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Abstract

This article deals with necessary and sufficient conditions for a family of elements in a Eu-

clidean Jordan algebra to have simultaneous (order) spectral decomposition. Motivated by a

well-known matrix theory result that any family of pairwise commuting complex Hermitian

matrices is simultaneously (unitarily) diagonalizable, we show that in the setting of a general

Euclidean Jordan algebra, any family of pairwise operator commuting elements has a simul-

taneous spectral decomposition, i.e., there exists a common Jordan frame {e1, e2, . . . , en} rela-

tive to which every element in the given family has the eigenvalue decomposition of the form

λ1e1 + λ2e2 + · · ·+ λnen. The simultaneous order spectral decomposition further demands the

ordering of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. We characterize this by pairwise strong operator

commutativity condition 〈x, y〉 = 〈λ(x), λ(y)〉, or equivalently, λ(x + y) = λ(x) + λ(y), where

λ(x) denotes the vector of eigenvalues of x written in the decreasing order. Going beyond Eu-

clidean Jordan algebras, we formulate commutativity conditions in the setting of the so-called

Fan-Theobald-von Neumann system that includes normal decomposition systems (Eaton triples)

and certain systems induced by hyperbolic polynomials.

Key Words: Euclidean Jordan algebra, operator commutativity, strong operator commutativity,

FTvN system
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1 Introduction

A well-known result in matrix theory asserts that any family F of pairwise commuting Hermitian

matrices is simultaneously (unitarily) diagonalizable, that is, there exists a unitary matrix U such

that for every A ∈ F , UAU∗ is a diagonal matrix ([8], Theorem 2.5.5). Related to this, there

is a large body of literature dealing with generalizations and operator versions. Observing that

Hn, the algebra of all n × n complex Hermitian matrices, is a Euclidean Jordan algebra, we raise

the question whether the above result has an analog in general Euclidean Jordan algebras. To

elaborate, consider a Euclidean Jordan algebra V of rank n equipped with the trace inner product.

Given two elements a, b ∈ V, we say that a and b operator commute if LaLb = LbLa, where La

is the operator on V defined by La(x) := a ◦ x, etc. It is known ([3], Lemma X.2.2) that a and

b operator commute if and only if a and b have their spectral decompositions with respect to a

common Jordan frame. This means that there is a Jordan frame {e1, e2, . . . , en} in V such that

a = a1e1 + a2e2 + · · ·+ anen and b = b1e1 + b2e2 + · · ·+ bnen, (1)

where a1, a2, . . . , an are the eigenvalues of a, etc. Motivated by the above matrix theory result,

we ask: If F is family of elements in V such that any two elements of F operator commute, does

it follow that all the elements in F have their spectral decompositions with respect to a common

Jordan frame? While the (expected) answer is ‘yes’ and perhaps known, for lack of ready reference,

we state and prove the result, see Theorem 3.1 below. Our proof is based on an induction argument

on the rank of the Euclidean Jordan algebra and Peirce decomposition of the algebra relative to a

Jordan frame (which itself comes from the operator version of above matrix theory result, see [3],

Theorem IV.2.1).

Going back to the matrix theory result, we may ask when a family F in Hn is simultaneously order

diagonalizable, i.e., when there is a unitary matrix U such that for all A ∈ F ,

UAU∗ = Diag(a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an, (2)

where Diag(a1, a2, . . . , an) denotes the diagonal matrix with diagonal vector (a1, a2, . . . , an). Clearly,

a necessary condition – formulated in terms of the trace inner product in Hn and the usual inner

product in Rn – is

〈A,B〉 = 〈λ(A), λ(B)〉 for all A,B ∈ F ,

where λ(A) is the vector of eigenvalues of A written in the decreasing order, etc. We show that this

‘pairwise strong commutativity’ condition is also sufficient. In fact, we formulate these statements

in general Euclidean Jordan algebras and prove their equivalence. In transitioning to Euclidean

Jordan algebras, we employ the term strong operator commute for two elements a and b to mean
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that

〈a, b〉 = 〈λ(a), λ(b)〉, (3)

where λ(a) is the vector of eigenvalues of a written in the decreasing order, etc. It is known, see

[11, 1, 7], that (3) is equivalent to simultaneous order spectral decomposition of a and b: There

exists a common Jordan frame {e1, e2, . . . , en} in V such that (1) holds with

a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn.

