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Abstract

In a Euclidean Jordan algebra V of rank n which carries the trace inner product, to each

element a we associate the eigenvalue vector λ(a) in Rn whose components are the eigenvalues of

a written in the decreasing order. For any p ∈ [1,∞], we define the spectral p-norm of a to be the

p-norm of λ(a) inRn. In a recent paper, based on the K-method of real interpolation theory and

a majorization technique, we described an interpolation theorem for a linear transformation on

V relative to the same spectral p-norm. In this paper, using complex function theory methods,

we describe a Riesz-Thorin type interpolation theorem relative to two spectral p-norms. We

illustrate the result by estimating the norms of certain special linear transformations such as

Lyapunov transformations, quadratic representations, and positive transformations.
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1 Introduction

Consider a Euclidean Jordan algebra V of rank n which carries the trace inner product. To each

element a in V, we associate the eigenvalue vector λ(a) whose components are the eigenvalues of a

written in the decreasing order. For any p ∈ [1,∞], we define the spectral p-norm on V by

||a||p := ||λ(a)||p,

where the right-hand side is the usual p-norm of the vector λ(a) in Rn. This is a special case of a

spectral function on V which arises as the composition of a permutation invariant function on Rn

and λ [2, 9]. The spectral p-norm is analogous to the Schatten p-norm of a complex square matrix

(which is the p-norm of the vector of its singular values); In fact, the two norms coincide in the

setting of the algebras of n × n real/complex Hermitian matrices. While there is a large body of

literature on the singular values and Schatten norms [3], the non-associative nature of the Jordan

product in a Jordan algebra prevents one from routinely stating and proving results for spectral

p-norms. Yet, using novel techniques, several authors have studied spectral p-norms in general

Euclidean Jordan algebras. In an early paper on interior point algorithms over a symmetric cone

(which is the cone of squares in a Euclidean Jordan algebra), Schmieta and Alizadeh [12] describe

some properties of the (spectral) 2-norm (also called the Frobenius norm) and the ∞-norm. Using

majorization ideas, Tao et al. [13] show that || · ||p is a norm on V; see [2, 9] for related results. In

a recent paper [6], Gowda proves the Hölder type inequality ||x ◦ y||1 ≤ ||x||p ||y||q (where q is the

conjugate of p) and provides several references dealing with spectral p-norms.

The present paper deals with an interpolation theorem for a linear transformation on V relative to

spectral p-norms. Given r, s ∈ [1,∞] and a linear transformation T : V → V, we let

||T ||r→s := sup
a6=0

||T (a)||s
||a||r

.

In [6], based on the K-method of real interpolation theory [10], the following result was proved.

Theorem 1.1 Suppose 1 ≤ r, s, p ≤ ∞, 0 ≤ θ ≤ 1, and

1

p
=

1− θ
r

+
θ

s
. (1)

Then, for any linear transformation T : V → V,

||T ||p→p ≤ ||T ||1−θr→r ||T ||θs→s. (2)

In particular,

||T ||p→p ≤ ||T ||
1− 1

p
∞→∞ ||T ||

1
p

1→1. (3)

A key idea in the proof of the above result is the use of a majorization result that connects a

K-functional defined on V with a K-functional on an Lp-space. In [6], the issue of proving an
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inequality of the type (2) that deals with the norm of T relative to two spectral norms (such as

||T ||r→s) was raised. In the present paper, based on standard complex function theory methods

(especially, Hadamard’s three lines theorem) we prove the following Riesz-Thorin type interpolation

result.

Theorem 1.2 Let r0, r1, s0, s1 ∈ [1,∞] and θ ∈ [0, 1]. Consider rθ and sθ in [1,∞] defined by

1

rθ
=

1− θ
r0

+
θ

r1
and

1

sθ
=

1− θ
s0

+
θ

s1
.

Then, for any linear transformation T on V,

||T ||rθ→sθ ≤ C ||T ||
1−θ
r0→s0 ||T ||

θ
r1→s1 , (4)

where C is a constant, 1 ≤ C ≤ 4, that depends only on r0, r1, s0, s1.

Illustrating this result, we estimate the norms of some special linear transformations on V such as

Lyapunov transformations, quadratic representations, and positive transformations.

