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Abstract
The commutation principle of Ramírez et al. (SIAM J Optim 23:687–694, 2013)
proved in the setting of Euclidean Jordan algebras says that when the sum of a real
valued function h and a spectral function � is minimized/maximized over a spectral
set E , any local optimizer a at which h is Fréchet differentiable operator commutes
with the derivative h′(a). In this note, we describe some analogs of the above result by
assuming the existence of a subgradient in place of the derivative (of h) and obtain-
ing strong operator commutativity relations. We show, for example: if a solves the
problem max

E
(h + �), then a strongly operator commutes with every element in the

subdifferential of h at a; If E and h are convex and a solves the problem min
E

h, then a

strongly operator commutes with the negative of some element in the subdifferential
of h at a. These results improve known operator commutativity relations for linear h
and for solutions of variational inequality problems. We establish these results via a
geometric commutation principle that is valid not only in Euclidean Jordan algebras,
but also in a broader setting.

Keywords Euclidean Jordan algebra · Spectral sets/functions · Commutation
principle · Variational inequality problem · Normal cone · Subdifferential

1 Introduction

Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product [4]
and λ : V → Rn denote the eigenvalue map (which takes x to λ(x), the vector of
eigenvalues of x with entries written in the decreasing order). For any a ∈ V , we
define its λ-orbit by [a] := {x ∈ V : λ(x) = λ(a)}. A set E in V is said to be a
spectral set if it is of the form E = λ−1(Q) for some (permutation invariant) set Q

B M. Seetharama Gowda
gowda@umbc.edu

1 Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore,
MD 21250, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-021-01793-2&domain=pdf
http://orcid.org/0000-0001-5171-0924


1120 M. S. Gowda

in Rn or, equivalently, a union of λ-orbits. A function � : V → R is said to be
a spectral function if it is of the form � = φ ◦ λ for some (permutation invariant)
function φ : Rn → R.

Ramírez et al. [14] prove the following commutation principle in V:
Theorem 1 Suppose a is a local optimizer of the problem min/max

E
(h + �), where E

is a spectral set, � is a spectral function, and h : V → R. If h is Fréchet differentiable
at a, then a and h′(a) operator commute.

Gowda and Jeong [6] extended the above result by assuming that E and � are
invariant under the automorphisms of V and stated an analogous result in the setting of
normal decomposition systems. Subsequently, certainmodifications (such as replacing
the sum by other combinations) and applications were given by Niezgoda [13].

The main objective of this note is to describe some analogs of the above commu-
tation principle by assuming the existence of a subgradient in place of the derivative
(of h). In each analog, this change results in a stronger commutativity relation. We
derive these analogs via a geometric commutation principle. To elaborate, we first
recall some definitions.

• We say that elements a and b operator commute in V if there exists a Jordan frame
{e1, e2, . . . , en} in V such that the spectral decompositions of a and b are given
by

a = a1e1 + a2e2 + · · · + anen and b = b1e1 + b2e2 + · · · + bnen,

wherea1, a2, . . . , an are the eigenvalues ofa andb1, b2, . . . , bn are the eigenvalues
of b. If, additionally, above decompositions hold with a1 ≥ a2 ≥ · · · ≥ an and
b1 ≥ b2 ≥ · · · ≥ bn , we say that a and b strongly operator commute (also said to
‘simultaneously diagonalizable’ [12] or said to have ‘similar joint decomposition’
[1]).

• Given a (nonempty) set S in V and a ∈ S, we define the normal cone of S at a by

NS(a) := {d ∈ V : 〈d, x − a〉 ≤ 0 for all x ∈ S}.

• Let h : V → R ∪ {∞}, S ⊆ V , and a ∈ S ∩ dom h. We define the subdifferential
of h at a relative to S by

∂S h(a) := {d ∈ V : h(x) − h(a) ≥ 〈d, x − a〉 for all x ∈ S};

any element of ∂S h(a) will be called a S-subgradient of h at a. Finally, when
S = V , we define the subdifferential of h at a by

∂ h(a) := {d ∈ V : h(x) − h(a) ≥ 〈d, x − a〉 for all x ∈ V}.