(The terms ‘simultaneously order diagonalizable’ [11] and ‘similar joint decomposition’ [1] have also

been used in the literature.) Extending this, in Theorem 4.1, we show that any family F of pairwise

strong operator commuting elements in V will have a simultaneous order spectral decomposition,

i.e., there exists a common Jordan frame {e1, e2, . . . , en} in V such that for all a ∈ F ,

a = a1e1 + a2e2 + · · ·+ anen with a1 ≥ a2 ≥ · · · ≥ an.

Our induction proof is crucially based on the Hardy-Littlewood-Pólya rearrangement theorem (see

below). As an application of this result, we consider the problem of maximizing a linear function

f(x) := 〈c, x〉 over a (spectral) set of the form E = λ−1(Q), where Q ⊆ Rn. It is known that any

optimizer of this problem strongly operator commutes with c. We show in Corollary 4.3 that if c

has n distinct eigenvalues (n being the rank of V), then any two optimizers of this problem strongly

operator commute.

There is another easily verifiable necessary condition for simultaneous order spectral decomposition

of a family F in V:

λ(a+ b) = λ(a) + λ(b) for all a, b ∈ F . (4)

It turns out that this pairwise λ-additivity condition is actually equivalent to pairwise strong

operator commutativity of F , hence also sufficient. We will establish such an equivalence in the

broader setting of Fan-Theobald-von Neumann systems (FTvN systems, for short). Such a system

was introduced in [4] as a unifying framework for studying certain optimization problems over

Euclidean Jordan algebras, systems induced by hyperbolic polynomials, and normal decomposition

systems (Eaton triples). A FTvN system is a triple (V,W, λ), where V andW are real inner product

spaces and λ : V → W is a norm-preserving map satisfying the property

max
{
〈x, z〉 : z ∈ [y]

}
= 〈λ(x), λ(y)〉 (∀x, y ∈ V), (5)

with [y] := {z ∈ V : λ(z) = λ(y)}. This property is a combination of an inequality and a condition

for equality. The inequality 〈x, y〉 ≤ 〈λ(x), λ(y)〉 (that comes from (5) and originated in the works

of Fan [2], Theobald [13], and von Neumann [14]) is referred to as the Fan-Theobald-von Neumann
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inequality and the equality

〈x, y〉 = 〈λ(x), λ(y)〉

defines commutativity of x and y in this system. In the case of a Euclidean Jordan algebra V of rank

n carrying the trace inner product, the triple (V,Rn, λ) is a FTvN system, where λ : V → Rn is the

eigenvalue map that takes any element of V to its vector of eigenvalues written in the decreasing

order. Commutativity in this FTvN system is the same as strong operator commutativity in the

algebra V. In Theorem 5.2, we show that F is a family of pairwise commuting elements in the

FTvN system if and only if

λ(x1 + x2 + · · ·+ xk) = λ(x1) + λ(x2) + · · ·+ λ(xk), (6)

for every finite set {x1, x2, . . . , xk} ⊆ F . We also show that simultaneous order spectral decompo-

sition of a finite family in a Euclidean Jordan algebra can be described by a single condition of the

form (6).

There is yet another reformulation of the order decomposition result (2) in Hn via automorphisms.

Define, for any fixed unitary matrix U , the map Φ : Hn → Hn by Φ(A) := U∗AU . Then, Φ is

an automorphism of the algebra Hn (that is, it is an invertible linear map preserving the Jordan

product on Hn); it is known that any automorphism of Hn arises this way. For any A ∈ Hn, we

let γ(A) denote the diagonal matrix with λ(A) on the diagonal. Then, the existence of a unitary

U with order decomposition (2) for all A ∈ F amounts to the existence of an automorphism Φ of

Hn such that

A = Φ(γ(A)) for all A ∈ F .

Lewis [10] proves such a result in the setting of finite dimensional normal decomposition systems

(that includes Hn as well as the space of all m×n complex matrices with the singular value map in

place of the eigenvalue map). This result is applicable to simple Euclidean Jordan algebras, as they

are normal decomposition systems [11, 12]. In order to accommodate general Euclidean Jordan

algebras, we modify the proof of Lewis (given for Theorem 2.2 in [10]), thereby giving another proof

of Theorem 4.1.