2 Preliminaries

Throughout this paper (V, ◦, 〈·, ·〉) denotes a Euclidean Jordan algebra of rank n with unit element

e [4], [8]. We let letters a, b, c, d, and v denote elements of V, x and y denote elements of Rn, and

write z for a complex variable. For a, b ∈ V, we denote their Jordan product and inner product by

a◦b and 〈a, b〉, respectively. It is known that any Euclidean Jordan algebra is a direct product/sum

of simple Euclidean Jordan algebras and every simple Euclidean Jordan algebra is isomorphic to

one of five algebras, three of which are the algebras of n × n real/complex/quaternion Hermitian

matrices. The other two are: the algebra of 3×3 octonion Hermitian matrices and the Jordan spin

algebra.

According to the spectral decomposition theorem [4], any element a ∈ V has a decomposition

a = a1e1 + a2e2 + · · ·+ anen,

where the real numbers a1, a2, . . . , an are (called) the eigenvalues of a and {e1, e2, . . . , en} is a

Jordan frame in V. (An element may have decompositions coming from different Jordan frames,

but the eigenvalues remain the same.) Then, λ(a), called the eigenvalue vector of a, is the vector

of eigenvalues of a written in the decreasing order. The trace and spectral p-norm of a are defined

by

tr(a) := a1 + a2 + · · ·+ an and ||a||p := ||λ(a)||p,

where ||λ(a)||p denotes the usual p-norm of a vector in Rn. An element a is said to be invertible if

all its eigenvalues are nonzero. We note that the set of invertible elements is dense in V. Throughout
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this paper, we assume that the inner product is the trace inner product, that is, 〈a, b〉 = tr(a ◦ b).

Given a spectral decomposition a =
∑n

j=1 ajej and a real number γ > 0, we write

|a| :=
n∑
j=1

|aj |ej , |a|γ :=

n∑
j=1

|aj |γej and ||a||1 =

n∑
j=1

|aj | = tr(|a|). (5)

In what follows, we say that q is the conjugate of p ∈ [1,∞] if 1
p + 1

q = 1 and denote the conjugate

of r ∈ [1,∞] by r′. Also, we use the standard convention that 1/∞ = 0.

Based on the Fan-Theobald-von Neumann type inequality [2]

〈a, b〉 ≤ 〈λ(a), λ(b)〉 (a, b ∈ V)

and majorization techniques, the following result was proved in [6].

Theorem 2.1 Let p ∈ [1,∞] with conjugate q. Then the following statements hold in V:

(i) |〈a, b〉| ≤ ||a ◦ b||1 ≤ ||a||p ||b||q.

(ii) supb 6=0
|〈a,b〉|
||b||q = ||a||p.

3 The proof of the interpolation theorem

The Riesz-Thorin interpolation theorem, stated in the setting of Lp-spaces, is well-known in clas-

sical analysis. There is also a Riesz-Thorin type result available for linear transformations on the

space of complex n × n matrices with respect to Schatten p-norms, see the interpolation theorem

of Calderón-Lions ([11], Theorem IX.20). Our Theorem 1.2 is stated in the setting of Euclidean

Jordan algebras relative to spectral p-norms. In the absence of an isomorphism type argument

that immediately gives our result, we offer a proof that mimics the classical proof based on the

Hadamard’s three lines theorem of complex function theory ([5], Theorem 6.27). In the proof given

below, we complexify the real inner product space V and define norms on this complexification

in such a way to have a Hölder type inequality. This procedure results in a constant C in the

Riesz-Thorin type inequality (4) that is different from 1. Possibly, a different argument may show

that this constant can be replaced by 1.

Recall that a and b denote elements of V and z denotes a complex variable. For x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) in Rn, we write x+ iy = (x1 + iy1, x2 + iy2, . . . , xn + iyn) ∈ Cn. Let T be

a linear transformation on V. We consider complexifications of V and T :

Ṽ := V + iV and T̃ (a+ ib) := T (a) + i T (b) (a, b ∈ V).
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We define the inner product and spectral p-norm on Ṽ as follows. For a, b, c, d ∈ V,

〈a+ ib, c+ id〉 :=
[
〈a, c〉+ 〈b, d〉

]
+ i
[
〈b, c〉 − 〈a, d〉

]
and ||a+ ib||p := ||a||p + ||b||p.

It is easily seen that Ṽ is a complex inner product space, T̃ is a (complex) linear transformation on

Ṽ. We state the following simple lemma.

