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A COMPARISON OF CONSTRAINT QUALIFICATIONS IN
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Abstract. In this paper the relationships between various constraint qualifications for infinite-
dimensional convex programs are investigated. Using Robinson’s refinement of the duality result of
Rockafellar, it is demonstrated that the constraint qualification proposed by Rockafellar provides a systematic
mechanism for comparing many constraint qualifications as well as establishing new results in different
topological environments.
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1. Introduction. This paper deals with constraint qualifications for infinite-
dimensional convex programs. A constraint qualification is an essential condition
needed to establish strong duality results for a pair of optimization problems. The
usual constraint qualification is a Slater-like condition that requires nonempty
interiority of a certain convex set. Unfortunately, this condition often fails for an
important class of optimization problems arising in applications, see, e,g., [3].

Recently, many authors have proposed new constraint qualifications for optimi-
zation problems in infinite-dimensional vector spaces, see [5]-[7], [2], 15]. Motivated
by the recent constraint qualification proposed by Borwein and Wolkowicz [7], in this
paper we investigate the relationships between various constraint qualifications. By
studying cores and interiors of convex sets, we show that many of the constraint
qualifications are equivalent or can be derived from the constraint qualification pro-
posed by Rockafellar [14]. Furthermore, we show that the Rockafellar constraint
qualification provides a natural mechanism for establishing new constraint
qualifications in various topological environments.

The paper is organized as follows. In 2 we recall the fundamental constraint
qualification proposed by Rockafellar, denoted by (R), and state Robinson’s refinement
of a result of Rockafellar. In 3 we demonstrate that condition (R) is instrumental in
constructing various constraint qualifications and that many seemingly unrelated con-
straint qualifications are in fact related to (R). We also derive new results in the general
setting of Baire spaces and provide examples.

2. A fundamental constraint qualification. Let X and Y be real locally convex
topological vector spaces and A" X- Y be a continuous linear operator. Let f" X-
(-, +c] and g" Y- (-, +] be proper, lower semicontinuous convex functions.
Consider the primal problem:

(P) inf {f(x) + g(Ax)}.
xX

The Fenchel-Roclcafellar duality theory, see Rockafellar [14], associates with (P)
the dual problem"

(O) sup {-g*(y)-f*(-A*y)}
y Y*
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926 M. SEETHARAMA GOWDA AND MARC TEBOULLE

where A*: Y*- X* is the adjoint of A and X*, Y* are the dual spaces of X and Y,
respectively. We recall that for a given function b :X - (-oe, +oo], the domain is

dom b := {x X: b(x) <}

and the conjugate function is

b*(x*) := sup {(x*, x)- b(x)}, x* e X*.
xdom b

The main issue regarding the pair of problems (P), (D) is the lack of duality gap, i.e.,
the proof of the strong duality relation

(2.1) inf {f(x) + g(Ax)} max {-g*(y*) -f*(-A*y*)}
xX y. y.

which we write, for convenience, as

inf (P) max (D).

This can be obtained provided a certain constraint qualification (CQ for short) is
satisfied. One of the most popular (CQ) is the so-called Slater condition: (see, e.g., 1 ])

(S) 0 int (dom g A domf ).

THEOREM 2.1. Suppose that (S) holds. Then inf (P) max (D).
Unfortunately, in many important applications the Slater condition fails.
A more general constraint qualification was suggested by Rockafellar 14]. Before

stating the condition, we recall the definition of the core of a set. For a set C X, the
core of C is defined by

core C:={c C: VxX ::le>O: h [-e, e], c+hx C}.

In the context of the pair of problems (P), (D), Rockafellar’s (CQ) is

(R) 0 core (dom g A domf).

Robinson’s refinement [13, Cor. 1] of a result of Rockafellar [14, Thm. 18] leads to
the following theorem.

THEOREM 2.2. Let X, Y be Banach spaces and suppose that (R) holds. Then
inf (P) max (D).

We will show below that the core constraint qualification of Rockafellar is the
key for constructing new constraint qualifications and will, as well, explain most of
the classical and more recent constraint qualifications existing in the literature. In
particular, we will show that many seemingly unrelated constraint qualifications are
in fact related to (R) and show how new duality results can be derived from Theorem
2.2.