2 Preliminaries

Let Rn denote the Euclidean n-space of column (or row) vectors with the usual inner product.

Given p ∈ Rn, we write p↓ for the decreasing rearrangement of entries in p. We recall the following

Hardy-Littlewood-Pólya rearrangement inequality/theorem ([9], Theorem 368).
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Theorem 2.1 For any two vectors p and q in Rn,

〈p, q〉 ≤ 〈p↓, q↓〉.

Equality holds if and only if there is a permutation that simultaneously takes p to p↓ and q to q↓.

For basic definitions and results on Euclidean Jordan algebras, we refer to [3, 6]. Let (V, ◦, 〈·, ·〉)
denote a Euclidean Jordan algebra with unit element e; here for any two elements x, y, the Jordan

product and inner product are denoted, respectively, by x ◦ y and 〈x, y〉. It is well-known that

any Euclidean Jordan algebra is a direct product/sum of simple Euclidean Jordan algebras and

every simple Euclidean Jordan algebra is isomorphic to one of five algebras, three of which are the

algebras of n× n real/complex/quaternion Hermitian matrices. The other two are: the algebra of

3× 3 octonion Hermitian matrices and the Jordan spin algebra. We recall that in the algebra Hn,

the Jordan product and the inner product are given by

X ◦ Y :=
XY + Y X

2
and 〈X,Y 〉 := tr(XY ).

A nonzero element c in V is an idempotent if c2 = c; it is a primitive idempotent if it is not the sum

of two other idempotents. A Jordan frame {e1, e2, . . . , en} in V consists of primitive idempotents

that are mutually orthogonal and with sum equal to the unit element e. With n denoting the rank

of V (which is the number of elements in any Jordan frame), we have the spectral decomposition

theorem ([3], Theorem III.1.2): Every x in V can be written as

x = x1e1 + x2e2 + · · ·+ xnen,

where the real numbers x1, x2, . . . , xn are the eigenvalues of x and {e1, e2, . . . , en} is a Jordan

frame in V. Corresponding to the above decomposition, we define the trace of x as tr(x) :=

x1 + x2 + · · · + xn. It is known that (x, y) 7→ tr(x ◦ y) defines another inner product on V that is

compatible with the Jordan product. Throughout this paper we assume that the inner product on

V is this trace inner product, that is, 〈x, y〉 = tr(x ◦ y). In this inner product, any Jordan frame is

orthonormal. For x ∈ V, we let λ(x) denote the vector of eigenvalues of x written in the decreasing

order. We let λ : V → Rn denote the eigenvalue map on V. Note that on the algebra Rn (with

componentwise product and usual inner product), λ(p) = p↓.

Given an idempotent c and γ ∈ {1, 12 , 0}, we let

V(c, γ) := {x ∈ V : x ◦ c = γ x}

and note that V(c, 1) is a subalgebra of V ([3], Prop. IV.1.1). If {c1, c2, . . . , ck} is a complete system

of orthogonal idempotents in V (meaning that cis are mutually orthogonal idempotents adding up
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to e), then we have the Peirce orthogonal decomposition (see the proof of Theorem IV.2.1 in [3]):

V =
∑
i≤j
Vij ,

where Vii := V(ci, 1), and for i 6= j, Vij := V(ci,
1
2) ∩ V(cj ,

1
2). Moreover, if {c1, c2, . . . , ck} is a

Jordan frame (in which case, k = n and each ci is primitive), then Vii = R ei for all i ([3], Theorem

IV.2.1).

The following unique decomposition result is useful.

Theorem 2.2 ([3], Theorem III.1.1): For any x ∈ V, there exist a unique set of real numbers

α1, α2, . . . , αk, all distinct, and a unique complete system of orthogonal idempotents c1, c2, . . . , ck

such that x = α1c1 + α2c2 + · · ·+ αkck.

Given a Jordan frame {e1, e2, . . . , en}, sometimes the ordering of its entries becomes important. To

handle this, we define the related ordered Jordan frame

E :=
(
e1, e2, . . . , en

)
.