Lemma 3.1 Consider Ṽ and T̃ as above. Let p ∈ [1,∞] with conjugate q, and r, s ∈ [1,∞]. Then,

(i) |〈a+ ib, c+ id〉| ≤ ||a+ ib||p ||c+ id||q for all a, b, c, d ∈ V, and

(ii) ||T̃ ||r→s = ||T ||r→s.
Proof. (i) By the definition of inner product in Ṽ and Theorem 2.1,

|〈a+ib, c+id〉| ≤ |〈a, c〉|+ |〈a, d〉|+ |〈b, c〉|+ |〈b, d〉| ≤ ||a||p ||c||q+ ||a||p ||d||q+ ||b||p ||c||q+ ||b||p ||d||q.

Since the right-hand side is ||a+ ib||p ||c+ id||q, the stated inequality follows.

(ii) For a, b ∈ V,

||T̃ (a+ ib)||s = ||T (a) + i T (b)||s = ||T (a)||s + ||T (b)||s ≤ ||T ||r→s(||a||r + ||b||r) = ||T ||r→s ||a+ ib||r.

This implies that ||T̃ ||r→s ≤ ||T ||r→s. The reverse inequality holds as T̃ is an extension of T to Ṽ.

Hence we have (ii).

We now come to the proof of Theorem 1.2. In what follows, for any p ∈ [1,∞] with conjugate q,

we let

Cp =

{ √
2 if 1 ≤ p ≤ 2,

2
1
q if 2 ≤ p ≤ ∞ .

Proof. Let the assumptions of the theorem be in place. Recalling that s′ denotes the conjugate of

(any) s ∈ [1,∞], we define

C := max{Cr0Cs′0 , Cr1Cs′1} (6)

which is a number between 1 and 4, and depends only on r0, r1, s0, s1. We show that (4) holds for

this C. Since (4) clearly holds when θ = 0 or θ = 1, from now on, we assume that 0 < θ < 1.

Let

αj :=
1

rj
, βj :=

1

sj
, and Mj := ||T ||rj→sj (j = 0, 1),

α :=
1

rθ
, β :=

1

sθ
, and Mθ := ||T ||rθ→sθ ,

and for a complex variable z,

α(z) := (1− z)α0 + zα1 and β(z) := (1− z)β0 + zβ1.
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We show that

Mθ ≤ CM1−θ
0 M θ

1 . (7)

Now, using Theorem 2.1, Item (ii),

Mθ = ||T ||rθ→sθ = sup
0 6=a∈V

||T (a)||sθ
||a||rθ

= sup
0 6=a,b∈V

|〈T (a), b〉|
||a||rθ ||b||s′θ

= sup
||a||rθ=1=||b||s′

θ

|〈Ta, b〉|.

To prove (7), it is enough to show that for any a and b in V with ||a||rθ = 1 = ||b||s′θ ,

|〈Ta, b〉| ≤ CM1−θ
0 M θ

1 . (8)

By continuity, it is enough to prove this for a and b invertible (that is, with all their eigenvalues

nonzero). We fix such a and b and write their spectral decompositions:

a =
n∑
j=1

|aj |εjej and b =
n∑
j=1

|bj |δjfj ,

where {e1, e2, . . . , en} and {f1, f2, . . . , fn} are Jordan frames, εj , δj ∈ {−1, 1} for all j, and ajs are

the eigenvalues of a, etc. Now, with the observation that 0 < α, β < 1, we define two elements in

Ṽ:

az :=
n∑
j=1

|aj |
α(z)
α εjej and bz :=

n∑
j=1

|bj |
1−β(z)
1−β δjfj ,

where we consider only the principal values while defining the exponentials. Then the function

φ(z) := 〈T̃ (az), bz〉

is continuous on the strip {z : 0 ≤ Re(z) ≤ 1} and analytic in its interior.

We estimate |φ(z)| on the lines Re(z) = 0 and Re(z) = 1 and then apply Hadamard’s three lines

theorem ([5], Theorem 6.27). First, suppose Re(z) = 0. Let

|aj |
α(z)
α = xj + i yj , x := (x1, x2, . . . , xn) ∈ Rn, and y := (y1, y2, . . . , yn) ∈ Rn.

