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In a Euclidean Jordan algebra V of rank n which carries the trace inner product, 
to each element x we associate the eigenvalue vector λ(x) whose components are 
the eigenvalues of x written in the decreasing order. For any p ∈ [1, ∞], we de-
fine the spectral p-norm of x to be the p-norm of λ(x) in Rn. In this paper, we 
show that ‖x ◦ y‖1 ≤ ‖x‖p ‖y‖q , where x ◦ y denotes the Jordan product of two ele-
ments x and y in V and q is the conjugate of p. For a linear transformation on V, 
we state and prove an interpolation theorem relative to these spectral norms. In 
addition, we compute/estimate the norms of Lyapunov transformations, quadratic 
representations, and positive transformations on V.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The classical Hölder and Minkowski inequalities, when stated in the setting of Rn, say that for two 
real vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) and for any p ∈ [1, ∞] with conjugate q (that is, 
p−1 + q−1 = 1),

∣∣∣ n∑
1

xiyi

∣∣∣ ≤ n∑
1

|xiyi| ≤ ‖x‖p ‖y‖q and ‖x + y‖p ≤ ‖x‖p + ‖y‖p,

where ‖x‖p denotes the p-norm of x, etc. Viewing Rn as a Euclidean Jordan algebra with Jordan product 
x ◦ y := (x1y1, x2y2, . . . , xnyn), inner product 〈x, y〉 =

∑n
1 xiyi, and components of x as eigenvalues of x, 

we may restate the above inequalities as

|〈x, y〉| ≤ ‖λ(x ◦ y)‖1 ≤ ‖λ(x)‖p ‖λ(y)‖q and ‖λ(x + y)‖p ≤ ‖λ(x)‖p + ‖λ(y)‖p,
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where λ(x) denotes the vector of eigenvalues (here, entries) of x written in the decreasing order, etc. 
Motivated by the appearance of inequalities of the above type in various matrix theory settings (especially 
for real symmetric or complex Hermitian matrices) and in the optimization literature over symmetric cones, 
we raise the issue of proving such inequalities over general Euclidean Jordan algebras. To elaborate, let 
(V, ◦, 〈·, ·〉) be a Euclidean Jordan algebra of rank n [5], [10]. We assume that V carries the trace inner 
product, that is, 〈x, y〉 := tr(x ◦ y). For each x ∈ V, we associate the eigenvalue vector λ(x) in Rn whose 
entries are the eigenvalues of x written in the decreasing order. For p ∈ [1, ∞], we define the spectral p-norm
on V by

‖x‖p := ‖λ(x)‖p,

where the right-hand side denotes the p-norm of the vector λ(x) in Rn. Using majorization ideas, a gen-
eralization of Thompson’s triangle inequality, and case-by-case analysis (of five types of simple Euclidean 
Jordan algebras), Tao et al., [20] have shown that ‖ · ‖p is a norm on V thereby establishing the Minkowski 
inequality in the setting of Euclidean Jordan algebras. For a comprehensive proof based on majorization 
and Schur-convexity theorem, see [13]. Regarding the Hölder inequality, Tao et al. [20] have also shown that 
the inequality |〈x, y〉| ≤ ‖x‖p ‖y‖q holds for all x and y when V is a simple Euclidean Jordan algebra. For 
p = 2, the inequality ‖x ◦ y‖1 ≤ ‖x‖2 ‖y‖2 was proved in [23] and [17]. Going beyond these special cases, in 
this paper we establish the inequalities

|〈x, y〉| ≤ ‖x ◦ y‖1 ≤ ‖x‖p ‖y‖q

over general Euclidean Jordan algebras. Our related contributions include an interpolation theorem for linear 
transformations on V relative to the spectral norms and computation/estimation of norms of Lyapunov 
transformations, quadratic representations, and positive transformations.

In the first part of our paper, we establish the following Hölder type inequality. To explain, we introduce 
a notation and a definition. Given any Jordan frame {e1, e2, . . . , en} in V, we consider the ordered Jordan 
frame E := (e1, e2, . . . , en) and write, for any x ∈ V,

λ(x) ∗ E :=
n∑
1

λi(x)ei.

We say that two elements x and y in V strongly operator commute if there is an ordered Jordan frame E
such that x = λ(x) ∗ E and y = λ(y) ∗ E .

