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ŽA well known univalence result due to D. Gale and H. Nikaido 1965, Math.
.Ann. 159, 81�93 asserts that if the Jacobian matrix of a differentiable function

from a closed rectangle K in Rn into Rn is a P-matrix at each point of K , then f
is one-to-one on K. In this paper, by introducing the concepts of H-differentiabil-

Ž .ity and H-differential of a function as a set of matrices , we generalize the
Gale�Nikaido result to nonsmooth functions. Our results further extend those of
other authors valid for compact rectangles. We show that our results are applicable
when the H-differential is any one of the following: the Jacobian matrix of a
differentiable function, the generalized Jacobian of a locally Lipschitzian function,
the Bouligand subdifferential of a semismooth function, and the C-differential of

Ž .L. Qi 1993, Math. Oper. Res. 18, 227�244 . � 2000 Academic Press

1. INTRODUCTION

Ž .A global univalence theorem describes conditions for a continuous
Ž .function from one metric, Euclidean, or Banach space into another to be

one-to-one. An excellent account of global univalence theorems up to 1983
� �is given in Parthasarathy’s book 18 . For subsequent work see Pourciau

� � � � � � � �20�22 , Radulescu and Radulescu 26, 27 , Scholtes 31 , Warga 35�37 ,

917
0022-247X�00 $35.00

Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.



GOWDA AND RAVINDRAN918

� �Zangwill 38 , and the references therein. For an extensive literature
� �related to polynomial maps, see 16 . References to applications to univa-

lence theorems to economics, statistics, optimization, electrical networks,
stability theory of differential equations, etc., can be found in the cited
papers. Various univalence theorems that exist in the literature can
roughly be classified into three groups: analytical univalence theorems,
topological univalence theorems, and algebraic univalence theorems. The

� �classical result of Hadamard 9 is an example of an analytical univalence
theorem. It says that if f : Rn � Rn is continuously differentiable, has

Ž . nnonsingular Jacobian Jf x at each x � R , and

�1� �sup Jf x � �Ž .
nx�R

or more generally,

� 1
inf dt � �H �1

� � � �x �t0 Jf xŽ .

Ž . n � �then f is a onto homeomorphism of R ; see 2 for a Banach space
� �version. Pourciau 20, 21 extended Hadamard’s theorem to a locally

Lipschitzian function on Rn by replacing the Jacobian by the generalized
� � � � ŽJacobian of Clarke 4 . Warga 37 further extended this result to Banach

.spaces by replacing the generalized Jacobian of a locally Lipschitzian
function by a ‘‘local derivate container.’’ A topological univalence theo-

Žrem, attributed to Hadamard and the metric space version due to Banach
� �. n Ž .and Mazur 1 says that a function from R into itself is a onto

homeomorphism if and only if it is proper and a local homeomorphism.
The above mentioned results of Hadamard can be deduced as a conse-

� �quence of a topological result due to Plastock 19 .
Our main aim in this paper is to generalize a well known algebraic

univalence result due to Gale and Nikaido which asserts that if the
Jacobian matrix of a differentiable function from a closed rectangle K in
Rn into Rn is a P-matrix at each point of K , then f is one-to-one on K. In
doing so we will also generalize the following result due to Garcia and

� � � � � �Zangwill 6 , Mas-Colell 15 , and Robinson 28 valid for compact rectan-
gles: if the Jacobian matrix of a continuously�strongly Frechet differen-´
tiable function from a compact rectangle K in Rn into Rn has a positive
determinant in the interior of K and is a P-matrix at each point of the
boundary of K , then f is one-to-one on K. By introducing the concepts of
H-differentiability and H-differential we generalize the above mentioned
results, see Section 5, by replacing a differentiable function by an H-dif-
ferentiable function and by replacing the Jacobian matrix by an H-dif-
ferential which is a set of matrices. In particular, our results are valid when
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the H-differential is any one of the following: the Jacobian matrix of a
differentiable function, the generalized Jacobian of a locally Lipschitzian
function, the Bouligand subdifferential of a semismooth function, and the

� �C-differential of Qi 24 . Our analysis in this paper relies on degree theory
� � � �13 and is along the arguments of Mas-Colell 15 and Kojima and Saigal
� �12 who considered generalizations of the Gale�Nikaido result to compact
polyhedral sets and to piecewise smooth functions based on polyhedral
subdivisions.

The organization of the paper is as follows. In Section 3, we introduce
the H-differential of a function and relate it to various other known
differentials. In Section 4, we give elementary properties of H-differentials
and state the chain rule for H-differentials. Section 5 contains our main
results.

2. PRELIMINARIES

Ž . nA closed open rectangle in R is a Cartesian product of n closed
Ž .respectively, open intervals in R; we always assume that rectangles under
consideration ha�e nonempty interiors. We denote the interior and the

Ž .boundary of a set A by int A and bdy A. For any r � 0, B x*; r denotes
Ž . nthe open Euclidean ball in R with center x* and radius r.