We note that subdifferentials may be empty and ∂ h(a) ⊆ ∂S h(a). We also note
[15] that when h (defined on all of V) is convex, the subdifferential is nonempty,
compact, and convex; if h is also Fréchet differentiable at a, then ∂ h(a) = {h′(a)}.
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Our primary examples of Euclidean Jordan algebras are Rn , Sn , and Hn . In the
algebra Rn (with componentwise multiplication as Jordan product and usual inner
product), spectral sets/functions (also called symmetric sets/functions) are precisely
those that are invariant under the action of permutation matrices. In this algebra, any
two elements operator commute; strong operator commutativity requires simultaneous
(permutation) rearrangement with decreasing components. For example, in R2, the
elements (1, 0) and (0, 1) operator commute, but not strongly. In the algebras Sn (of
all n × n real symmetric matrices) andHn (of all n × n complex Hermitian matrices),
the Jordan product and the inner product are given, respectively, by

X ◦ Y := XY + Y X

2
and 〈X , Y 〉 := tr(XY ).

In Sn (inHn) spectral sets are those that are invariant under linear transformations of
the form X �→ U XU∗, where U is an orthogonal (respectively, unitary) matrix. Also,
two matrices X and Y in Sn (in Hn) operator commute if and only if XY = Y X ,
or equivalently, there exists an orthogonal (respectively, unitary) matrix U such that
X = U D1U∗ and Y = U D2U∗, where D1 and D2 are diagonal matrices consisting,
respectively, of eigenvalues of X and Y . If the diagonal vectors of D1 and D2 have
decreasing components, then X and Y strongly operator commute.

We now state our geometric commutation principle:

Theorem 2 Suppose E is a spectral set in V and a ∈ E. Then, a strongly operator
commutes with every element in the normal cone NE (a). In particular, a strongly
operator commutes with every element in the normal cone N[a](a), where [a] is the
λ-orbit of a.

When E is also convex, onemay see this as a consequence of a result on subgradients
of convex spectral functions such as Corollary 31 in [1] or Theorem 5.5 in [2]; (as
noted by the Referee) the general case reduces to this via the observation that the
closed convex hull of a spectral set is a spectral set. Our objectives in this paper are:
to derive Theorem 2 as a simple consequence of (what we call) Fan-Theobald-von
Neumann inequality (1) together with its equality case, see Theorem 4 below, and to
indicate how it can be formulated in a general setting.

Based on Theorem 2, we derive our commutation principles for optimization prob-
lems:

Theorem 3 Suppose E is a spectral set in V , � : V → R is a spectral function, and
h : V → R.

(i) If a is an optimizer of the problemmax
E

(h+�), then a strongly operator commutes

with every element in ∂[a] h(a), in particular, with those in ∂E h(a) and ∂ h(a).
(ii) If E and h are convex and a is an optimizer of the problem min

E
h, then a strongly

operator commutes with the negative of some element in ∂ h(a).

We note that Theorems 1 and 3 are analogous but with different assumptions and
conclusions; they cannot, generally, be compared, i.e., neither one implies the other.
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Now, specializing h in the above result to a linear function leads to an interesting
consequence for variational inequality problems. To elaborate, consider a function
G : V → R and a set E ⊆ V . Then, the variational inequality problem [3], VI(G, E),
is to find an element a ∈ E such that

〈G(a), x − a〉 ≥ 0 for all x ∈ E .

When E is a closed convex cone, this becomes a cone complementarity problem. We
now state some simple consequences of Theorem 3.

Corollary 1 Suppose E is a spectral set in V , � is a spectral function, and h : V → R
is convex and Fréchet differentiable. Let c ∈ V and G : V → R. Then, the following
statements hold:

(i) If a is an optimizer of max
E

(h +�), then a strongly operator commutes with h′(a).

(ii) If h(x) := 〈c, x〉 on V and a is an optimizer of max
E

(h + �), then a strongly

operator commutes with c. Moreover, the maximum value is 〈λ(c), λ(a)〉 + �(a).
(iii) If h(x) := 〈c, x〉 onV and a is an optimizer ofmin

E
(h+�), then a strongly operator

commutes with −c. Moreover, the minimum value is 〈˜λ(c), λ(a)〉 + �(a), where
˜λ(c) := −λ(−c).

(iv) If a solves VI(G, E), then a strongly operator commutes with −G(a).

In our proofs, we employ standard ideas/results from convex analysis [15] and the
following key result from Euclidean Jordan algebras [1,8,12]:

Theorem 4 For all x, y ∈ V ,

〈x, y〉 ≤ 〈λ(x), λ(y)〉. (1)

Equality holds in (1) if and only if x and y strongly operator commute.