3. Comparison of constraint qualifications. In this section we present some con-
straint qualifications that can be derived from the Rockafellar condition (R). In the
first part of this section we discuss the case when A is a continuous linear operator
with finite-dimensional range, i.e., A" X Y with Y n. In the second part we give
corresponding results for an operator with infinite-dimensional range.

3.1. A is a linear operator with finite-dimensional range Y = II". We first recall the
following result, see, e.g., Holmes [9].

Throughout this paper we assume that inf (P) is finite.
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CONSTRAINT QUALIFICATION IN INFINITE PROGRAMMING 927

PROPOSITION 3.1. Let X be a real topological vector space and let C c X be convex.
Then, int C c core C. Further, int C core C under each of the following conditions:

(a) int C .
(b) X is finite-dimensional.
From Proposition 3.1 it follows immediately that if int (dom g-A domf),

then

0 core (dom g Adomf) <=> 0 int (dom g Adomf).

Recall that for a convex subset C c R" we have:

(3.1) 0 int C :> cone C =R".

where cone C {hx: h -> 0, x C}. Hence,

0 core (dom g A domf) <:> 0 int (dom g A domf)
(3.2)

:> cone (dom g A domf)

It follows that (R) and (S) are equivalent when Y=".
We recall that for a set C in ", y ri C if and only if 0 is an interior point of

C-y relative to the affine hull of (C- y). It turns out that

(3.3) 0 ri C if and only if cone C is a (closed) subspace of

Thus, in view of (3.2), the constraint qualification

(RR) 0 ri (dom g Adomf)

is weaker than (R). However, the following duality result for a Banach space can be
deduced from Theorem 2.2. (The proof is omitted since it is similar to the one given
for Theorem 3.5.) For a standard proof see, e.g., [6] or [12].

THEOREM 3.1. Suppose that X is a locally convex space and Y . If (RR) holds,
then inf (P) max (D).

The remainder of this subsection is devoted to the comparison of constraint
qualifications for linearly constrained convex programs. In a recent work, Borwein and
Wolkowicz [7] introduced a constraint qualification for the linearly constrained convex
program:

(L) inf {f(x): Ax b, x S}

where S is a convex cone in X, i.e., S + S c S and AS S for all A -> 0 and b ". The
feasible set of (L) is

F={xX:Ax=b,xS}

and it is assumed that F . Note that problem (L) is a special case of problem (P)
obtained by replacing f by f+6(’lS) and g by 6(.l{b}), where (.IE) denotes the
indicator function of a given set E. In this setting, the corresponding dual reduces to
the concave finite-dimensional problem

(DE) sup {bry- (f+ (’IS))*(A*y): yR"}.

In what follows, cone E stands for the closure of the cone generated by the set E. The
following result is proved in [7].

THEOREM 3.2. Let X be a normed linear space. If
(aw) cone (F- S) X,

then inf (L) max (DL).
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928 M. SEETHARAMA GOWDA AND MARC TEBOULLE

For problem (L), the constraint qualification (R) reads (by (3.2))"

cone (b A(S))

We show below that (BW) is stronger than (R), i.e., (BW)(R). We assume that
A" X - Nn is onto. This assumption is not really restrictive since we can always assume
that Y is the range of A, and, after a unitary change, write Y Nn. Also, we introduce
another interesting constraint qualification (to be called (BW)’) related to (BW) and
equivalent to (RR). In what follows, the kernel of A is denoted by Ker A.

THEOREM 3.3. Consider the following constraint qualifications:

(BW) cone (F- S) X,

(R) O core (b A(S)),

(RR) 0ri (b-A(S)),

(BW)’ cone (F-S)+ Ker (A) is a closed subspace of X.
Then (BW)=(R):=>(RR)C(BW) ’.

Proof. (BW)=(R): Suppose that (BW) holds. Then,

" A(X) A(cone (F- S))

cone A(F- S)

=cone (b-A(S))c".

So, the closure of the convex set cone (b-A(S)) is ". A simple separation argument
shows that cone (b-A(S))=". Hence 0 core (b-A(S)) by (3.2).

