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Abstract In the setting of a Euclidean Jordan algebra V with symmet-
ric cone V., corresponding to a linear transformation M, a ‘weight vector’
w € V,, and a ¢ € V, we consider the weighted linear complementarity prob-
lem wLCP(M,w,q) and (when w is in the interior of V, ) the interior point
system IPS(M, w, q). When M is copositive on V. and ¢ satisfies an interiority
condition, we show that both the problems have solutions. A simple conse-
quence, stated in the setting of R™ is that when M is a copositive plus matrix
and ¢ is strictly feasible for the linear complementarity problem LCP(M, q),
the corresponding interior point system has a solution. This is analogous to
a well-known result of Kojima et al. on P,-matrices and may lead to interior
point methods for solving copositive LCPs.
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1 Introduction

Motivated by the works of Potra [14,15], in a recent paper Chi et al. [1] studied
the weighted horizontal linear complementarity problem which is defined as
follows. Let (V,o0,{(-,-)) be a Euclidean Jordan algebra with symmetric cone
Vi [4]. Given two linear transformations A and B on V, a ‘weight vector’
w € V4, and a g € V, the weighted horizontal linear complementarity problem
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wHLCP(A, B,w,q) is to find (x,y) € V x V such that

z>0, y>0,
roy =w, (1)
Ax + By =g,

where z > 0 means that z € V., etc. This problem reduces to a horizontal
linear complementarity problem on V' when w = 0 and to the following ‘interior
point system’ when w > 0 (that is, when w is in the interior of V7 ):

z >0,y >0,
Toy=uw, (2)
Ax + By = q.

For the algebra V' = R™ (in which case, the Jordan product is the com-
ponentwise product), under the assumptions that {A, B} is a sufficient pair
(equivalently, a P,-pair) and q is strictly feasible, Potra [15] shows that
wHLCP (A, B, w, ¢q) has a solution for any w € V.. His proof consists in ap-
plying the Karush-Kuhn-Tucker conditions to an optimization problem over
a bounded sublevel set. For a general V, using degree-theoretic tools and
a weighted version of the Fischer-Burmeister map, Chi et al. ([1], Theorem
1) showed that when {4, B} is an Rg-pair and HLCP-deg(A4, B) is nonzero,
wHLCP(A, B, w, ¢q) has a nonempty compact solution set for every (w,q) €
V+ x V.

Specializing wHLCP (A, B,w,q) to A = —M and B = I (identity transfor-
mation), we get the weighted linear complementarity problem wLCP(M, w, q):
Find (x,y) € V x V such that

x>0,y >0,
ToyYy =w, (3)
y=Mzx+q.

When w > 0, this leads to the interior point system IPS(M, w, q):

z>0,y>0,
Toy=w, (4)
y=Mzx+q.

While the study of wLCPs is new (initiated in [14,15] and continued in
[1]), systems of the type (4) have appeared in interior point methods for solv-
ing linear complementarity problems and linear programming problems. In
particular, the following result of Kojima et al. stated in the setting of R™ is
well-known in the LCP literature:

Theorem 1 ([10], Lemmas 4.3 and 4.5) On R™, suppose the following con-
ditions hold for M and q:

(1) M is a Po-matriz (that is, all the principal minors of M are nonnegative).
(ii) q is strictly feasible, that is, there exists T > 0 such that MT + q > 0.
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(#it) For every real number ¢ > 0, the sublevel set
{(z,9):2>0,y>0, y= Mz +q, and (z,y) < c}
1s bounded.

Then, for any w > 0, the interior point system (4) has a unique solution.
In particular, this conclusion holds when M is a Py-matriz and q is strictly
feasible.

The proof of this result given in [10] consists in (a) showing that the map
(z,y) = x oy is one-to-one on the set {(z,y):x >0,y >0,y = Mx+q}, (b)
applying the invariance of domain theorem, and (¢) showing that a P,-matrix
satisfies conditions (¢) and (7).

