0’ 

Since M is copositive, b + c > 0. We know that M is copositive 
star, and by Theorem 1, that MT is also copositive star. Since 
e:Me, = 0, we conclude that b < 0 when c > 0 and c < 0 when 
b > 0. Thus the matrix N := MT satisfies the conditions of the 
previous lemma. Therefore, MT is pseudomonotone. 
a = 0, d z 0. In this case, by suitable scaling, we can make d = 1, 
so that 

MC’ b 
[ 1 c 1’ 

For a suitable permutation matrix P, PTMP looks like the matrix of 
case 2. Since M is assumed to satisfy one of conditions (a)-(e), 
PTMP also satisfies one of conditions (a)-(e). By case 2, PTMTP is 
pseudomonotone. Thus MT = PPTM TPP T is also pseudomonotone. 

So in all cases, MT is pseudomonotone. This completes the proof. n 

REMARKS. 

(1) In view of a result of Pang [9, Theorem 41, condition (d) in Theorem 1 
can be replaced by the equivalent condition M E Q. 

(2) The normality condition in Theorem 1 can be replaced by the 
hyponormality condition (defined by IIMTxJJ > llMx[l for all x). 
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(3) One might ask whether MT E Q when M is pseudomonotone and 
M E Q. This is false even for positive semidefinite matrices. For example, let 

It is clear that M is positive semidefinite and belongs to R, and hence to Q 
[9, Lemma l], while LCP(MT, - e,) is not even feasible. 

(4) It is shown in [5, Corollary 31 that every pseudomonotone matrix M 

is row sufficient, and hence MT is column sufficient. By Theorem 6 in [3], 
the solution set of LCP(M’, q) is convex for all q. When M is pseudomono- 
tone and one of conditions (a>-(e) in Theorem 1 holds, then LCP( MT, y) has 
nonempty convex solution set for every feasible q. Since in this case 
MT E P, nQo, LCP(Mr, q) can be solved by Lemke’s algorithm [l]. 

(5) The arguments used in the proof of Theorem 1 along with Lemma 1 
reveal the following result: A 2 X2 pseudomonotone matrix has a pseu- 
domonotone transpose if and only if it is not permutation similar to 

a b 

[ 1 c 0 

with a > 0, 0 # (b, c) >, 0. (This observation is due to one of the referees.) 

We conclude this note by posing two open problems: 

(1) Suppose that M is pseudomonotone and invertible (or normal). Can 
we say that MT is pseudomonotone? row sufficient? 

(2) Suppose that M is row sufficient and invertible (or normal). Can we 
say that Mi is in Q,? 

I am grateful to one of the referees for suggestions which led to the 

formulation of Lemma 1 and to the short proof of Theorem 2. 
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