(R)(RR). The proof follows from (3.2) and (3.3).
(RR)(BW)’, From (3.3) we see that cone (b-A(S)) is a (closed) subspace of

". Hence

cone (F- S)+ Ker (A) A-I[A cone (F- S)]

A-’[cone (b-A(S))]

is a closed subspace of X.
(BW)’(RR). If cone(F-S)+Ker(A) is a subspace of X, then

cone (b-A(S)) A[cone (F- S)+ Ker (A)] is a subspace of

In view of the above result, it is clear that Theorem 3.2 is a special case of Theorem
3.1. The following example shows that (R) need not imply (BW) even when X is
finite-dimensional.

Example 3.1. Let X=2, S=[-1, 1]{0}, A:2- such that A(x,y)=x and
b=0 so that F=(0, 0). Clearly (R) holds since 0 core (b-A(S))=int ([-1, 1]) in ,
while cone (F- S) X.

In a recent work, Borwein and Lewis [6], introduced the notion of quasi-relative
interior. As we shall see below, this notion is useful in the verification of (RR).

DEFINITION 3.1 [6]. Let X be a topological vector space. For a convex C c X,
the quasi-relative interior of C (qri C) is the set of those x C for which cone (C -x)
is a subspace.

This notion is studied extensively in [6]. For any set E, in finite dimension, cone E
is a closed subspace if and only if cone E is a subspace; hence the notion of quasi-
relative interior coincides with the relative interior. However, what makes the qri useful
is the following important property.
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CONSTRAINT QUALIFICATION IN INFINITE PROGRAMMING 929

PROPOSITION 3.2 [6]. Suppose A:X-.R is a continuous linear map. Then,
A(qri C) ri (AC), and if qri (C) , then A(qri C) ri (AC).

Using the above proposition, we see that when qri S, the constraint
qualification (RR), namely b ri A(S), reads

(BL) x qri (S) such that Ax b.

Thus in view of Theorem 3.1 we have the following theorem.
THEOREM 3.4. Suppose that X is locally convex and qri S . If (BL) holds then

inf (L) max (DL).
We wish to emphasize the importance of this result. The importance lies in the

+fact that in many applications (for example, when S is the nonnegative cone Lp,
1 _-< p < oe), qri S # while ri S .

3.2. A is a linear operator with infinite-dimensional range. We have shown in the
previous subsection that the core condition provides a systematic mechanism for
constructing old and new constraint qualifications. The natural question is now to see
whether similar results can be derived for the general case. Unless otherwise specified,
in the sequel we assume that X and Y are Banach spaces. We recall that for a convex
subset C of an infinite-dimensional vector space X:

0coreC<::>coneC=X and 0intCconeC=X.

When A:X Y with Y Rn, we were able to relax (R) by (RR) using the notion of
relative interior instead of that of interior and core. Following the same methodology,
by introducing the concept of intrinsic core we may establish an appropriate (CQ)
when Y is a Banach space.

DEFINITION 3.2 [9]. The core of C relative to aft C, the affine hull of C, is called
the intrinsic core of C and is written icr C.

When C c X is convex and X is finite-dimensional we have

icr C ri C.

Recall that aft C is x +span (C- x) for any fixed x C, where span (C- x) is the
smallest subspace of X that contains (C- C).

PROPOSITION 3.3. Let C be a convex subset of X. Then,

x icr C :> cone (C x) aft (C x) aft (C C).

Proof By Definition 3.2, we have x icr C => cone (C x) aft (C x). But,
when x C, aff(C-x)=aff((C-x)-(C-x))=aff(C-C). V1

In the finite-dimensional setting, x e ri C if and only if cone (C x) aff (C C)
and further, att (C-C) is closed. Thus, a natural (CQ) in a general setting should
now be:

xicrC and aft(C-C) isaclosedsubspace.

For the problem (P) this general constraint qualification reads:

(GCQ) 0 icr (dom g-A domf) and

aft (dom g-. A domf) is a closed subspace.

From Theorem 2.2, we know that a strong duality result is guaranteed if

0 core (dom g-A domf).

D
ow

nl
oa

de
d 

09
/2

9/
20

 to
 1

29
.2

.1
9.

10
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



930 M. SEETHARAMA GOWDA AND MARC TEBOULLE

Since (dom g-A domf) is a convex subset of Y, condition (R) is equivalent to:

cone (dom g A domf) Y.