Motivated by the above result of Kojima et al., we ask if a similar result
could be stated for other types of matrices, particularly for copositive matrices
which are matrices satisfying the condition (Mz,x) > 0 for all x > 0. Since the
Py-property is crucially used in Theorem 1 to prove the uniqueness part, we
can no longer expect uniqueness in our formulation. Foregoing uniqueness, but
working in a general Euclidean Jordan algebra setting, we show in Theorem
2 of this paper that (3) has a solution for any w > 0 and (4) has a solution
for any w > 0 when M is a copositive linear transformation and ¢ satisfies an
interiority condition that is somewhat stronger than the bounded sublevel set
condition (#i7) above. A simple consequence of this result, stated in the setting
of R™ is: If M is a copositive plus matriz and q is strictly feasible, then for any
w > 0, the weighted LCP (3) has a solution and for any w > 0, the interior
point system (4) has a solution. We anticipate that a result of this type may
lead to interior point methods for solving copositive linear complementarity
problems, see Remark 2.

The organization of the paper is as follows. In Section 2, we cover some pre-
liminary material dealing with the min and Fischer-Burmeister maps, coposi-
tive transformations, and degree theory. Our main result, Theorem 2, is pre-
sented in Section 3. An important corollary related to copositive star transfor-
mations will also be presented in this section. We provide an example to show
that Theorem 1 need not hold for semimonotone matrices.

2 Preliminaries

For most part, we follow the notation and basic results from [1]. For the sake
of completeness, we recall some here. Throughout this paper, we let (V, 0, (-, ))
denote a Euclidean Jordan algebra of rank n with symmetric cone Vi [4,8].
Here, z oy and (x,y) denote, respectively, the Jordan product and the inner
product of elements x and y. We let e denote the unit element of V. For a
subset S of V', the interior, closure, and boundary are respectively denoted by
int(S), S, and 9(S). We write conv(S) for the convex hull of S and cone(S) :=
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{Ax : A >0,z € S} is the conic hull of S. We say that a nonempty set S is
a cone if cone(S) C S. If x € V. (z € int(Vy)), we write x > 0 (respectively,
x > 0). For a real number «, we write a* := max{«, 0}. For x € V, 2" denotes

the projection of x onto V., and we let = := 2% — z, |z| := 2% + x~. These
can also be described via the spectral decomposition of z = >~ | z;e; (where
X1,T2,...,%, are the eigenvalues of z and {ej,eq,...,e,} is Jordan frame):

et =30 ate, |x| =3 |viles, ete. For x,y € V, we define
rMNy:=x—(z—y)*.

When V' = R" (with the usual componentwise product and the inner product),

this reduces to min{x,y}, the componentwise minimum of (vectors) = and y

in R™. The maps (z,y) — « My and

(z,y) = x4y — a2+ 92

will be called, respectively, the min map and the Fischer-Burmeister map.
Below, we collect some properties of these maps.

Proposition 1 ([1], Propositions 1 and 2) The following statements hold in
V:
() u+zNy=(u+2z)N(u+y).
(#3) MxMy) = xM Ay for all A > 0.
(ii7) The following are equivalent; in each case, x and y operator commute.
(@) xMy=0.
(b) >0,y >0, and (z,y) =0.
(¢) >0,y>0, andxoy=0.
(iv) When w > 0, the following statements are equivalent:
(1) 24+y— /22 +y>+2w=0.
(2) x>0,y>0, andxoy = w.
Moreover, when w = 0 or w = e (the unit element of V'), above x and y
operator commute.
(v) Let x,y € V and 0 <t < 1. Then, the following are equivalent:

() t{ery* \/:172+y2} +(1—t)[zNy]=0.
(B) zNy=0.
Note: The following implication, observed in [1] (page 164) will be useful in

transitioning from a weighted LCP to an interior point system:

{xEO,yannda:oy>0}éx>0andy>0.

2.1 Linear complementarity problems and copositive transformations

In this section, we recall definitions of various types of copositive (linear)
transformations and state some known results. Let H be a finite dimensional
real Hilbert space. For any set E in H, we define its dual by

E*:={zxe€H:{(x,yy >0forall y € E}.
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Given a closed convex cone K in H, a linear transformation M on H, and a
q € H, we define the linear complementarity problem, LCP(M, K, q), as the
problem of finding « € H such that

x€e€K, Mx+qe K", and (z, Mz +¢q) =0,

where K* denotes the dual of K in H. We denote the solution set of LCP(M, K, q)
by SOL(M, K, q). In addition, when H =V and K = V., we further abbrevi-
ate LCP(M,V,,q) and SOL(M,V,,q) by LCP(M, q) and SOL(M, q) respec-
tively. For the problem LCP(M,q), we say that ¢ is strictly feasible if there
exists T > 0 in V such that 57 := MT 4 ¢ > 0.