Ž . Ž� �.We use the notation r x � o x � a as x � a to mean that for all
� Ž .� � � � �� � 0 there exists a � � 0 such that r x � � x � a whenever x � a

Ž Ž k . Ž� k �. k� � . For sequences, r x � o x � a as x � a means that for all
� Ž k .� � k �� � 0 there exists a natural number N such that r x � � x � a

.whenever n 	 N.
n�n Ž .We say that a matrix M � R is a P -matrix P-matrix if every0

Ž . Žprinciple minor of M is nonnegative resp., positive . A typical principle
minor of M is given by the determinant of the principle submatrix M��

� 4 .where � 
 1, 2, . . . , n . Since for a P -matrix M, M � � I is a P-matrix0
and hence nonsingular for every � � 0, we see that when M is a nonsingular

Ž � � . � �P -matrix in 18 , they are called weak P-matrices , for e�ery t � 0, 1 , the0
Ž .matrix tM � 1 � t I is nonsingular. For issues related to degree theory, we

n� �refer to 13 . For a continuous function f : � � R where � is a bounded
n n Ž .open set in R and a p � R , we use the notation deg f , �, p to denote

the degree of f at p relative to �. If x* is an isolated solution of the
Ž . Ž Ž . Ž ..equation f x � p, then for all small � � 0, deg f , B x*, � , f x* is the

Ž .same; we denote this common value by index f , x* .
We say that a function f from an open set � 
 Rn to Rn is weakly

uni�alent if there exists a sequence of continuous one-to-one functions



GOWDA AND RAVINDRAN920

f : � � Rn such that f � f uniformly on each bounded subset of �. Wek k
� �have the following result from 8 :

PROPOSITION 1. Suppose � is open in Rn, f : � � Rn is weakly uni�a-
Ž . Ž .lent, and q � f � . If x* is an isolated solution of the equation f x � q in

�, then it is the only solution.

3. H-DIFFERENTIAL

DEFINITION 1. Let a � Rn, � be a neighborhood of a, and f : � � Rm.
Ž . Ž . m� nWe say that a nonempty subset T a of R is an H-differential of f at

� k4a if for every sequence x converging to a, there exists a subsequence
� k j4 Ž .x and a matrix A � T a such that

k j k j � k j �f x � f a � A x � a � o x � a . 1Ž . Ž . Ž . Ž .Ž .

We say that f is H-differentiable at a if f has an H-differential at a.

Ž .Remarks. 1 As we see in the examples below, the H-differential of a
function at a point need not be unique.

Ž .2 Clearly, the H-differentiability implies continuity.
Ž .3 The H-differentiability condition can be equivalently described

� k4 � k �as follows: For every sequence a � t d with t �0 and d � 1, therek k
k j n Ž .exist d � d � R and A � T a such that

f a � t d k j � f aŽ .ž /k j � Ad.
tk j

Ž . n4 Recall that a function f defined from an open set � of R into
Rm is directionally differentiable at a point a � � if for each d � Rn, the
limit

f a � td � f aŽ . Ž .
f � a; d � limŽ .

tt�0

exists; f is Hadamard directionally differentiable at a, if for any d k � d and
t �0,k

f a � t d k � f aŽ .Ž .k
lim � f � a; d .Ž .

tk�� k

The similarity between this limit and the one in Remark 3 prompted us to
use the terms ‘‘H-differentiability’’ and ‘‘H-differential’’ in Definition 1.
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ŽAlthough the prefix H really stands for Hadamard, we refrain from using
the term ‘‘Hadamard differentiability’’ since this term has already been
used in classical analysis. We note that in the finite dimensional setting,
Hadamard differentiability is the same as the Frechet differentiability; see´
� � .4, Sect. 2.2 .

Ž . m� nWe observe that with T a � R , Hadamard directional differentia-
bility implies H-differentiability. However, the function f : R � R, defined
by

x , x � Ef x �Ž . ½ 0, x � E,

1 1�� � Ž . � 4where E � � , is H-differentiable at the origin with T 0 � 0, 11 2n 2 n � 1

but not even directionally differentiable there.
Ž . n m5 It is easily seen that if a function f : � 
 R � R is H-dif-

ferentiable at a point a, then there exist a constant L � 0 and a neighbor-
Ž .hood B a, � of a with

� �f x � f a � L x � a , � x � B a, � . 2Ž . Ž . Ž . Ž .

Ž . Ž . m� nConversely, if condition 2 holds, then T a � R can be taken as an
Ž .H-differential of f at a. We thus have, in 2 , an alternate description of

H-differentiability. But, as we see in the sequel, it is the identification of
an appropriate H-differential that becomes important and relevant. Clearly

Ž .any function locally Lipschitzian at a will satisfy 2 . For real valued
Ž .functions, condition 2 is known as the ‘‘calmness’’ of f at a. This concept

Ž �has been well studied in the literature of nonsmooth analysis see 30,
�.Chap. 8 .