While our results are stated in the setting of Euclidean Jordan algebras for simplicity
and ease of proofs, it is possible to describe these in a general setting/system. This
general system is formulated by turning (1) into an axiom and defining the concept of
commutativity via the equality in (1). The precise formulation is as follows. A Fan-
Theobald-von Neumann system (FTvN system, for short) [5], is a triple (V,W, λ),
where V and W are real inner product spaces and λ : V → W is a norm preserving
map satisfying the property

max
{

〈c, x〉 : x ∈ [u]
}

= 〈λ(c), λ(u)〉 (∀ c, u ∈ V), (2)

with [u] := {x ∈ V : λ(x) = λ(u)}. This property is a combination of an inequality
and a condition for equality. The inequality 〈x, y〉 ≤ 〈λ(x), λ(y)〉 (that comes from
(2)) is referred to as the Fan-Theobald-von Neumann inequality and the equality

〈x, y〉 = 〈λ(x), λ(y)〉
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defines commutativity of x and y in this system. Spectral sets in this system are defined
as sets of the form E = λ−1(Q) for some Q ⊆ W ; spectral functions are of the form
� = φ ◦ λ for some φ : W → R. Examples of such systems include [5]:

• The triple (V,Rn, λ), where V is a Euclidean Jordan algebra of rank n carrying the
trace inner product with λ : V → Rn denoting the eigenvaluemap. Commutativity
in this FTvN system reduces to strong operator commutativity in the algebra V .

• The triple (V,Rn, λ), where V is a finite dimensional real vector space and p is
a real homogeneous polynomial of degree n that is hyperbolic with respect to a
vector e ∈ V , complete and isometric, with λ(x) denoting the vector of roots of
the univariate polynomial t → p(te − x) written in the decreasing order [2].

• The triple (V,W, γ ), where (V,G, γ ) is a normal decomposition system (in par-
ticular, an Eaton triple) and W := span(γ (V)) [11].

Based on the property (2), one can show—see Remark 1 below—that an analog of
Theorem 2 holds in any FTvN system. Consequently, all of our stated results, with
appropriate modifications, can be extended to FTvN systems.

2 Preliminaries

Throughout, we let (V, ◦, 〈·, ·〉) denote a Euclidean Jordan algebra of rank n with
unit element e [4,7]. Additionally, we assume that the inner product is the trace inner
product, that is, 〈x, y〉 = tr(x ◦ y), where ‘tr’ denotes the trace of an element (which
is the sum of its eigenvalues). In this setting, every Jordan frame in V is orthonormal
and the eigenvalue map λ : V → Rn is an isometry.

It is well known that any Euclidean Jordan algebra is a direct product/sum of simple
Euclidean Jordan algebras and every simple Euclidean Jordan algebra is isomorphic to
one of five algebras, three of which are the algebras of n × n real/complex/quaternion
Hermitianmatrices. The other two are: the algebra of 3×3octonionHermitianmatrices
and the Jordan spin algebra.

It is known [10] that when V is simple, spectral sets are precisely those that are
invariant under automorphisms of V (which are invertible linear transformations from
V to V that preserve Jordan products).

For an element a ∈ V , we abbreviate the spectral decomposition a = a1e1+a2e2+
· · ·+anen as a = q ∗E , where q = (a1, a2, . . . , an) ∈ Rn and E := (e1, e2, . . . , en) is
an ordered Jordan frame. Note that (by rearranging the entries of q and E , if necessary),
we can always write a = λ(a) ∗ E for some E .

3 Proofs

Proof of Theorem 2 Let E be a (nonempty) spectral set in V and a ∈ E . Then, E =
λ−1(Q) for some Q ⊆ Rn . As a ∈ E ,

[a] = {x ∈ V : λ(x) = λ(a)} ⊆ E .
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Since NE (a) ⊆ N[a](a), it is enough to show that a strongly operator commutes with
every element in N[a](a). (This will also prove the second part of the theorem.) Let
d ∈ N[a](a) so that 〈d, x − a〉 ≤ 0 for all x ∈ [a]. Rewriting this, we see

〈x, d〉 ≤ 〈a, d〉 for all x ∈ [a]. (3)

Now, writing the spectral decomposition of d as d = λ(d)∗E for some ordered Jordan
frame E , we define x := λ(a) ∗ E . Then, λ(x) = λ(a), x ∈ [a], and (because every
Jordan frame is orthonormal) 〈x, d〉 = 〈λ(x), λ(d)〉 = 〈λ(a), λ(d)〉.Hence, from (3),

〈λ(a), λ(d)〉 ≤ 〈a, d〉.