In what follows, we let S denote the solution set of LCP(M, K, 0), that is,
S:={reH:zxe€ K, MzeK* and(z, Mz) = 0}. (5)
Given H, K, and M as above, we say [5,3] that

(a) M is copositive on K if (x, Mz) > 0 for all z € K;
(b) M is copositive star on K if M is copositive on K and the implication

reES=-MTzeK*

holds, where M7 denotes the transpose of M:;
(¢) M is copositive plus on K if M is copositive on K and the implication

re K, (x,Mz)=0= (M+M")z,u) =0

holds for all u € K;
(d) M is monotone on H if (x, Mz) > 0 for all z € H.

It is easy to show that on K, every copositive plus transformation is copositive
star and every monotone M is copositive plus. Also, when K has nonempty
interior (e.g., when K =V, in H = V), M is copositive plus on K if and only
if it is copositive and

reK, (x,Mz)=0= (M + M%)z =0.

Copositive (plus, star) matrices are matrices that are copositive (respectively,
plus, star) on R .

We make a few remarks regarding relevance and importance of coposi-
tive matrices/transformations in the LCP theory. Since their introduction by
Motzkin in 1952, copositive matrices (and their generalizations) have appeared
in numerous areas such as game theory, optimization, engineering, statistics,
ete., see e.g., [2,3,9] for theory, methods, and applications. They first ap-
peared in the LCP literature in the 1960s in the works of Lemke (who was
credited for describing a simplex-like algorithm for solving certain copositive
LCPs), Cottle, and others, see [2]. Linear transformations that are copositive
over cones have useful and interesting LCP related properties, see Proposition
3 below; see [3] for their relevance and applications in variational inequality
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problems. Now-a-days, certain cones related to copositive matrices (such as
the copositive cone and completely positive cone) have become important in
conic programming.

In the result below, we consider a bounded sublevel set condition (like the
one that appears in Theorem 1) and relate it to an interiority condition.

Proposition 2 Let H, K, M, and q be as above. Let S be given by (5).
Consider the following statements.

(a) q € int(S*).
(b) 0#x€S=(q,x)>0.
(¢) For every real number ¢ > 0, the sublevel set

{(z,y):zec K,ye K*,y= Mz +q, and(z,y) < c}
s bounded in H x H.
Then, (a) < (b). When M is copositive on K, (b) = (c).

Proof. (a) = (b): Suppose ¢ € int(S*) and 0 # x € S. Then, for all small
positive e, ¢ — ex € S*. This implies that (¢ — ex,z) > 0, that is, (¢, z) >
el|z||? > 0.

(b) = (a): Assume that 0 £z € S = (¢, z) > 0. If S = {0}, then S* = H and
(a) holds trivially. So, assuming S # {0}, we let E :={z € S : ||z]| = 1}. As
S is closed, E is compact. Hence, conv(E), the convex hull of E, is compact
and convex. As S is a cone, from 0 # =z € S = (q,z) > 0 we see that
(q,y) > 0 for all y € F and so {(q,y) > 0 for all y € conv(E). This implies
that 0 ¢ conv(E). Then, the convex cone C := cone(conv(FE)) is closed. It
is easy to see that S* = C* and the condition 0 # = € S = (¢,x) > 0 is
equivalent to the condition 0 # x € C' = (g, x) > 0. A simple application of the
supporting hyperplane theorem shows that the latter condition is equivalent
to ¢ € int(C*) = int(S*).