EXAMPLE 1. Consider a function f : Rn � Rm which is Frechet differ-´
n Ž . Ž .entiable at a � R with Frechet derivative � Jacobian matrix Jf a �´

Rn�m so that

� �f x � f a � Jf a x � a � o x � a .Ž . Ž . Ž . Ž . Ž .

� Ž .4Clearly, Jf a is an H-differential of f and so f is H-differentiable.

EXAMPLE 2. Consider a function f : � � Rm which is locally Lips-
n Žchitzian at each point of an open set � 
 R so that on some neighbor-

.hood of each point of �, f is Lipschitzian . Then the well known
Rademacher’s theorem asserts that f is Frechet differentiable almost´

Ž .everywhere in the Lebesgue sense in �. Let � be the set of all points inf
Ž .� where f is Frechet differentiable. Then, at any a � �, the Clarke´



GOWDA AND RAVINDRAN922

� �generalized Jacobian 4

	 f a � co lim Jf x k : x k � a, x k � � , 3Ž . Ž . Ž .� 4f

Ž � �exists and is nonempty, compact, and convex. We note that 4, p. 30 when
f is continuously differentiable or strictly differentiable at a point a, the

� Ž .4generalized Jacobian at a coincides with Jf a , and that when f is merely
12Ž .Frechet differentiable at a, as in the one variable function f x � x sin´ x

� Ž .4at the origin, the generalized Jacobian may be much more than Jf a .
3�2 1Ž . � �Note also that the function g x � x sin is Frechet differentiable on´x

.R but not even locally Lipschitzian at the origin. The set

	 f a � lim Jf x k : x k � a, x k � � 4Ž . Ž . Ž .� 4B f

Ž .is called the Bouligand sub differential of f at a.
Ž .We claim that the locally Lipschitzian function f is H-differentiable at

Ž . Ž .a � � with T a � 	 f a as an H-differential. To see the claim, we adopt
� �an argument given in the proof of Proposition 3.1 in 10 . Consider a

� k4 � k �sequence a � t d with t �0 and d � 1 for all k. By the mean valuek k
� �theorem for locally Lipschitzian functions, see Proposition 2.6.5 in 4 , we

may write

k k kf a � t d � f a � co 	 f a, a � t d a � t d � aŽ .Ž . Ž .Ž .k k k

� �which, in view of the Caratheodory theorem 29, Theorem 17.1 , reduces to´

n�1
k k k kf a � t d � f a � 
 V a � t d � a ,Ž .Ž . Ž .Ýk i i kž /

i�1

k k Ž k .where the 
 ’s are nonnegative numbers adding up to one and V � 	 f bi i i
with bk lying in the line segment joining a and a � t d k. Since thei k

Ž .multivalued mapping x � 	 f x is upper semicontinuous and closed on �
� � Ž .4, Proposition 2.6.2 , we may assume by going through a subsequence

k Ž . kthat V � V � 	 f a for each i; we may also assume that 
 � 
 fori i i i
each i and d k � d. Then

k n�1f a � t d � f aŽ .Ž .k � 
 V d � Ad.Ý i iž /tk i�1

n�1 Ž .Since A � Ý 
 V � 	 f a , by Remark 3, the claim is justified.1 i i

Ž . � �Remark. 6 In 35�37 , Warga introduces and studies the concepts of
‘‘local derivate container’’ for a locally Lipschitzian function on Rn and
‘‘unbounded derivate container’’ for a continuous function on Rn. He
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Ž .shows that the generalized Jacobian 	 f a is a particular case of a ‘‘local
derivate container’’ and establishes local and global homeomorphism re-

� �sults based on these concepts. In 34 , Sussmann extends these notions in
his study of ‘‘multidifferentials.’’ It is not clear at this stage how these
refined concepts are related to our H-differentials.

EXAMPLE 3. Consider an open set � 
 Rn and a locally Lipschitzian
function f : � � Rm that is semismooth at a � �. This means that for any

k Ž k .x � a, and V � 	 f x ,k

k k � k �f x � f a � V x � a � o x � a .Ž . Ž . Ž . Ž .k

� �The notion of semismoothness was introduced by Mifflin 14 for function-
� �als and extended to vector functions by Qi 23 . It has attracted a lot of

� �attention in the optimization community in recent times; see 25 , etc. It
� �has been shown by Qi and Sun 25 that f is directionally differentiable at

� � Ža and by Shapiro 32 that f is Bouligand differentiable B-differentiable,
.for short which means that

� �f x � f a � f � a; x � a � o x � a .Ž . Ž . Ž . Ž .