Then, |xj + iyj | =
∣∣∣|aj |α(z)α ∣∣∣ = |aj |

α0
α . When r0 = ∞, that is, when α0 = 0, |xj + iyj | = 1 for all j

and hence (in Cn), ||x+ iy||r0 = 1. When, r0 <∞, |xj + iyj |r0 = |aj |rθ . So, because ||a||rθ = 1, we

have ||x+ iy||r0r0 =
∑n

j=1 |xj + iyj |r0 =
∑n

j=1 |aj |rθ = 1. Thus, in both cases,

||x+ iy||r0 = 1. (9)

Now, az =
∑n

j=1(xj + iyj)εjej = (
∑n

j=1 xjεjej) + i(
∑n

j=1 yjεjej) and so,

||az||r0 = ||
n∑
j=1

xjεjej ||r0 + ||
n∑
j=1

yjεjej ||r0 = ||x||r0 + ||y||r0 .
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In view of (9), from Proposition 4.1 in the Appendix, we have,

||az||r0 ≤ Cr0 .

Similarly, ||bz||s′0 ≤ Cs′0 . Hence, when Re(z) = 0, Lemma 3.1 gives

|φ(z)| ≤ ||T̃ (az)||s0 ||bz||s′0 ≤ ||T̃ ||r0→s0 ||az||r0 ||bz||s′0 ≤ ||T ||r0→s0 Cr0 Cs′0 = Cr0Cs′0 M0.

A similar computation shows that

Re(z) = 1⇒ |φ(z)| ≤ Cr1Cs′1M1.

By Hadamard’s three lines theorem,

|φ(θ)| ≤
(
Cr0Cs′0 M0

)1−θ (
Cr1Cs′1 M1

)θ
.

We recall that C = max{Cr0Cs′0 , Cr1Cs′1}. Now, aθ = a and bθ = b, and so, φ(θ) = 〈T (a), b〉. Hence,

|〈T (a), b〉| ≤ CM1−θ
0 M θ

1 .

This gives (8) and the proof is complete.

Remarks. Instead of the constant C defined in (6), one may consider a slightly better constant,

namely, max{(Cr0Cs′0)1−θ, (Cr1Cs′1)θ}. However, this constant depends on θ.

We now consider the problem of estimating the norms of certain special linear transformations on

V relative to spectral p-norms. First, we make two observations. Writing T ∗ for the adjoint of a

linear transformation T on V, we note, thanks to Theorem 2.1, that

||T ∗||r→s = ||T ||s′→r′ ,

where r′ denotes the conjugate of r, etc. Also, knowing the norms ||T ||1→1, ||T ||∞→∞, ||T ||1→p,
and ||T ||p→1, etc., one can estimate ||T ||r→s for various r and s. When r = s, (3) gives such an

estimate. In the result below, we consider the case r 6= s.

Corollary 3.2 Let 1 ≤ r 6= s ≤ ∞. Then, for any linear transformation T : V → V,

||T ||r→s ≤

 2
√

2 ||T ||1−
1
r∞→∞ ||T ||

1
r

1→ s
r

if r < s,

2
√

2 ||T ||1−
1
s∞→∞ ||T ||

1
s
r
s
→1 if r > s .

Proof. The stated inequalities are obtained by specializing Theorem 1.2. When r < s, we let

r0 =∞, s0 =∞, r1 = 1, s1 =
s

r
, rθ = r, sθ = s, and θ =

1

r
.

In this case, C = max{Cr0Cs′0 , Cr1Cs′1} = 2
√

2. When r > s, we let

r0 =∞, s0 =∞, r1 =
r

s
, s1 = 1, rθ = r, sθ = s, and θ =

1

s
.
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In this case also, C = 2
√

2.

Remarks. In the result above, by considering max{(Cr0Cs′0)1−θ, (Cr1Cs′1)θ}, one can replace the

constant 2
√

2 by the following:

(2
√

2)max{1− 1
r
, 1
r
} when r < s and (2

√
2)max{1− 1

s
, 1
s
} when r > s.

We now illustrate our results via some examples. For any a ∈ V, consider the Lyapunov transfor-

mation La and the quadratic representation Pa defined by

La(v) := a ◦ v and Pa(v) := 2a ◦ (a ◦ v)− a2 ◦ v (v ∈ V).

These self-adjoint linear transformations appear prominently in the study of Euclidean Jordan

algebras. The norms of these transformations relative to some spectral p-norms have been described

in [6]. For r, s ∈ [1,∞], we have

||a||∞ ≤ ||La||r→s and ||a2||∞ = ||a||2∞ ≤ ||Pa||r→s.