Theorem 1.1. (A Hölder type inequality in Euclidean Jordan algebras) Let x, y ∈ V and p ∈ [1, ∞] with 
conjugate q. Then,

‖x ◦ y‖1 ≤ ‖x‖p ‖y‖q. (1)

Moreover, equality holds in (1) if and only if

(a) x and y ◦ ε strongly operator commute and
(b) 〈λ(x), λ(y ◦ ε)〉 = ‖λ(x)‖p ‖λ(y)‖q holds in Rn,

where x ◦ y has the spectral decomposition x ◦ y = (z1e1 + z2e2 + · · · + zkek) − (zk+1ek+1 + · · · + znen) for 
some k, 0 ≤ k ≤ n and zi ≥ 0 for all i, and ε := (e1 + e2 + · · · + ek) − (ek+1 + · · · + en).
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Our proof of the above result is based on the following generalization of the Fan–Theobald trace inequality 
of matrix theory (which is related to von Neumann’s trace inequality). The inequality (2) given below 
extends the so-called rearrangement inequality of Hardy, Littlewood, and Pólya when V = Rn [16] and the 
Fan–Theobald trace inequality [4], [22] when V = Sn or Hn (the algebras of n × n real/complex Hermitian 
matrices). For simple Euclidean Jordan algebras, this result has been observed in [14], [9]. Based on this 
simple algebra result, the rearrangement inequality, and the fact that any Euclidean Jordan algebra is a 
product of simple algebras, one can prove the general result. For a different and comprehensive proof, see [1].

Theorem 1.2. (A generalized Fan–Theobald trace inequality) Let x, y ∈ V. Then,

〈x, y〉 ≤ 〈λ(x), λ(y)〉. (2)

Moreover, equality holds in (2) if and only if x and y strongly operator commute.

In the second part of the paper, we compute/estimate the (spectral) norms of the Lyapunov transfor-
mation La defined by La(x) := a ◦ x, the quadratic representation Pa defined by Pa := 2L2

a − La2 , and a 
positive (linear) transformation defined by the condition x ≥ 0 ⇒ P (x) ≥ 0.

In the final part of the paper, we describe an interpolation theorem for a linear transformation on V
relative to the spectral norms. Based on the K-method of real interpolation theory [15], we show that

‖T‖p→p ≤ ‖T‖1−θ
r→r ‖T‖θs→s,

where T : V → V is a linear transformation with ‖T‖p→p denoting the norm of T relative to the spectral 
p-norm and real numbers r, s, p ∈ [1, ∞] are related by 1

p = 1−θ
r + θ

s for some θ ∈ [0, 1].

2. Preliminaries

The symbol Rn denotes the usual Euclidean n-space in which we regard elements as either row vectors or 
column vectors depending on the context. Throughout this paper, (V, ◦, 〈·, ·〉) denotes a Euclidean Jordan 
algebra of rank n and unit element e [5], [10], with x ◦ y denoting the Jordan product and 〈x, y〉 denoting 
the inner product of x and y in V. We specifically note that

〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V. (3)

For convenience, we use the same inner product notation in Rn (which carries the usual inner product) and 
in V.

It is known that any Euclidean Jordan algebra is a direct product/sum of simple Euclidean Jordan 
algebras and every simple Euclidean Jordan algebra is isomorphic one of five algebras, three of which are 
the algebras of n × n real/complex/quaternion Hermitian matrices. The other two are: the algebra of 3 × 3
octonion Hermitian matrices and the Jordan spin algebra. We let Sn (Hn) denote the algebra of all n × n

real symmetric (respectively, complex Hermitian) matrices.
According to the spectral decomposition theorem [5], any element x ∈ V has a decomposition

x = x1e1 + x2e2 + · · · + xnen,

where the real numbers x1, x2, . . . , xn are (called) the eigenvalues of x and {e1, e2, . . . , en} is a Jordan 
frame in V. (An element may have spectral decompositions coming from different Jordan frames, but the 
eigenvalues remain the same.) Then, λ(x)—called the eigenvalue vector of x—is the vector of eigenvalues 
of x written in the decreasing order. The trace and spectral p-norm of x are defined by
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tr(x) := x1 + x2 + · · · + xn and ‖x‖p := ‖λ(x)‖p,

where ‖λ(x)‖p denotes the usual p-norm of the vector λ(x) in Rn. (Note that ‖x‖p is the p-norm of any 
vector in Rn formed by x1, x2, . . . , xn.)