We claim that for the gi�en function f which is semismooth at a, the
Ž . Ž .Bouligand sub differential 	 f a is an H-differential of f. To see the claim,B

we proceed as follows. Let x k � a. Then by the semismoothness property,

k k � k �f x � f a � V x � a � o x � aŽ . Ž . Ž . Ž .k

Ž k . Ž k .for any V � 	 f x , and in particular, for any V � 	 f x . Since thek k B
Ž .mapping x � 	 f x is compact valued and upper semicontinuous, weB

Ž .may assume, by going through a subsequence that for some V � 	 f aB
� k j4and a subsequence x that

k j k j � k j �f x � f a � V x � a � o x � a .Ž . Ž . Ž . Ž .

Ž .This proves that 	 f a is an H-differential f.B
Piecewise smooth functions form an important class of functions satisfy-

ing the semismoothness property. Recall that a continuous function f : Rn

� Rn is piecewise smooth if there exist continuously differentiable func-
tions f : Rn � Rn such thatj

f x � f x , f x , . . . , f x � x � Rn .� 4Ž . Ž . Ž . Ž .1 2 J
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Ž .If each f is affine, f is said to be piecewise affine. Such a function isj
� �semismooth 14 and its Bouligand differential is given by

	 f x* � Jf x* : i � I e f , x* ,� 4Ž . Ž . Ž .B i

eŽ . Ž .where I f , x* is the collection of so-called essentially active indexes i
� Ž . Ž .4 � �such that x* � cl int z : f z � f z 31, Proposition 4.1.3 .i

EXAMPLE 4. In connection with generalized Newton methods for solv-
� �ing nonsmooth equations, Qi 24 introduces the concept of C-differentia-

bility and studies its calculus rules. He calls a function f : Rn � Rn,
C-differentiable if for each a � Rn, there exists a nonempty compact subset
Ž . Ž .T a called a C-differential of f at a such that

Ž . Ž .i the multivalued map x � T x is upper semicontinuous at each
point a,

Ž . Ž .ii for every V � T x ,

� �f x � f a � V x � a � o x � a .Ž . Ž . Ž . Ž .

Ž .He notes that for a semismooth function f , the generalized Jacobian 	 f a
Ž .and the Bouligand differential 	 a are examples of C-differentials. WeB

observe here that a C-differentiable function is H-differentiable with the
H-differential given by a C-differential.

4. SOME ELEMENTARY PROPERTIES OF
H-DIFFERENTIALS

PROPOSITION 2. Suppose � is an open subset of Rn and f : � � Rn has
Ž .an H-differential T a at a � � consisting of nonsingular matrices. Then a is

Ž . Ž .an isolated point of the equation f x � f a .

Proof. Assume the contrary that there is a sequence x k � a such that
k Ž k . Ž .x � a and f x � f a for all k. By the H-differentiability, there exists

Ž .A � T a such that

k j � k j �A x � a � o x � aŽ . Ž .

and by a standard normalization argument, we produce a unit vector h
Ž .such that Ah � 0. This contradicts the nonsingularity of matrices in T a .

Hence the conclusion.
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PROPOSITION 3. Let � be an open subset of Rn and suppose that the
n Ž .continuous function f : � � R has an H-differential T a at a � � and

there exists a matrix C such that

� �tA � 1 � t C has positi�e determinant for all A � T a , t � 0, 1 . 5Ž . Ž . Ž .

Then

index f , a � 1.Ž .

In particular, this conclusion holds under any one of the following conditions:

Ž . Ž .a T a consists of nonsingular P -matrices;0

Ž . Ž .b T a is con�ex and consists of matrices with positi�e determinant;
Ž . Ž .c f is Frechet differentiable at a with det Jf a � 0.´

Ž .Proof. Since each A � T a is nonsingular, by the previous proposi-
Ž . Ž .tion, a is an isolated solution of f x � f a , hence the index of f at a is

defined. We claim that for all small positive � , the function

H x , t � t f x � f a � 1 � t C x � aŽ . Ž . Ž . Ž . Ž .

Ž . � �is never zero on the boundary of the ball B a; � for any t � 0, 1 .
Assuming the contrary, we consider the sequences x k � a and t � t*k
such that

k kt f x � f a � 1 � t C x � a � 0Ž . Ž . Ž . Ž .k k

for all k. Using the H-differentiability of f at a and going through a
k Ž .subsequence of x , we see that there exist M � T a and a unit vector h

� Ž . �such that t*M � 1 � t* C h � 0. We reach a contradiction since by
Ž . Ž .assumption, t*M � 1 � t* C is nonsingular, thus the claim about H x, t .

Ž . Ž . Ž .Since for all small positive � , f x � f a is homotopic to C x � a on the
Ž . Ž �closure of B a; � , by the homotopy invariance of the degree cf. 13,
�.Theorem 2.1.2 ,

index f , a � deg f , B a; � , f aŽ . Ž . Ž .Ž .
� deg C , B a; � , Ca � det C � 1.Ž .Ž .