(b) = (c): Assume that M is copositive on K. Suppose, for some real number
¢ > 0, the sublevel set in (¢) is unbounded. Without loss of generality, consider
an unbounded sequence xj such that zp € K, yp = Mxr +q € K*, and

(g, Mz + q) < c for all k = 1,2,.... We normalize zy, let k¥ — oo, and
assume (without loss of generality) that T = lim % to get

T e K, Mz € K*, and (T, MT) =0,

where the last equality follows from the copositivity of M. This means that
0 # T € S. Also, because M is copositive, the inequality (zy, Mz + q) < ¢
implies that (xg,q) < (zr, Mazr + q) < ¢ for all k = 1,2,.... This leads to
(T, q) < 0 which is the negation of (b). Hence, (b) = (¢) when M is copositive.
O

Proposition 3 The following statements hold:
(a) If M is copositive on K and q € int(S*), then LCP(M, K, q) has a solution.
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(b) If M is copositive star on K, then S* = K* — M(K).
(¢) Let H=V and K = V.. Suppose M be copositive star on Vi.. Then, q is
strictly feasible if and only if 0 #x € S = (g, z) > 0.

Remarks. (1) Items (a) and (b) are (essentially) proved in [6]; see also Propo-
sitions 2.5.11 and Lemma 2.5.2 in [3]. The ‘only if’ part of Item (c¢) can be
seen as follows: If 0 # 2 € S, then —M 72 > 0. Hence, writing ¢ =y — M(T)
where z > 0 and iy > 0, we have

(0, 2) = (F.2) — (M(T),2) = (7, 2) + (T,-M"z) > 0.

The ‘if’ part (which is not needed in the paper) can be proved by an application
of the separation theorem.

When H = R} and K = R, Item (a) can be improved: If M is copositive
on R} and ¢ € S*, then LCP(M, K, q) has a solution, see [2], Theorems 3.8.6,
4.4.13, and Remark 4.4.14. In the same setting, (b) can be improved: When
M is copositive star on R}, S* =R} — M(R’ ), see [2], Theorem 3.8.13.

2.2 Degree theory

We employ degree theoretic arguments to prove our main result. All neces-
sary results concerning degree theory are given in [3] (specifically, Proposition
2.1.3); see also, [12,13]. For completeness, we recall some standard notation
and properties.

Let £2 be a bounded open set in R", g : 2 — R™ be continuous, and
p & g(912). Then the degree of g over {2 with respect to p is defined; it is an
integer and will be denoted by deg(g, {2, p). One crucial property is:

When deg(g, 2,p) # 0, the equation g(x) = p has a solution in {2.

Suppose g(x) = p has a unique solution, say, z* in 2. Then deg(g, 2, p),
which is the same as deg(g, 2, g(z*)), is constant over all bounded open sets 2’
containing z* and contained in (2. This common degree, denoted by ind(g, z*),
is called the (topological) index of g at z*. If g is also differentiable at «* with
nonsingular derivative, then ([7], page 869)

ind(g,z*) = sgn det ¢'(z*). (6)

In particular, if g : R™ — R"™ is a continuous map such that g(z) = 0 < 2 = 0,
then for any bounded open set containing 0, we have

ind(g,0) = deg(g, £2,0);

moreover, when g is the identity map, ind(g,0) = 1.
A continuous map H(z,t) : R" x [0,1] — R™ is called a homotopy. Given
such an H, suppose that for some bounded open set 2 in R, 0 ¢ H(92,t)
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for all ¢ € [0,1]. Then, the homotopy invariance property of degree says that
deg (H(, t), 12, 0) is independent of ¢. In particular, if the zero set

{x : H(x,t) = 0 for some t € [0, 1]}

is bounded, then for any bounded open set {2 in R™ containing this zero set,
we have

deg(H(-,l),Q,O) - deg(H(~,O),Q,O).

Note: All of the above concepts and results are also valid over any finite
dimensional real Hilbert space (such as V or V' x V) in place of R”. When
it is required to show that the zero set of a map or a system of equations
is bounded, we frequently employ the so-called normalization argument. This
requires normalizing a sequence of vectors (with their norms going to infinity)
to produce a unit vector that violates a given criteria.

3 The main existence result

In what follows, we consider a Euclidean Jordan algebra V' with its symmetric
cone V.

Theorem 2 Let M be a linear transformation on 'V that is copositive on V..
We let S := SOL(M, 0) and q € V satisfy the implication

0#x€S=(qux)>0.