Then, for any p = (p1, p2, . . . , pn) ∈ Rn, we define

p ∗ E := p1e1 + p2e2 + · · ·+ pnen.

By the spectral decomposition theorem, every x ∈ V can be written in the above form for some p

and E .

As mentioned in the Introduction, two elements a, b ∈ V operator commute (that is, LaLb = LbLa)

if and only if there exist an ordered Jordan frame E and vectors p, q ∈ Rn such that

a = p ∗ E and b = q ∗ E .

The Hardy-Littlewood-Pólya result mentioned above has been extended to real/complex matrices

by Fan and Theobald [2, 13]; an analogous result due to von Neumann [14] deals with singular

values in place of eigenvalues. The result given below is formulated in the setting of Euclidean

Jordan algebras. The simple algebra case is found in [11, 7] and the general case in [1]; the general

case can also be obtained by combining the simple algebra case with the Hardy-Littlewood-Pólya

result mentioned above.

Theorem 2.3 ([11, 1, 7]) Let V be a Euclidean Jordan algebra carrying the trace inner product.

Then, for any a, b ∈ V, 〈a, b〉 ≤ 〈λ(a), λ(b)〉; the equality holds if and only if there exists an ordered

Jordan frame E such that a = λ(a) ∗ E and b = λ(b) ∗ E.

The inequality 〈a, b〉 ≤ 〈λ(a), λ(b)〉 will be referred to as the Fan-Theobald-von Neumann inequality;

6



the equality defines the strong operator commutativity of a and b. The motivation for defining

FTvN systems (mentioned in the Introduction) comes from these concepts.

3 Operator commutativity in Euclidean Jordan algebras

Theorem 3.1 Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product and

F be a nonempty subset of V. Then the following two statements are equivalent:

(i) Any two elements of F operator commute.

(ii) There exists a Jordan frame {e1, e2, . . . , en} such that every a ∈ F has spectral decomposition

of the form a = a1e1 + a2e2 + · · ·+ anen.

Proof. The implication (ii)⇒ (i) follows from Lemma X.2.2 in [3].

We prove (i) ⇒ (ii) by induction on n, the rank of V. As the implication is obvious for n = 1,

we fix n > 1 and assume that the implication holds for all Euclidean Jordan algebras of rank less

than n. Consider F ⊂ V in which any two elements operator commute. If every element of F is a

multiple of the unit element e, then (ii) is immediate as e can be written as the sum of elements

in any Jordan frame. So, we assume that there is some element x ∈ F which is not a multiple of

e, hence has at least two distinct eigenvalues. Applying Theorem 2.2, we write

x = α1c1 + α2c2 + · · ·+ αkck,

where α1, α2, . . . , αk are all distinct, 1 < k ≤ n, and {c1, c2, . . . , ck} is a complete system of

orthonormal idempotents. Now consider mutually orthogonal subalgebras V(c1, 1), . . . ,V(ck, 1),

each of which has rank less than n. We claim the following:

(1) Each y ∈ F has the direct sum decomposition y = y11 + y22 + · · ·+ ykk, where yii ∈ V(ci, 1)

for i = 1, 2, . . . , k.

(2) For each i, the family Fi := {yii : y ∈ F} consists of pairwise operator commuting elements

in the Euclidean Jordan algebra V(ci, 1).

(3) There is a common Jordan frame in V(ci, 1) relative to which the family Fi has simultaneous

spectral decomposition.

We now proceed to justify these statements. Writing xii := αici, we have

x = x11 + x22 + · · ·+ xkk.

Now, take any y ∈ F . We employ an argument used in the proof of Lemma X.2.2 in [3]. Consider

the Peirce orthogonal decomposition of y with respect to the the system {c1, c2, . . . , ck}:

y =
∑
i≤j

yij , yij ∈ Vij .
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This results in, see ([3], page 191),

0 = (LyLx − LxLy)(x) =
∑
i<j

(αi − αj

2

)2
yij .

We see that yij = 0 when i 6= j. Thus, y =
∑k

i=1 yii, where yii ∈ Vii = V(ci, 1) proving our first

claim. Similarly, for z ∈ F we can write z = z11 + z22 + · · · + zkk, where zii ∈ V(ci, 1) for all i.