Ž . Ž .When T a consists of nonsingular P -matrices, condition 5 holds with0
Ž . Ž . Ž .C � I; when b holds, condition 5 holds for any C � T a . When f is

Ž . Ž . � Ž .4Frechet differentiable with det Jf a � 0, we can take T a � Jf a and´
Ž .apply b . Hence in these situations, we have the result.

Ž . Ž .Remark. 7 A condition similar to 5 has been used by Kojima and
� �Saigal 12 .
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Proofs of the following results are straightforward.

Ž .PROPOSITION 4 Sum Rule for H-Differentiability . Suppose that � 

Rn is open, and f and g from � to Rm are H-differentiable at a � � with

Ž . Ž .H-differentials T a and S a , respecti�ely. Then f � g is H-differentiable with
an H-differential gi�en by

T � S a � A � B : A � T a , B � S a .� 4Ž . Ž . Ž . Ž .

Ž . n mPROPOSITION 5 Chain Rule . Suppose that � 
 R and �� 
 R are
m Ž .open, f : � � R is H-differentiable at a � � with H-differential T a , and

l Ž . Ž .g : �� � R is H-differentiable at b � f a � �� with an H-differential S b .
Then g � f is H-differentiable at a with an H-differential gi�en by

S�T a � BA : A � T a , B � S b .� 4Ž . Ž . Ž . Ž .

5. UNIVALENCE RESULTS

In this section, we describe various univalence results. We first define
Žthe concept of a restricted H-differential like the one-sided derivative of a

.function at a point in R .

Ž . nDEFINITION 2 Restricted H-Differential . Let a � S 
 R with a be-
m Ž .ing a limit point of S, and f : S � R . We say that a nonempty subset

Ž . m� n � k4T a of R is an H -differential of f at a if for every sequence x inS S
� k j4 Ž .S converging to a, there exists a subsequence x and a matrix A � T aS

such that

k j k j � k j �f x � f a � A x � a � o x � a . 6Ž . Ž . Ž . Ž .Ž .

We say that f is H -differentiable at a if f has an H -differential at a.S S

� k4Note that in this definition, the sequences x are taken only from S.
Of course, when S is a neighborhood of a, this definition coincides with
Definition 1. We also note that when f is H-differentiable at a, it is

Ž .H -differentiable at a with T a as an H -differential.S S

5.1. Uni�alence o�er Compact Rectangles

THEOREM 1. Suppose K is a compact rectangle Rn, f : K � Rn is contin-
uous, and at each a � bdy K , f is H -differentiable with an H -differentialK K

Ž .T a . Assume further thatK

Ž . Ž .i for all a � int K , index f , a is defined and positi�e, and
Ž . Ž .ii for all a � bdy K , T a consists of P-matrices.K
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Then f is one-to-one on K. Moreo�er, the normal map

F x � f � x � x � � x 7Ž . Ž . Ž . Ž .Ž .K K

is one-to-one on Rn.

Our proof of this theorem relies on degree theory and closely follows
� � � �the arguments of Mas-Colell 15 and Kojima and Saigal 12 . The follow-

ing lemma and its proof are basically in these cited references; we provide
them here for completeness.

LEMMA 1. Suppose K is a compact con�ex set in Rn, f : K � Rn is
continuous, and

F x � f � x � x � � x . 8Ž . Ž . Ž . Ž .Ž .K K

n Ž .If at each a � R , index F, a is defined and positi�e, then f is one-to-one
on K.

Proof. Suppose, if possible, there are vectors x and x in K such that1 2

x � x and f x � f x � y*.Ž . Ž .1 2 1 2

Ž .Let B 0; r denote the open ball of radius r around the origin. We first
Ž .claim that for some r � 0, K � B 0; r and

deg F , B 0; r , y* � 1. 9Ž . Ž .Ž .

To see this claim, let

� �� � max z � f z � y*Ž .
z�K

Ž . � �and take r � � large so that K � B 0; r . Then for x � r, we have

² : � � 2 ² :F x � y*, x � x � � x � f � x � y*, xŽ . Ž . Ž .Ž .K K

	 r 2 � � r
� 0.

Ž . � Ž . � Ž .This shows that the function G x, t � t F x � y* � 1 � t x never
Ž . � �vanishes on the boundary of B 0; r for any t � 0, 1 . Hence by the

� �homotopy invariance of degree 13, Theorem 2.1.2 ,

deg F , B 0; r , y* � deg id, B 0; r , 0 � 1,Ž . Ž .Ž . Ž .
n Ž .where id denotes the identity map on R . Thus we have 9 . We know at

this particular stage that there are at least two solutions of the equation
Ž . Ž . Ž .F x � y* in B 0; r and no solutions on the boundary of B 0; r . Now,
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n Ž .suppose that at each point a of R , index F, a is defined and positive.
Ž .Then every solution of the equation F x � y* is isolated and so we may

write

�1 � 4F y* 
 B 0; r � x , x , x , . . . , x ,Ž . Ž . 1 2 3 L

Ž .where L 	 2. By 9 and the domain decomposition property of the degree
� �13, Theorem 2.2.1 ,

L

1 � deg F , B 0; r , y* � index F , x .Ž . Ž .Ž . Ý i
1

Since by assumption, the index of F at each x is greater than or equal toi
one, we reach a contradiction. Hence f must be one-to-one on K. This
completes the proof of the lemma.