Then for any w > 0, wLCP (M, w, q) has a nonempty compact solution set. In
particular, if w > 0, then IPS(M,w,q) has a nonempty compact solution set.

Proof We fix w > 0 and assume that the implication 0 # x € S = (¢, z) > 0
holds. We show, by degree theoretic arguments that the system

T+y— 22 +y2+2w=0,

y— (Mzx+q)=0

has a nonempty compact solution set. This, in view of Item (iv) of Proposition
1, shows that wLCP(M, w, ¢) has a nonempty compact solution set.

We fix ad > 0. With z = (z,y) € V xV and ¢ € [0, 1], we define the following
map:

x4y — 22 +y? + 2w

F(z1) = y— [Mac—&- (1 —t)d—&-tq}

Clearly, F' is continuous in (z,t),

T4y — /22 +y?

F(z,0) := y—[Mx+d}

b
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and
r+y—x2+y?+2w
Fz1)= | Y Y
y— [M:z:+q]
Let

Z :={z: F(z,t) =0 for some t € [0,1]}.

We show by a normalization argument that Z is bounded. Suppose, if possible,
Z is unbounded. Let zy, := (v, yk), tx € [0,1] with ||zx|| — oo, and F(zx, ;) =
0 for all kK =1,2,.... Without loss of generality, we assume that ||zg|| — oo.
We also suppose that t;, — ¢ and

_ Tk
T := lim .
k—soco ||xg]|

Now, using Item (¢v) in Proposition 1 and F'(z, tx) = 0, we get the inequalities
g >0, Mz + (1 — tg)d + trq > 0 for all k. These lead to

T >0 and Mz > 0. (7)
Item (iv) in Proposition 1 also gives xy o [Mmk + (1 —t)d + tgq| = tpw. By
taking the inner product of this with e, we get, for all k,
(T, Mag) + (1 — t){xk, d) + ti(Th, @) =t (W, €). (8)
Dividing this by ||zx||? and taking the limit as k — oo, we get
(T, MT) = 0. (9)

Combining this with (7), we see that 0 # T € S. Now, M is copositive on V..
Hence, from (8),

(1 —te){(@r, d) + te(Tr, @) < tr (w,€)
for all k. Dividing this by ||zk|| and taking limit, we get
(1 =1)(z,d) + 1T, q) < 0.

However, this is not possible, as 0 # T € S and d > 0 imply that (Z,q) > 0
and (Z,d) > 0. Thus, the set Z is bounded.

Now consider the map

g t{x—i—y—\/:cQ-l—yQ}+(1—t)[;v|‘|y]
(1) = y— |:M1‘+d}

Clearly, H is continuous in (z,t),

My
H{(2,0) = ly [Mx+d]
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and

r+y—a? +y?

H(z1) = Yy — [M:E—&-d}

= F(z,0).

Suppose for some (z,t), H(z,t) = (0,0). Then,

t[x—!—y—\/a:Q—l—yQ} + (1 -ty =0,

which, by Item (v) of Proposition 1, implies that My = 0. We also have
y= Mz +d. Thus, x > 0,y > 0, and (z, Mx + d) = 0. Since M is copositive,
we get (x,d) = 0. We conclude that x = 0 (as d > 0). Hence, z = (0, M0+d) =
(0,d). Thus, the set

{z: H(z,t) =0 for some ¢ € [0,1]}

is bounded. Let {2 be a bounded open set in V' x V that contains the zero sets
of F and H. Then, by the homotopy invariance property of degree, we have

deg(F(-, 1), (z,o) - deg(F(-,0)7 9,0)
- deg(H(~, 1), 92, 0) - deg(H(~, 0), Q,o).