Since, V(ci, 1) ◦ V(cj , 1) = {0} for all i 6= j, we see that for all u ∈ V(c1, 1),

(Ly11Lz11 − Lz11Ly11)(u) = (LyLz − LzLy)(u) = 0.

This means that the elements in the family F1 := {Ly11 : y ∈ F} pairwise operator commute in

the algebra V(c1, 1). A similar statement can be made for other families Fi, i = 2, 3, . . . , k, proving

our second claim. By our induction hypothesis, there is a common Jordan frame Ei in V(ci, 1) with

respect to which each element yii ∈ Fi has a spectral decomposition, proving our third claim. Now,

by noting that E :=
⋃k

i=1 Ei is a Jordan frame in V, we see that each element y =
∑k

i yii ∈ F has

a spectral decomposition with respect to E . This completes the proof.

We highlight one special case, which is, actually, a consequence of Lemma X.2.2 in [3].

Corollary 3.2 Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product.

Suppose x ∈ V has n distinct eigenvalues and has a spectral decomposition with respect to an

ordered Jordan frame E. If y ∈ V operator commutes with x, then y has a spectral decomposition

with respect to E. Consequently, if another z ∈ V operator commutes with x, then y and z operator

commute.

Note: By Theorem 2.2, E in the above corollary is unique (up to permutations).

Proof. Let E =
(
e1, e2, . . . , en

)
and let y operator commute with x. We follow the proof of the

above theorem (or the proof of Lemma X.2.2 in [3]) by letting k = n and ci = ei for all i. Then

V(ci, 1) = R ei for all i and so y = y11 + y22 + · · · + ynn, where yii ∈ R ei for all i = 1, 2, . . . , n.

Thus, y has a spectral decomposition relative to the ordered Jordan frame E . The same holds for

any z that commutes with x. Thus, y and z operator commute.

4 Strong operator commutativity in Euclidean Jordan algebras

We recall that two elements a, b ∈ V strongly operator commute if 〈a, b〉 = 〈λ(a), λ(b)〉. As mentioned

in the Introduction, this is stronger than operator commutativity of a and b. The converse fails

even in R2: The coordinate vectors (1, 0) and (0, 1) operator commute, but not strongly.

Theorem 4.1 Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product and

F be a nonempty subset of V. Then the following statements are equivalent:
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(i) Any two elements of F strongly operator commute.

(ii) There exists an ordered Jordan frame E such that every a ∈ F has the spectral decomposition

a = λ(a) ∗ E.

Proof. By Theorem 2.3, (ii)⇒ (i).

We proceed to prove (i) ⇒ (ii) by induction on n (the rank of V). We fix n > 1 and assume that

the implication is true for all Euclidean Jordan algebras of rank less than n. If every element of

F is a multiple of e, we have the implication (ii) for any ordered Jordan frame. Hence, we fix

F ⊆ V satisfying (i) (in particular, any two elements operator commute) and assume that there is

an an x ∈ F with at least two distinct eigenvalues. As in the proof of the previous theorem, we use

Theorem 2.2 to write x = α1c1 + α2c2 + · · ·+ αkck, where 1 < k ≤ n, {c1, c2, . . . , ck} is a complete

system of orthogonal idempotents and, without loss of generality,

α1 > α2 > · · · > αk.

We follow the notation and proof of the previous theorem. We consider subalgebras Vii := V(ci, 1),

define xii := αici, and decompose arbitrary y, z ∈ F as

y = y11 + y22 + · · ·+ ykk and z = z11 + z22 + · · ·+ zkk,

where yii, zii ∈ Vii for i = 1, 2, . . . , k. As observed previously, yii and zii operator commute in Vii for

every i. In view of the previous theorem, for each i, there exists a common ordered Jordan frame

Ei relative to which the the family Fi = {yii : y ∈ F} has a simultaneous spectral decomposition in

Vii. Now, relative to Ei and Vii, we write

xii = pii ∗ Ei, yii = qii ∗ Ei, and zii = rii ∗ Ei,

where the (row) vectors pii, qii, and rii consist of eigenvalues of xii, yii, and zii respectively. We also

write λr(yii) := q↓ii for the the decreasing rearrangement of the vector of eigenvalues of yii relative

to Vii. By abuse of notation, we write p =
(
p11, p22, . . . , pkk

)
and define q and r similarly; we note

that the eigenvalues of x are made of up entries in p, λ(x) = p↓, etc.