Proof of the Theorem. Consider the continuous function F defined by
Ž . n7 . We show that the index of F at any point a � R is defined and
positive. Then the above lemma gives the desired result. Since F � f on K ,

Ž . Ž . Ž .at any a � int K , index F, a � index f , a 	 1 by assumption i . Now
suppose a � int K. We show that F is H-differentiable at a with an
H-differential consisting of P-matrices. To see this, we proceed as follows.
Let, for ease of notation,

g x � � x .Ž . Ž .K

Ž .Since K is a rectangle, g is piecewise smooth in fact, piecewise affine
Ž . Ž .and hence see Example 3 , 	 g a is an H-differential at every a. WeB

claim that

R a � VA � I � A : V � T g a , A � 	 g a� 4Ž . Ž . Ž .Ž .K B

is an H-differential of F at a. To see this claim, consider a sequence
k � k4x � a. Then there is a subsequence of x which we continue to write as

� k4 Ž .x for simplicity and a matrix A � 	 g a such thatB

k k � k �g x � g a � A x � a � o x � a . 10Ž . Ž . Ž . Ž .Ž .

Now let

y k � g x k and b � g aŽ . Ž .

so that y k � b. Since y k � K for all k, from the definition of H -differen-K
� k4tiability of f at b, there is a subsequence of y which we continue to
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� k4 Ž .write as y and a matrix V � T b such thatK

k k � k �f y � f b � V y � b � o y � b .Ž .Ž . Ž . Ž .

We easily verify that

k k � k � � k �� �F x � F a � VA � I � A x � a � o y � b � o x � a .Ž . Ž . Ž . Ž .Ž .
k Ž k . Ž� k �. Ž .Since y � b � A x � a � o x � a from 10 , we see the H-dif-

Ž .ferentiability of F with R a as an H-differential. This proves the above
Ž . Ž .claim. We now show that every matrix in R a is a P-matrix. Let M � R a

Ž Ž .. Ž .so that M � VA � I � A where V � T g a and A � 	 g a . By ourK B
assumption, V is a P-matrix. Also, it is easily seen that A is a diagonal
matrix whose diagonal consists of zeros and ones. By the form of M, it is
easy to see that M is also a P-matrix. So we have proved that the

Ž .H-differential R a of F consists of P-matrices. By Proposition 3, F has
index one at every point a � int K. By the previous lemma, we have the
one-to-oneness of f on K.

Now for the one-to-oneness of F, suppose, if possible, u � u and1 2
Ž . Ž .F u � F u . Let K * be a bounded rectangle that contains u , u , and1 2 1 2

ŽK in its interior. From the properties of F derived above, we see via
.Proposition 3 that the conditions of the theorem are met for the rectangle

K * and the function F. We conclude that F is one-to-one on K * leading
nto a contradiction. Hence F is one-to-one on R .

Ž .Remarks. 8 In the proof of the above theorem, the P-matrix condi-
Ž . Ž .tion on the matrices of T a for a � bdy K was used to show that everyK

Ž .matrix M � R a is a P-matrix and hence F has index one at any
Ž .a � int K. This condition on T a can be weakened by demanding that theK

Ž . nmatrices in R a be P-matrices for all a � R ; this means that for each
Ž . � �a � bdy K , only certain minors of T a need be positi�e. Mas-Colell 15K

exploits this idea in his univalence result on compact polyhedral sets. By
considering a continuously differentiable function f on a compact polyhe-
dral set K with nonempty interior, he shows, under appropriate condi-

Ž .tions, that the index of the normal map F see Lemma 1 is positive at any
� �a, thereby getting the univalence of f on K. Kojima and Saigal 12 extend

the validity of Mas-Colell’s argument to a piecewise smooth function based
� �on polyhedral subdivisions. Going in a different direction, Robinson 28

extends Mas-Colell’s result to strongly Frechet differentiable functions´
Ždefined on noncompact polyhedral sets and satisfying a certain properness

.condition . Robinson’s analysis, unlike those of Mas-Colell and Kojima
and Saigal, is based on strong approximation of functions and on homeo-
morphism properties of normal maps induced by linear transformations.
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Ž .9 Because of the use of the normal map in Lemma 1 and the
theorem above, the conditions imposed invariably involve positive determi-
nants of matrices resulting in the indexes being positive. There are
univalence results where negative determinants play a role. For example, a

Ž � �.result of Inada see 18, p. 20 says that if f is a continuously differen-
Ž .tiable function on a rectangle K such that the Jacobian matrix Jf x is an

Ž .N-matrix it is one whose principle minors are all negative at all x � K ,
then f is one-to-one on K.