From Theorem 4, we see the equality 〈a, d〉 = 〈λ(a), λ(d)〉 and the strong operator
commutativity of a and d. ��
Remark 1 In the above proof, the part beyond (3) essentially says that max{〈d, x〉 :
x ∈ [a]} = 〈λ(d), λ(a)〉, which is our defining property of a FTvN system. This
shows that an analog of Theorem 2 holds in any FTvN system.

Remark 2 A simple consequence of Theorem 2 leads to the following modification of
Theorem 1: suppose a is a local optimizer of the problem max

E
h, where E is a convex

spectral set and h : V → R is Fréchet differentiable at a. Then, a and h′(a) strongly
operator commute. This is seen by observing:

〈h′(a), x − a〉 = lim
t↓0

h(a + t(x − a)) − h(a)

t
≤ 0 (x ∈ E)

so that h′(a) ∈ NE (a). Clearly, by replacing ‘max’ by ‘min’ one gets the strong
operator commutativity of a and −h′(a).

Proof of Theorem 3 (i) Suppose a solves the problem max
E

(h + �), where E =
λ−1(Q) for some Q ⊆ Rn and � = φ ◦ λ for some function φ : Rn → R.
Then, a ∈ E and

h(a) + �(a) ≥ h(x) + �(x) for all x ∈ E .

Now, [a] = {x ∈ V : λ(x) = λ(a)} ⊆ E and so

h(a) + �(a) ≥ h(x) + �(x) for all x ∈ [a]. (4)

Since �(a) = φ(λ(a)) = φ(λ(x)) = �(x) for all x ∈ [a], the above expression
simplifies to

h(a) ≥ h(x) for all x ∈ [a]. (5)
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Now, take any d ∈ ∂[a] h(a). Then,

h(x) − h(a) ≥ 〈d, x − a〉 for all x ∈ [a].

So, (5) leads to 〈d, x − a〉 ≤ 0 for all x ∈ [a], i.e., to d ∈ N[a](a). By Theorem 2,
a strongly operator commutes with d.

(ii) Suppose E is convex (in addition to being spectral) and a solves the problemmin
E

h,

where h is also convex. Let χ denote the indicator function of E (i.e., it takes the
value zero on E and infinity outside of E). Then, a is a optimizer of the (global)
convex problem min

V
(h + χ) and so

0 ∈ ∂ (h + χ)(a) = ∂ h(a) + ∂ χ(a),

where the equality comes from the subdifferential sum formula [15, Theorem
23.8]. Hence, there is a c ∈ ∂ h(a) such that −c ∈ ∂ χ(a). This c will have the
property that

〈−c, x − a〉 ≤ 0 for all x ∈ E,

that is, −c ∈ NE (a). By Theorem 2, a strongly operator commutes with −c. This
completes the proof. ��

Remark 3 In the proof of Item (i) above, we went from (4) to (5) by canceling the
common term �(a). This type of cancellation can be carried out in certain other
situations—for example, when we consider the product h(x)�(x) with �(x) > 0 for
all x ∈ E . Thus, the above proof could be modified to get results similar to (i) for
other appropriate combinations of h and �.

Proof of Corollary 1 (i) Suppose a is an optimizer of max
E

(h + �). As h is assumed

to be convex and differentiable, h′(a) is the only element in ∂ h(a). The stated
assertion comes from Theorem 3, Item (i).

(ii) The strong operator commutativity part comes from (i). Also, the maximum value
is

h(a) + �(a) = 〈c, a〉 + �(a) = 〈λ(c), λ(a)〉 + �(a),

where the second equality comes from Theorem 4.
(iii) When h(x) = 〈c, x〉 for all x , and a solves min

E
(h + �), we consider the problem

max
E

(−h − �) and apply (ii) by observing that −� is a spectral function. Also,

the minimum value is

−
(

〈−c, a〉 − �(a)
)

= −〈λ(−c), λ(a)〉 + �(a) = 〈˜λ(c), λ(a)〉 + �(a).
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(iv) Suppose a solves VI(G, E) so that 〈G(a), x − a〉 ≥ 0 for all x ∈ E . Then, a
solves the problem min

E
h, where h(x) := 〈G(a), x〉 for all x ∈ V . By Item (iii), a

and −G(a) strongly operator commute. ��
Remark 4 We note that strong operator commutativity of a and b implies the operator
commutativity of a and ±b. Hence, Items (ii)–(iv) in Corollary 1 improve known
operator commutativity relations [14, Theorem 2 and Proposition 8] for linear h and
variational inequalities. We also note that this Corollary is similar to Theorem 1.3 in
[6], which is applicable to simple Euclidean Jordan algebras.