Additionally, for any p ∈ [1,∞] with conjugate q,

• ||La||p→p = ||La||p→∞ = ||La||1→q = ||a||∞ and ||La||p→1 = ||La||∞→q = ||a||q,

• ||Pa||p→p = ||Pa||p→∞ = ||Pa||1→q = ||a||2∞ and ||Pa||p→1 = ||Pa||∞→q = ||a2||q.

We now come to the estimation of ||La||r→s and ||Pa||r→s for r 6= s. First suppose 1 ≤ r < s ≤ ∞.

Then, using the above properties and the fact that for any x ∈ Rn, ||x||p is a decreasing function

of p over [1,∞], we have

||a||∞ ≤ ||La||r→s = sup
06=v∈V

||La(v)||s
||v||r

≤ sup
06=v∈V

||La(v)||r
||v||r

= ||La||r→r = ||a||∞.

Thus,

||La||r→s = ||a||∞ (1 ≤ r < s ≤ ∞).

A similar argument shows that

||Pa||r→s = ||a||2∞ (1 ≤ r < s ≤ ∞).

When 1 ≤ s < r ≤ ∞, Corollary 3.2 yields the following estimate:

||La||r→s ≤ 2
√

2 ||a||( r
s
)′ .

For the same s and r, we can get a different estimate

||La||r→s ≤ 2Cq ||a||p, (10)

where 1
p = 1

s −
1
r (so that p = s( rs)′) and q is the conjugate of p. To see this, we apply Theorem 1.2
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with

r0 =∞, s0 = p, r1 = q, s1 = 1, rθ = r, sθ = s, and θ =
q

r
.

Then,

||La||r→s ≤ C ||La||1−θ∞→p ||La||θq→1 = C ||a||p,

where C = max{Cr0Cs′0 , Cr1Cs′1} = 2Cq. To see an interesting consequence of (10), let 1 ≤ r, s, p ≤
∞ with r 6= s and 1

s = 1
p + 1

r . Then, using the inequality ||a ◦ b||s ≤ ||La||r→s ||b||r, the estimate

(10) leads to

||a ◦ b||s ≤ 2Cq ||a||p ||b||r (a, b ∈ V),

which can be regarded as a generalized Hölder type inequality. We remark that the special case

s = 1 was already covered in Theorem 2.1 with 1 in place of 2Cq. It is very likely that the inequality

||a ◦ b||s ≤ ||a||p ||b||r holds in the general case as well.

Analogous to the above norm estimates of La, we can estimate ||Pa||r→s when r > s (with p and q

defined above):

||Pa||r→s ≤ 2
√

2 ||a2||( r
s
)′ and ||Pa||r→s ≤ 2Cq ||a2||p.

We now consider a positive linear transformation P on V, which is a linear transformation on V
satisfying the condition

a ≥ 0⇒ P (a) ≥ 0,

where a ≥ 0 means that a belongs to the symmetric cone of V (or, equivalently, it is the square of

some element of V). Examples of such transformations include:

• Any nonnegative matrix on the algebra Rn.

• Any quadratic representation Pa on V [4].

• The transformation PA defined on Sn (the algebra of n × n real symmetric matrices) by

PA(X) = AXAT , where A ∈ Rn×n.

• The transformation P = L−1 on V, where L : V → V is linear, positive stable (which means

that all eigenvalues of L have positive real parts) and satisfies the Z-property:

a ≥ 0, b ≥ 0, 〈a, b〉 = 0⇒ 〈L(a), b〉 ≤ 0.

In particular, on the algebra Hn (of n× n complex Hermitian matrices), P = L−1A , where A

is a complex n× n positive stable matrix and LA(X) := AX +XA∗.

• Any doubly stochastic transformation on V [7]: It is a positive linear transformation P with

P (e) = e = P ∗(e).
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For any positive linear transformation P on V, and p ∈ [1,∞] with conjugate q, we have the

following from [6]:

(i) ||P ||∞→p = ||P (e)||p and ||P ||p→1 = ||P ∗(e)||q.

(ii) ||P ||p→∞ ≤ ||P (e)||∞ and ||P ||1→p ≤ ||P ∗(e)||∞.

(iii) ||P ||p→p ≤ ||P (e)||
1− 1

p
∞ ||P ∗(e)||

1
p
∞.