We now show that deg (H(-,O)7 0, O) is nonzero. First, we note (as observed

previously) that (0, d) is the only solution of H(x,t) = 0in 2. When z = (z,y)
is close to (0,d), x is close to 0 and y = Mz +d is close to d. Hence x — (Mxz+d)
is close to —d. Then, (x —y)™ = 0 and so x My = x. Thus, for z = (z,y) close
to (0, d),

zly
H(z,0) = [y (M2 +d]

The derivative of this at (0,d) is

e d

I 0

-M1I
which is clearly nonsingular. So, deg (H(-,O), .Q,O) (which, by (6), is the sign
of the determinant of the above derivative at (0,d)) is nonzero. Thus, we

have shown that deg (F(, 1), 82, O) is nonzero. This implies that the equation

F(z,1) = 0 has a solution and all solutions lie in the bounded open set 2. This
proves our first assertion about wLCP(M,w,q). The second assertion about
IPS(M, w, q) follows immediately (see the note following Proposition 1). O

Remarks. (2) The proof of the above theorem can be modified to get the
following.
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Suppose the conditions of the theorem hold and let B be a monempty bounded
subset of V.. Then, as w varies over B, the solution sets of

wLCP(M,w, q) are uniformly bounded. Also, as w varies over elements of B
that satisfy w > 0, the solution sets of IPS(M,w,q) are uniformly bounded.
This can be seen by modifying the definitions of F' and Z to include wy in
place of w and showing that the ensuing zero sets are uniformly bounded.

To see an application of this, suppose w > 0 and let ¢ | 0 in R. When the
conditions of the theorem are in place, the sequence (x,yy) satisfying the
conditions

zr > 0, yp > 0,
Tp O Yk = Ex W, (10)
Yk = Mxk: +q,

will have a subsequence that converges to a solution of LCP(M, q).

(3) We now compare the above theorem with a result in [1]. Suppose M sat-
isfies the Ro-property on Vi, that is, S = SOL(M,0) = {0}. Then, the map
g : © — x M Mz vanishes only at zero. When ind(g,0) is nonzero, Corollary
2 in [1] asserts that wLCP(M, w, q) has a solution for any w > 0 and ¢ € V
and IPS(M,w,q) has a solution for any w > 0 and ¢ € V. (In particular,
this conclusion holds for linear transformations satisfying the R-property, P-
property, or strictly copositive property.) Note that this is a ‘universal/global’
result as it holds for all ¢, while our Theorem 2 is an ‘individual/local’ re-
sult tailored to a particular q. When M is copositive on V and satisfies the
Ro-property, it is easy to show that ind(g,0) is nonzero by considering the

homotopy H(z,t) := x (th +(1- t):c) Thus, when the copositive trans-

formation has the Rg-property, the two results give the same conclusion.

We now state an important consequence of Theorem 2.

Corollary 1 Suppose M is copositive star on Vy (for example, M is coposi-
tive plus on Vi or monotone on'V) and q is strictly feasible. Then, the con-
clusions of the theorem hold.

Proof. Suppose M is copositive star on V. and q is strictly feasible. Then, by
Item (c) in Proposition 3, 0 # z € S = (¢, z) > 0. Since M is copositive on
V4, Theorem 2 holds. O

The following example shows that in the above theorem, the interiority
condition on ¢ cannot be weakened to a bounded sublevel set condition (such
as the one imposed in Item (c) of Theorem 1).

Example 1: In V = R? with V, = R2+7 let

we[] - [3]
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Then, M is copositive on Ri (as it is a nonnegative matrix), ¢ is strictly
feasible (that is for some T > 0, MZ + ¢ > 0), and for every ¢ > 0, the sublevel
set

{(z,y) :220,y>0,y=Mz+gq, (x,y) <c}

is bounded. However, corresponding to w = 0, the problem wLCP(M,w,q)
over R does not have a solution. Also, the IPS(M,w,q) with w = e (the
vector of ones) does not have a solution. We note that the above M is an Ep-
matrix (also called a semimonotone matrix [2]): For every nonzero z in R?,
there is an index ¢ such that

Z‘i(MJ?)i Z 0.

Hence, this example also shows that Theorem 1 fails to hold when the Py-
matrix condition is replaced by the Ey-matrix condition.

The following example shows that even in the monotone case, mere solv-
ability of a linear complementarity problem does not imply the solvability of
the corresponding interior point system.

Example 2: In V = R? with Vi =R?%, let

e [83] e o-[i)

Then, M (being positive semidefinite) is monotone on R?, hence copositive
plus on R?. Also, LCP(M, q) solvable (as zero is a solution). Yet, ¢ is not
strictly feasible and so IPS(M,w,q) with w being the vector of ones cannot
have a solution.
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