Ž . � �10 In 38 , Zangwill imposes conditions on a continuously differen-
tiable function that are different from Mas-Colell’s conditions to obtain
univalence on a set that is diffeomorphic to the closed unit ball of Rn.

Ž . n11 For a piecewise affine function defined on R , univalence can
be characterized by the ‘‘coherence orientation’’ of the collection of

� �matrices defining the function and an index condition; see 7 .

COROLLARY 1. Let K be a compact rectangle in Rn and f : K � Rn be
continuous. Then f is one-to-one on K under any one of the following
conditions:

Ž . Ž .a f is H -differentiable at each point of K ; for all a � int K , T aK K
Ž .consists of nonsingular P -matrices and for all a � bdy K , T a consists of0 K

P-matrices.
Ž . Žb f is locally Lipschitzian at each point of K ; for all a � int K the

. Ž .generalized Jacobian 	 f a consists of matrices with positi�e determinant and
Ž .for all a � bdy K , 	 f a consists of P-matrices.

Ž . Žc f is semismooth at each point of K ; for all a � int K the Bouli-
. Ž .gand differential 	 f a consists of nonsingular P -matrices and for allB 0
Ž .a � bdy K , 	 f a consists of P-matrices.B

Ž .d f is Frechet differentiable at each point of K ; at all a � int K , the´
Ž .Jacobian matrix Jf a has positi�e determinant and at all points of bdy K , the

Jacobian matrix is a P-matrix.

Proof. When a � int K , under each of the conditions above, the H -K
Ž .differentiability coincides with the H-differentiability; we may write T a

Ž .for T a . Also, at such an a, under each of the above conditions, byK
Ž .Proposition 3, index f , a is one. The univalence follows from the previous

theorem.

Ž . Ž .Remark. 12 The special case of d above for a continuously differ-
� �entiable f recovers a result of Garcia and Zangwill 6 and the rectangular

� �version of a result of Mas-Colell 15 . Thus we have answered a question
� �raised by Parthasarathy 18 whether Garcia and Zangwill’s result is valid

for differentiable functions.
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5.2. Uni�alence o�er Closed Rectangles

THEOREM 2. Suppose K is a closed rectangle in Rn, f : K � Rn is
Ž .continuous, and at all a � K , f is H -differentiable with T a consisting ofS K

P-matrices. Then f is one-to-one on K.

Ž .Proof. By part a of Corollary 1, f is one-to-one on each compact
rectangle contained in K. Hence f is one-to-one on K.

Ž .Remark. 13 As in Corollary 1, we can specialize f and deduce
various consequences of the above theorem. For example, if f is Frechet´

Ž . Ž .differentiable on the closed rectangle K and the Jacobian matrix Jf a is
a P-matrix at each point a � K , then f is univalent on K. Thus we recover
the Gale�Nikaido theorem.

5.3. Uni�alence o�er Open Rectangles

THEOREM 3. Suppose D is an open rectangle in Rn, L be a compact
subset of D, and f : D � Rn with the following properties.

Ž .a f is continuously differentiable at each point of L and determinant
Ž .Jf a � 0 for all a � L,

Ž . Ž .b at each a � D � L, f is H-differentiable with T a consisting of
P -matrices,0

Ž .c the set

E � a � D � L : T a contains a singular matrix� 4Ž .

Ž .is discrete i.e., e�ery point of E is isolated . Then f is uni�alent on D.

Ž .Proof. Since continuous or H- differentiability implies continuity, f is
Ž .continuous on �. By item a , for all small positive � , the determinant

Ž . Ž .Jf a � � I is positive at every point of L. For all such � , f x � � x is
Ž Ž . .H-differentiable on D � L with an H-differential � T a � � I consist-
Ž .ing of P-matrices. By Proposition 3, the index of f x � � x is positive at

any point of L. By application of Theorem 1, we see that for all small
Ž .positive � , f x � � x is univalent on any compact rectangle between L

and D and hence on D. It follows from the definition that f is weakly
Ž . Ž .univalent on D. Now for a fixed a � D, consider the equation f x � f a .

If there is a solution u of this equation that is not in E, then by
Proposition 2, u is an isolated solution and hence by Proposition 1, u is the
only solution in which case u � a. Now suppose that every solution of this

Žequation is in E. Since every point of E is isolated, a being an element of
. Ž . Ž .E is an isolated solution of the equation f x � f a . Once again, we

Ž . Ž .apply Proposition 1 to conclude that f x � f a has a unique solution,
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namely, a. Since a is arbitrary, we conclude that f is one-to-one. This
completes the proof of the theorem.

By taking L to be the empty set, we obtain the following corollary.