In the context of problem (P), if 0 core (dom g Adomf), then

0 icr (dom g- A domf) and aft (dom g-A domf) Y (a closed subspace).

Thus, the constraint qualification (R) is stronger than the constraint qualification
(GCQ). However, as we see below, the strong duality result under (GCQ) can be
deduced from Theorem 2.2. In this sense, (GCQ) and (R) are equivalent.

THEOREM 3.5. Let X, Y be Banach spaces and let A X--> Y be a continuous map.
Let f: X --> (-0o, +0o] and let g Y-, (-0o, +0o] be proper, lower semicontinuous convex
functions. Suppose that (GCQ) holds, i.e.,

0 icr (dom g Adomf) and aff (dom g Adomf) is a closed subspace.

Then, inf (P) max (D).
Proof. Let x0 domf such that Axo dom g. Define

F(x) :=f(x+xo) and G(y) := g(y + Axo).

Then, we have dom F domf- Xo, dom G dom g Axo,

F*(x*) =f*(x*)-(x*, Xo), G*(y*) g*(y*)-(y*, Axo),

inf {f(x)+ g(Ax)}= inf {F(x)+ G(Ax)},
xX xX

and

sup {-g*(y*)-f(-*y*)}= sup {-G*(y*)-F*(-A*y*)}.
y* y* y* y*

Further, if in the last equation, sup is attained in the right-hand side, then sup is
attained in the left-hand side. Also,

dom G A(dom F) dom g A(domf).

We see that F(0)=f(xo) and G(0)= g(Axo) are real numbers. Thus, without loss of
generality, we can assume that

(3.4) 0domf and 0domg.

Since (GCQ) holds, by Proposition 3.3,

M := cone (dom g Adomf) ait (dom g Adomf).

It is given that M is a closed subspace of Y. Then ’^-A-I(M) is a Banach space,
domfc X, dom gc M from (3.4). We replace X by X, Y by M in problem (P) and
regard A as a mapping from X- M. For the corresponding pair of transformed
problems (P’), (D’)

(P’) inf {f(x) + g(Ax)}
x

(O’) sup {-g*(y*)-f*(-A*y*)}
y*M*

the condition (R) holds, namely,

0 core (dom g Adomf).
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CONSTRAINT QUALIFICATION IN INFINITE PROGRAMMING 931

By Theorem 2.2, we see that inf (P’)= max (D’). To complete the proof it remains to
show that inf (P’) inf (P) and max (D’) max (D). Clearly, since domfc X, it follows
that inf (P’) inf (P),

Let v* M* be such that

max (D’) -g*(v*) -f*(-A*v*).

For any y* Y*, let Fy* denote the restriction of y* to M. It is easily seen that

and

Therefore,

g*(y*) g*(Fy*) (since dom g c M)

f*(A*(Fy*)) =f*(A*y*) (sinceA c M).

sup {-g*(y*)-f*(-A*y*)}= sup {-g*(Fy*)-f*(-A*(Fy*))}
y* y* y* y*

sup {-g*(w*)-f*(-A*w*)}.
w*F(Y*)

By the Hahn-Banach extension theorem, F(Y*)- M* and hence

sup (D)= sup {-g*(w*)-f*(-A*w*)}=sup (D’)--g*(v*)-f*(-A*v*).
w*M*

But it is clear that sup (D) is attained by any continuous linear extension of v* to Y.
Hence the above equality gives max (D)= max (D’).

A proof of the above result for the special case, X Y and A Identity, appears
in Attouch and Brezis [2]. The proof there is based on the Banach-Dieudonne-Krein-
Smulian theorem [8, Thm. V.5.7]. Based on this special case, using the notion of strong
quasi-relative interior (see Definition 3.3 below), Borwein et al. [5] prove Theorem
3.5. Using a completely different approach, Zalinescu 15, Cor. 4] shows that the above
theorem ofAttouch and Brezis is valid when X and Y are Fr6chet spaces. It is important
to note that, by modifying the argument of [5, Thm. 3.1], Theorem 3.5 will remain valid
when X and Y are Frdchet spaces. At this juncture, we wish to mention an earlier work
with applications to perturbational duality by Borwein [4]. We thank one ofthe referee’s
for bringing this reference to our attention.