Since the algebras Vii are mutually orthogonal and each Jordan frame Ei is an orthonormal set, we

have

〈p, q〉 =
k∑

i=1

〈pii, qii〉 =
k∑

i=1

〈xii, yii〉 = 〈x, y〉 = 〈λ(x), λ(y)〉 = 〈p↓, q↓〉,

where the fourth equality comes from the strong operator commutativity of x and y.

By the Hardy-Littlewood-Pólya rearrangement theorem, there is a permutation which simultane-

ously takes p to p↓ and q to q↓. Since pii = αi times a vector of ones and α1 > α2 · · · > αk,

p = p↓, and each entry in p11 exceeds every entry in p22 etc., we see that this permutation can only

permute entries in any pii, but cannot take an entry in a pii to an entry in pjj for i 6= j. Thus, this

permutation (when applied to q) rearranges entries in any qii and cannot take an entry in qii to an
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entry in qjj for i 6= j. This means that when i > j, any entry in qii is greater than or equal to any

entry in qjj . Thus,

λ(y) = q↓ = (q↓11, q
↓
22, . . . , q

↓
kk).

Similarly,

λ(z) = r↓ = (r↓11, r
↓
22, . . . , r

↓
kk).

We now claim that for each i, yii strongly operator commutes with zii in Vii. We observe

〈y, z〉 =

k∑
i=1

〈yii, zii〉 =

k∑
i=1

〈qii, rii〉 ≤
k∑

i=1

〈q↓ii, r
↓
ii〉 = 〈λ(z), λ(z)〉,

where the inequality is due to the Hardy-Littlewood-Pólya inequality. Since y and z strongly opera-

tor commute, we have equality throughout and so, for each i, 〈yii, zii〉 = 〈q↓ii, r
↓
ii〉 = 〈λr(yii), λr(zii)〉.

This means that for each index i, any two elements in the family Fi = {yii : y ∈ F} strongly

operator commute. As the rank of each Vii is less than n, by our induction hypothesis, there is an

ordered Jordan frame in Vii – we continue to denote it by Ei – with respect to which every element

in Fi has an ordered spectral decomposition. We can now consider the union of these ordered

Jordan frames Ei (where we list, consecutively, elements of E1, E2, etc.) to get an ordered Jordan

frame E in V. Since for any y ∈ F , λ(y) = (λr(y11), λr(y22), . . . , λr(ykk)), we see that with respect

to E , every element in F has an ordered spectral decomposition. This completes the proof.

Analogous to the previous corollary, we have the following.

Corollary 4.2 Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product.

Suppose x ∈ V has n distinct eigenvalues and x = λ(x) ∗ E for some ordered Jordan frame E. If

y ∈ V strongly operator commutes with x, then y = λ(y) ∗ E. Consequently, if another z ∈ V
strongly operator commutes with x, then y and z strongly operator commute.

Proof. Let E =
(
e1, e2, . . . , en

)
and let y strongly operator commute with x. We follow the proof

of the above theorem by letting k = n and ci = ei for all i. Then V(ci, 1) = R ei for all i and so

y = β1e1 + β2e2 + · · ·+ βnen, where β1 ≥ β2 · · · ≥ βn. Thus, y = λ(y) ∗ E . We can make a similar

statement for any z that strongly commutes with x. Thus, y and z themselves strongly operator

commute.

Note: An alternate proof of the above corollary can be given by using Theorem 2.3 and the

uniqueness of E (Cf. Theorem 2.2).

We now describe a simple application of the above corollary. Consider a spectral set E in V, which,

by definition is a set of the form λ−1(Q), where Q ⊆ Rn. For any given c ∈ V, we consider the
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problem

max
x∈E
〈c, x〉. (7)

It has been shown in [5], Corollary 1, that if a is an optimizer of the above problem, then c and

a strongly operator commute. Combining this with the previous corollary, we have the following

result which provides an instance where any two optimizers strongly operator commute.

Corollary 4.3 Let V be a Euclidean Jordan algebra of rank n carrying the trace inner product. If

c has n distinct eigenvalues, then any two optimizers of the problem (7) strongly operator commute.