So, for a positive P , an application of Corollary 3.2 gives the following inequalities:

(i) ||P ||r→s ≤ 2
√

2||P (e)||1−
1
r∞ ||P ∗(e)||

1
r∞ when r < s.

(ii) ||P ||r→s ≤ 2
√

2||P (e)||1−
1
s∞ ||P ∗(e)||

1
s

( r
s
)′ when r > s.

Additionally, when P is also self-adjoint and r > s, analogous to (10), one can get the following

estimate:

||P ||r→s ≤ 2Cq ||P (e)||p.

4 Appendix

Proposition 4.1 Given p ∈ [1,∞] with conjugate q, consider the following real valued functions

defined over Rn ×Rn, n ≥ 2:

f(x, y) = ||x||p + ||y||p and g(x, y) = ||x+ iy||p.

Then,

max
{
f(x, y) : g(x, y) = 1

}
= Cp, (11)

where

Cp =

{ √
2 if 1 ≤ p < 2,

2
1
q if 2 ≤ p ≤ ∞ .

Proof. By the continuity of f and g, and the compactness of the constraint set, the maximum in

(11) is attained.

It is easy to see that the pair (x, y) with x = 2
− 1
p (1, 0, 0 . . . , 0) and y = 2

− 1
p (0, 1, 0 . . . , 0) satisfies

the (constraint) equation g(x, y) = 1. Hence

Cp ≥ f(x, y) = 2
1
q . (12)

Consider any pair (x, y) ∈ Rn×Rn with g(x, y) = 1. Writing x = (x1, x2, . . . , xn), etc., by Hölder’s

inequality, we have

||x||p + ||y||p ≤ 2
1
q

(
||x||pp + ||y||pp

) 1
p

= 2
1
q

( n∑
j=1

(|xj |p + |yj |p)
) 1
p
. (13)

10



We consider three cases.

Case 1: p = ∞. By (12), C∞ ≥ 2
1
q = 2 (as q = 1). Since |xj + iyj | ≤ 1 for all j (from our

constraint), we get ||x||∞, ||y||∞ ≤ 1; hence C∞ ≤ 2. We conclude that C∞ = 2.

Case 2: 2 ≤ p <∞.

In this case, we use the well-known Clarkson inequality for complex numbers z and w (see [1], page

163):

2(|z|p + |w|p) ≤ |z + w|p + |z − w|p.

Then, for each j, with z = xj and w = iyj , we have

2
(
|xj |p + |yj |p

)
≤ |xj + iyj |p + |xj − iyj |p.

Summing over j and noting |xj + iyj | = |xj − iyj |, we get

n∑
j=1

(
|xj |p + |yj |p

)
≤

n∑
j=1

|xj + iyj |p = g(x, y)p = 1.

It follows from (13) that ||x||p + ||y||p ≤ 2
1
q . As this holds for all (x, y) with g(x, y) = 1, we have

Cp ≤ 2
1
q . From (12) we conclude that Cp = 2

1
q .

Case 3: 1 ≤ p < 2.

Let δ := n
− 1
p 2−

1
2 . It is easy to see that the pair (x, y) with x = δ(1, 1, . . . , 1) = y satisfy the

constraint equation g(x, y) = 1. As f(x, y) =
√

2 we have, Cp ≥
√

2.

Now, as 1 ≤ p < 2, we use a refined version of Clarkson inequality presented in [1], Theorem 2.3:

2p−1(|z|p + |w|p) + (2− 2
p
2 ) min{|z + w|p, |z − w|p} ≤ |z + w|p + |z − w|p.

Then, for each j, with z = xj and w = iyj , we have

2p−1
(
|xj |p + |yj |p

)
+ (2− 2

p
2 ) min{|xj + iyj |p, |xj − iyj |p} ≤ |xj + iyj |p + |xj − iyj |p.

Simplifying this expression and summing over j, we get

n∑
j=1

(
|xj |p + |yj |p

)
≤ 21−

p
2

( n∑
j=1

|xj + iyj |p
)

= 21−
p
2 g(x, y)p = 21−

p
2 .

This leads, via (13), to

||x||p + ||y||p ≤ 2
1
q (21−

p
2 )

1
p =
√

2.

Now, taking the maximum of ||x||p + ||y||p over (x, y), we get Cp ≤
√

2. Thus, when 1 ≤ p < 2,

Cp =
√

2.
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This completes our proof.
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