In [5], the notion of strong quasi-relative interior is introduced as a natural
extension of the quasi-relative interior.

DEFINITION 3.3. For a Convex subset C c X, the strong quasi-relative interior of
C is the set of those x C for which cone (C- x) is a closed subspace.

When X is finite-dimensional we have

sqri C ri C qri C icr C.

In the context of problem (P), the following (CQ) is proposed in [5]"

0 sqri (dom g- A domf).

As the following proposition shows, the above constraint qualification given in terms
of the strong quasi-relative interior is equivalent to the constraint qualification (GCQ).

PROPOSITION 3.4.

{ xicr (C) }. :> x sqri C.
aft C- x) is a closed subspace
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932 M. SEETHARAMA GOWDA AND MARC TEBOULLE

Proof If x icr C and aft (C- x) is a closed subspace, then by Proposition 3.3
cone (C-x) aft (C- x) is a closed subspace, and hence x sqri C from Definition
3.3. On the other hand, if x sqri C, then cone (C-x) is a closed subspace. But, in
this situation, cone (C x) c aft (C x) and aft (C x) c cone (C x). Hence aft (C
x) cone (C- x) and thus x icr C by Proposition 3.3. [3

The name strong quasi-relative interior (sqri) has been introduced as a natural
generalization of the quasi-relative interior. However, our results below demonstrate
that in fact the strong quasi-relative interior is "closer" to the relative interior. Recall
that for a set C in a topological space X, y ri C if and only if 0 is an interior point
of C-y relative to the closure of the affine hull of C-y, see 11].

We prove the following results in the general setting of Baire spaces. Recall that
X is a Baire space if it is locally convex and the intersection of every countable
collection of dense open subsets of X is dense in X. Every closed subspace of such a
space is Baire and such a space is barrelled, i.e., each absorbing, convex, circled, and
closed subset of X is a neighborhood of the origin. Examples of Baire spaces are
Fr6chet spaces and Banach spaces (see [10]).

THEOREM 3.6. Let X be a Baire space and C be a closed convex set in X. Then

sqri C ri C.

Proof If sqri C , then there is nothing to prove. Let sqri C so that Y :=
cone (C-) is a closed subspace of X. Let K := C-. Note that 0 K and K is
absorbing in Y. Let B (3111 hK be the balanced core of K (see [10, p. 80]). We
note that

(i) 0’ B K,
(ii) B is balanced, dosed convex in Y,
(iii) B is absorbing in Y.
Statement (i) follows immediately from the definition of B and (ii) follows since

each hK is closed and convex. To see (iii), let y Y. Since K is absorbing we can find
/z > 0 such that +/zy K. Then from the convexity of K it follows that for every IAI -> 1,
tzy/A K, and so/zy B.

Since X is Baire, Y is also Baire and hence barrelled. B, being an absorbing,
balanced, closed, and convex set in Y, is a neighborhood of 0 in Y, and hence

0 int v B int v K int v C )

where intv denotes the interior relative to Y. Therefore ri C and the proof is
complete.

We remark that the above result may not hold for barrelled spaces since a closed
subspace of a barrelled space need not be barrelled.

COROLLARY 3.1. Let E be a convex set in X where X is a Baire space. Then

sqri E ri E.

Proof.
sqri E :=> cone (E :) =: Y is a closed subspace

cone (E-) Y (closure with respect to X)

cone (E ) Y

= ; sqri E c ri E.

Since E is closed convex in X, the last inclusion follows from the previous
theorem. [3
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CONSTRAINT QUALIFICATION IN INFINITE PROGRAMMING 933

We have seen, as a consequence of Proposition 3.4, that the constraint qualification
expressed in terms of the strong quasi-relative interior is equivalent to (GCQ). The
above corollary suggests looking at the following weaker condition to guarantee the
strong duality result:

(3.5) 0 ri (dom g- A domf).
The following examples demonstrate that

(i) equality may not hold in Corollary 3.1, and
(ii) the strong duality result may not hold under (3.5).
Example 3.2. Let X be an infinite-dimensional Banach space. Let 4" X be a

noncontinuous linear functional so that S := Ker 4 is a dense subspace of X. For any
e X\S, we see that

X=S+e and Se={0}.
Let E := S+[0, 1]e where [0, 1]={h" 0_-<h_-< 1}. Clearly, E S=X and hence E =X,
so that ri E ri X int X X contains 0.