This result is clearly false when c does not have n distinct eigenvalues: For example, in V = R2

(whose rank is 2), let c = (1, 1) and consider the spectral set E = {(1, 0), (0, 1)}. Clearly, c strongly

operator commutes with both optimizers (1, 0) and (0, 1), but (1, 0) does not strongly operator

commute with (0, 1).

5 Commutativity in FTvN-systems

We now take up results similar to the above for FTvN systems. We recall that commutativity of

two elements x, y in a FTvN system is defined by: 〈x, y〉 = 〈λ(x), λ(y)〉. In [4], Proposition 2.6, it

is shown that this is equivalent to λ(x+ y) = λ(x) + λ(y) and also to ||λ(x+ y)|| = ||λ(x) + λ(y)||.
In what follows, we extend this to any finite set of elements. We require the following sublinear

inequality: 〈
λ(x+ y), λ(c)

〉
≤
〈
λ(x) + λ(y), λ(c)

〉
for all x, y, c ∈ V.

This is seen by observing, for any z ∈ [c],

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ≤ 〈λ(x), λ(z)〉+ 〈λ(y), λ(z)〉 = 〈λ(x) + λ(y), λ(c)〉

and taking the maximum over z in [c]. The following general version is easily proved via induction:〈
λ(x1 + x2 + · · ·+ xk), λ(c)

〉
≤
〈
λ(x2) + · · ·+ λ(xk), λ(c)

〉
for all x1, x2, . . . , xk, c ∈ V. (8)

Lemma 5.1 Let (V,W, λ) be a FTvN system and consider elements x1, x2, . . . , xk ∈ V. Then, the

following are equivalent:

(a) λ(x1 + x2 + · · ·+ xk) = λ(x1) + λ(x2) + · · ·+ λ(xk).

(b) ||λ(x1 + x2 + · · ·+ xk)|| = ||λ(x1) + λ(x2) + · · ·+ λ(xk)||.

(c) Any two elements in {x1, x2, . . . , xk} commute, that is, 〈xi, xj〉 = 〈λ(xi), λ(xj)〉 for all i, j ∈
{1, 2, . . . , k}.

Proof. (a)⇒ (b): Obvious.
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(b)⇐⇒ (c): As λ is norm-preserving, (b) holds if and only if

||x1 + x2 + · · ·+ xk||2 = ||λ(x1) + λ(x2) + · · ·+ λ(xN )||2,

or, equivalently,

k∑
i=1

||xi||2 + 2
k∑

i,j=1;i 6=j

〈xi, xj〉 =
k∑

i=1

||λ(xi)||2 + 2
k∑

i,j=1;i 6=j

〈λ(xi), λ(xj)〉.

Using the norm-preserving property of λ, we cancel appropriate terms and rewrite this as

k∑
i,j=1;i 6=j

〈xi, xj〉 =
k∑

i,j=1;i 6=j

〈λ(xi), λ(xj)〉.

Since 〈xi, xj〉 ≤ 〈λ(xi), λ(xj)〉 in our FTvN system, the above equality can hold if and only if

〈xi, xj〉 = 〈λ(xi), λ(xj)〉 for all i 6= j.

(b) ⇒ (a): Assume (b) and let u := λ(x1 + x2 + · · · + xk) and v := λ(x1) + λ(x2) + · · · + λ(xk).

Given ||u|| = ||v||, we show that 〈u, v〉 = ||u| ||v||. Then, by the equality case in Cauchy-Schwarz

inequality, we get u = v. Now, we apply (8) by putting c = x1 + x2 + · · ·+ xk:

||u||2 =
〈
λ(x1+x2+· · ·+xk), λ(x1+x2+· · ·+xk)

〉
≤
〈
λ(x1)+· · ·+λ(xk), λ(c)

〉
= 〈v, u〉 ≤ ||v|| ||u||.

Since ||v|| ||u|| = ||u||2, we have 〈u, v〉 = ||u|| ||v||; consequently, u = v. This gives (a).

An immediate consequence is the following.

Theorem 5.2 Consider a FTvN system (V,W, λ) and let F be a nonempty subset of V. Then,

the following are equivalent:

(i) Any two elements of F commute, that is, for all x, y ∈ F , 〈x, y〉 = 〈λ(x), λ(y)〉.