We now provide some illustrative examples.

Example 1 This example shows that in Theorem 1, differentibility alone is not enough
to give strong operator commutativity. In the Euclidean Jordan algebra R2, spectral
sets are just permutation invariant sets. So the set E = {(1, 0), (0, 1)} is spectral. For
the function h(x, y) := 1

2 x2 − x + x(y2 + y), we have h(1, 0) = − 1
2 and h(0, 1) = 0.

Also, h′(x, y) = (x −1+ y2+ y, 2xy+x). So, h′(1, 0) = (0, 1) and h′(0, 1) = (1, 0).
We note that the elements (1, 0) and (0, 1) operator commute inR2, but not strongly.
Thus, if a denotes either a minimizer or a maximizer of h on E , then a and h′(a) do
not strongly operator commute.

Example 2 In the Euclidean Jordan algebraR2, let E = R2 and h(x, y) := |x − 1| +
|y|. Then, both E and h are convex, and min

E
h is attained at (1, 0). Note that (0, 1) and

(0,−1) are in ∂ h(1, 0); also, (1, 0) strongly operator commutes with −(0, 1), but not
with −(0,−1). This example illustrates Theorem 3(ii) and highlights the difference
between the maximization and minimization problems.

Example 3 Consider two n ×n complex Hermitian matrices C and A with eigenvalues
c1 ≥ c2 ≥ · · · ≥ cn and a1 ≥ a2 ≥ · · · ≥ an . In the algebraHn , consider the spectral
set

E := {U AU∗ : U ∈ Cn×n is unitary}.

As this is also compact, the linear function 〈C, X〉 attains its maximum on this set at
some matrix D in E . By Corollary 1, Item (ii), C and D strongly operator commute
and

max
X∈E

〈C, X〉 = 〈C, D〉 = 〈λ(C), λ(D)〉 = 〈λ(C), λ(A)〉 =
n

∑

i=1

ci ai .

Thus we get the classical result of Fan, namely,

max
{

tr(CU AU∗) : U ∈ Cn×n is unitary
}

=
n

∑

i=1

ci ai .
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Example 4 InV , an element c is said to be an idempotent if c2 = c. It is known that zero
and one are the only possible eigenvalues of such an element. If c has exactly k nonzero
eigenvalues (namely, ones), thenwe say that c has rank k. Every idempotent of rank k is
of the form e1+e2+· · ·+ek for some Jordan frame {e1, e2, . . . , en}. Now, consider the
set of all idempotents of rank k, where 1 ≤ k ≤ n. This set is a spectral set inV; it is also
known to be compact. Now, for any c ∈ V , we maximize 〈c, x〉 over this spectral set.
By Corollary 1, the maximum is attained at some a which strongly operator commutes
with c. So, this maximum = 〈c, a〉 = 〈λ(c), λ(a)〉 = λ1(c) + λ2(c) + · · · + λk(c)
since λ(a) = (1, 1, . . . , 1, 0, 0, . . . , 0). Thus, for any c ∈ V , the sum of the largest
k eigenvalues equals the maximum of 〈c, x〉 over the set of all idempotents of rank k.
This is a well-known variational principle, see [1]. We remark that Theorem 1 falls
short of justifying this principle. For a broader result in the setting of certain hyperbolic
systems, see [2], Corollary 5.6.

Example 5 In V , let K be a closed convex cone that is also a spectral set. For example,
K = λ−1(Q), where Q is a permutation invariant closed convex cone inRn [9]. For a
function f : V → V , consider the cone complementarity problem, CP( f , K ), which
is to find x ∈ V such that

x ∈ K , y := f (x) ∈ K ∗, and 〈x, y〉 = 0,

where K ∗ denotes the dual of K in V . We specialize Corollary 1, Item (iv) to get: if a
solves CP( f , K ), then a strongly operator commutes with − f (a). This means that

a ∈ K , b := f (a) ∈ K ∗, and 0 = 〈a, b〉 = 〈λ(a),˜λ(b)〉,

where˜λ(b) = −λ(−b).

Data availability statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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