To get a contradiction, suppose that 0 sqri E. Then 0 icr E, i.e., 0 core E relative
to aft E. Now -e aft E and hence there exists h > 0 such that

-heE=S+[O, 1]e.

Thus, -he s +/e for some s S and [0, 1 ]. This implies that e S, a contradiction.
Thus 0 ri E while 0 sqri E. We note that aft E X is closed while 0 icr E.

Example 3.3. As in [11, p. 77] we consider the following setting"

2X=12 x=(xl, ,xn," ,)" Xn,2Xn<O

C {X /2:X2n-1 -- X2n --0, Vn 1, 2, ,},
S {X /2: X2n "47 X2n+l -"0, Vn 1, 2, ,}.

Clearly, C and S are closed subspaces of X and C S {0}. Define f and g on X
by f(x)= 6(x] C) and g(x)= xl if x S and oo otherwise. It is easily seen that f and
g are convex and lower semicontinuous on X with domf C and dom g S. We now
compute the conjugates of f and g. Since C is a subspace it is easy to see that

f*(x*)-6(x*lC’)
where C +/- is the orthogonal complement of C. Also we have,

g*(x*) sup {(x, x*)- x}
xGS

=sup(x*-e,x) (where e=(1,0,...))
xS

--{0eo ifx*-el6S+/-
if x*- el S+/-

=6(x*le+S’).
We claim that the following are true:
(i) 0 ri (dom g-domf),
(ii) 0 sqri (dom g-domf),
(iii) infxx {f(x) + g(x)} 0,
(iv) supx*x, {-g*(x*)-/*(-x*)} =-.
It follows from these that the strong duality result fails to hold under the weaker

constraint qualification

0 ri (dom g-domf).
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934 M. SEETHARAMA GOWDA AND MARC TEBOULLE

To see (i), we show that (dora g domf) S- C is dense in X. To this end, let x (xn)
be orthogonal to S-C. Since e2n-1-e2n C and e2,,- e,,+ S for all n 1, 2,. .,
we see that Xz,,_-x2,, =0 and x,,-x2,,/l =0 for all n. Since x 12 we must have x=0
so that $- C is dense in X.

Statement (ii) follows immediately from the observation that

aft (dom g-domf) S- C is not closed.

Note however that 0 icr (dom g-domf).
Now infxx {f(x) + g(x)} infxdomgC3domf=f(O) + g(0) 0 gives (iii). We now

show that

(3.6)

so that

dom g* f’) domf*

sup {-g(x*) f*(-x*)} sup {-g(x*) f*(-x*)} -x*X* x*dora g* CI domf*

giving (iv). To see (3.6), suppose that

(x,) x dom g* fq domf* (el + S+/-) C +/-.

Then, as in the proof of (i), we get x._ x2, 0 and x2n x,+ 0 for all n 1, 2, .
Hence, x 0. But then 0 el + S+/- implies -el S+/-, which is false since e S.

Our last result resembles Proposition 3.2 and partially addresses the question of
verifying (GCQ).

PROPOSITION 3.5. Let X be a locally convex topological vector space and let Y be
a Baire space. Let A: X - Y be a continuous linear operator and C be a convex set in X.
Then

sqri A(C) c A(qri C)

whenever qri C # .
Proof. From Corollary 3.1 we have

sqri A(C) c ri A(C).

Let Xl qri C and y ri A(C). Since y and Ax belong to A(C), we have for some
e > O, e(y AXl) A(C) y, i.e,,

y e(Axl y) A( C).

Let V be any convex, balanced neighborhood of 0. Then there exists u e V such that

y e(Axl y) + u Ax for some x2 e C

and thus

u Ax2 + eAXly+
l+e l+e

from which it follows that

U
A(qri C)Y+l+e

since (xz + ex)/(1 + e) qri C by [6, Lemma 2.9]. Now

u/( 1 + e

implying that y
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