(ii) For any finite set {x1, x2, . . . , xk} in F , λ(x1 + x2 + · · ·+ xk) = λ(x1) + λ(x2) + · · ·+ λ(xk).

Another consequence, via Theorem 4.1, is stated for Euclidean Jordan algebras.

Corollary 5.3 Let V be a Euclidean Jordan algebra carrying the trace inner product. For any

finite set {x1, x2, . . . , xk}, the following are equivalent:

(a) The family {x1, x2, . . . , xk} has a simultaneous order spectral decomposition.

(b) λ(x1 + x2 + · · ·+ xk) = λ(x1) + λ(x2) + · · ·+ λ(xk).
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6 Normal decomposition systems and an alternate proof of The-

orem 4.1

Previously, we gave a direct induction based proof of Theorem 4.1. In this section, we provide

an alternate proof by modifying a proof of Lewis [10] given for a family of commuting elements

in a finite dimensional normal decomposition system. Recall that a normal decomposition system

(NDS, for short) is a tripe (X,G, γ), where X is a inner product space, G is a closed subgroup of

the orthogonal group of X, and γ : X → X is a map satisfying the following properties:

(i) γ(Ax) = γ(x) for all x ∈ X and A ∈ G.

(ii) For every x ∈ X, there is a A ∈ G such that x = Aγ(x).

(iii) 〈x, y〉 ≤ 〈γ(x), γ(y)〉 for all x, y ∈ X.

As observed in [4], every NDS is a FTvN system: we let V = X, λ = γ, and W = λ(V) − λ(V).

Thus, we can define commutativity in a NDS via the equation 〈x, y〉 = 〈γ(x), γ(y)〉. In the setting

of a finite dimensional NDS, it is shown by Lewis ([10], Theorem 2.2) that every family F of

pairwise commuting elements admits a ‘simultaneous decomposition’: there exists an A ∈ G such

that x = Aγ(x) for all x ∈ F . As every simple Euclidean Jordan algebra is a finite dimensional

normal decomposition system [11], this result can be used to get another proof of Theorem 4.1

when the algebra is simple. However, a general Euclidean Jordan algebra need not be a normal

decomposition system [12], hence this result cannot be directly used. In what follows, we modify

Lewis’ proof to accommodate general Euclidean Jordan algebras.

Another proof of Theorem 4.1:

The implication (ii) ⇒ (i) comes from Theorem 2.3. Suppose (i) holds. Consider conv(F), the

convex hull of F . Let z be in the relative interior of conv(F). Choose an ordered Jordan frame E
such that

z = λ(z) ∗ E .

We claim that a = λ(a) ∗ E for all a ∈ F . Suppose, if possible, there exists an a ∈ F such that

a 6= λ(a) ∗ E . Let

b := λ(a) ∗ E .

Then, λ(b) = λ(a) and for all x ∈ V, 〈b, x〉 ≤ 〈λ(b), λ(x)〉 = 〈λ(a), λ(x)〉. As ||b|| = ||λ(a) ∗ E|| =

||λ(a)|| = ||a|| and a 6= b, we see that

〈a, b〉 < ||a|| ||b|| = ||a||2.

Now, z, which is in the relative interior of conv(F), lies on the open line segment joining a and

some c ∈ conv(F). Hence we can write z as a convex combination of a and c, and c as a convex
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combination a finite number of elements in F . Thus, we can write

z = α0a+ α1a
(1) + · · ·+ αka

(k),

where a(1), a(2), . . . , a(k) are in F and αis are positive with sum 1. As a and a(i) strongly commute

for every i,

〈λ(a), λ(z)〉 = 〈λ(a) ∗ E , λ(z) ∗ E〉 = 〈b, z〉 = α0〈b, a〉+
∑k

1 αi〈b, a(i)〉
< α0||a||2 +

∑k
1 αi

〈
λ(a), λ(a(i))

〉
= α0||a||2 +

∑k
1 αi〈a, a(i)〉

= 〈a, z〉 ≤ 〈λ(a), λ(z)〉.

This yields a contradiction. Hence, a = λ(a) ∗ E for all a ∈ F . This completes the proof.
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