COROLLARY 2. Suppose D is an open rectangle in Rn and f : D � Rn is
Ž .H-differentiable at e�ery a � D with T a consisting of P -matrices. If the set0

Ž .of points a in D for which the corresponding T a contains a singular matrix is
Ž .discrete, then f is uni�alent on D. In particular, if T a consists of nonsingular

P -matrices for all a � D, then f is uni�alent on D.0

Ž .Remark. 14 The above theorem and its corollary are similar to the
following results.

� � n nChua and Lam 3, Theorem 2.1 . Let n � 2. Suppose f : R � R is
a continuously differentiable norm-coercive function with the property

Ž .that the determinant of Jf x is zero on a set of discrete points and
positive elsewhere. Then f is a homeomorphism of Rn.

2 2 Ž . Ž 2 2 .The function f : R � R defined by f x, y � x � y , 2 xy shows
that the above result is false for n � 2. We also note that for this function,

Ž .the index f , a is positive at any a.
� � n nParthasarathy 18, Theorem 2�, p. 48 . Suppose f : R � R is contin-

Ž . Ž .uously differentiable with det Jf x � 0 everywhere. If Jf x is a P -matrix0
at every point outside of a bounded rectangle, then f is one-to-one.

� � nParthasarathy 18, Theorem 2�, p. 48 . Let n � 2. Suppose f : R �
n Ž .R is continuously differentiable with det Jf x � 0 at all x except on a set

Ž . Ž .of isolated points where det Jf x � 0. Suppose further that Jf x is a
P -matrix at every point outside of a bounded rectangle. Then f is0
one-to-one.

Ž . Ž .Remark. 15 It is not clear if condition a in Theorem 3 can be
replaced by

a� At each point a � L, index f , a is defined and positive.Ž . Ž .

6. A SUFFICIENT CONDITION FOR MONOTONICITY

In this section, we give an interesting application of Theorem 2. Recall
that a function f : S 
 Rn � Rn is said to be monotone on S if for all x,
y � S,

² :f x � f y , x � y 	 0. 11Ž . Ž . Ž .

Ž .We say that f is strictly monotone if strict inequality holds in 11 for all
x � y in S.
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THEOREM 4. Let S be a con�ex set in Rn and f : S � Rn be H -differen-S
Ž .tiable at each point a of S with an H -differential T a consisting of positi�eS S

Ž . Ždefinite positi�e semidefinite matrices. Then f is strictly monotone respec-
.ti�ely, monotone on S.

Ž . Ž .We recall that a square matrix M is positive definite semidefinite if
Ž . Ž . nthe function f x � Mx is strictly monotone monotone on R .

Proof. We first prove the strict monotonicity of f under the assump-
Ž .tion that T a consists of positive definite matrices at every a � S.S

Suppose, if possible, that there are distinct points x and y in S such that

² :f x � f y , x � y � 0.Ž . Ž .

� �Define the function 
 : 0, 1 � R by

² :
 t � f y � t x � y � f y , x � y .Ž . Ž . Ž .Ž .

� �It is easily seen that 
 is H -differentiable at any point t* � 0, 1 with�0, 1�
an H -differential given by�0, 1�

² :T t* � A x � y , x � y : A � T y � t* x � y .� 4Ž . Ž . Ž .Ž .�0 , 1� S

Since every A is assumed to be positive definite and x � y, we see that
Ž .T t* consists only of positive numbers. By Theorem 2, 
 is one-to-one�0, 1�

� � Ž . Ž .on 0, 1 . But the continuity of 
 along with 
 0 � 0 and 
 1 � 0 clearly
contradicts this one-to-oneness. Thus f is strictly monotone on S. Finally

Ž .when T a consists of positive semidefinite matrices, we can apply theS
Ž .previous argument to the function f x � � x for any small positive � and

let � go to zero to conclude that f is monotone.

Ž .Remark. 16 The above result is well known for Frechet differen-´
tiable functions. For locally Lipschitz functions with the generalized Jaco-

� �bian as an H-differential, the result appears in 10 .

7. CONCLUDING REMARKS

In this paper, by introducing the concepts of H-differentiability and the
H-differential of a function, we have given sufficient conditions for a

Ž .function to be one-to-one on a compact�closed�open rectangle thus
generalizing the results of Gale and Nikaido, Garcia and Zangwill, Mas-
Colell, and Robinson to nonsmooth functions. It is worth pointing out that

� �in their paper 5 , Gale and Nikaido prove much more than univalence.
They actually show that if the Jacobian matrix of a Frechet differentiable´
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function f is a P-matrix at every point of a rectangle, then f is a
P-function on that rectangle; that is, for all x � y in the rectangle,

max x � y f x � f y � 0.Ž . Ž . Ž .i i i i
� 4i : x �yi i

This raises the question of whether the P-property can be established in
the nonsmooth situation as well. For an affirmative answer, we refer to

� �Song and Gowda 33 .
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