We use the notation x ≥ 0 (x ≤ 0, x > 0) when all the eigenvalues of x are nonnegative (respectively, 
nonpositive, positive). Also, x ≥ y (or y ≤ x) means that x − y ≥ 0. When x ≥ 0 and has the spectral 
decomposition x =

∑
xiei, we define 

√
x :=

∑√
xiei.

An element c in V is an idempotent if c2 = c. Corresponding to such an element, the Peirce decomposition 
of V is the orthogonal direct sum ([5], page 62 and Proposition IV.1.1)

V = V(c, 1) ⊕ V(c, 1
2) ⊕ V(c, 0),

where V(c, γ) := {x ∈ V : x ◦ c = γ x} and γ ∈ {0, 12 , 1}. Here V(c, 1) and V(c, 0) are subalgebras of V and 
V(c, 1) ◦V(c, 0) = {0}. There is another related Peirce decomposition of V: Corresponding to a Jordan frame 
{e1, e2, . . . , en}, let Vii := V(ci, 1) = R ei and for i �= j, Vij := V(ci, 12 ) ∩ V(cj , 12 ). Then V is the orthogonal 
direct sum of subspaces Vij ([5], Theorem IV.2.1). Hence any element x ∈ V has a Peirce decomposition: 
x =

∑
i≤j xij , where xij ∈ Vij .

Now, starting from the given inner product in V, one can define the trace inner product 〈x, y〉tr := tr(x ◦y)
on V which is also compatible with the given Jordan product ([5], Prop. II.4.3 and Prop. III.1.5). Various 
concepts/results/decompositions remain the same when the given inner product is replaced by the trace 
inner product; in particular, for an element in V, the spectral decomposition, eigenvalues, and trace remain 
the same. Under this trace inner product, the norm of any primitive element (such as an element in a Jordan 
frame) is one and so every Jordan frame becomes an orthonormal set. From now on, throughout this paper, 
we assume that the inner product is the trace inner product, that is, 〈x, y〉 = tr(x ◦ y).

Given a spectral decomposition a =
∑

aiei, we write

|a| :=
∑

|ai|ei and ‖a‖1 =
∑

|ai| = tr(|a|).

With this notation, we observe that

|〈x, y〉| = |tr(x ◦ y)| ≤ tr(|x ◦ y|) = ‖x ◦ y‖1. (4)

Recall that two elements x and y in V strongly operator commute if there is an ordered Jordan frame E
such that x = λ(x) ∗ E and y = λ(y) ∗ E . The terms ‘simultaneous order diagonalization’ and ‘similar joint 
decomposition’ have also been used in the literature [14], [1]. Note that this notion is stronger than the usual 
operator commutativity where it is required that x and y have their spectral decompositions with respect 
to a common Jordan frame (or equivalently, the linear operators Lx and Ly commute, where Lx(z) := x ◦ z, 
etc.) For example, in R2, the vectors x = (1, 0) and y = (0, 1) operator commute, but not strongly.

Given two (column) vectors p and q in Rn, we say that p is majorized by q and write p ≺ q if p = Aq

for some doubly stochastic matrix A ∈ Rn×n [16]. (So, A is a nonnegative matrix with every row and 
column sum one. By a well-known result of Birkhoff, a doubly stochastic matrix is a convex combination of 
permutation matrices, see [3].) For x, y ∈ V, we say that x is majorized by y and write x ≺ y if λ(x) ≺ λ(y)
in Rn. If f : Rn → R is a convex function and F := f ◦ λ, then (by the classical Schur-convexity theorem 
[16]), we have:

x ≺ y ⇒ F (x) ≤ F (y). (5)

See [13] for applications of this in Euclidean Jordan algebras.
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Throughout this paper, for a real number α, we let sgn α denote 1, 0, or −1 according as whether α is 
positive, zero, or negative.

3. Proof of Theorem 1.1

Toward establishing (1), we first prove a weaker inequality given below. It is a consequence of Theorem 1.2.

Proposition 3.1. Let x, y ∈ V and p ∈ [1, ∞] with conjugate q. Then,

|〈x, y〉| ≤ ‖x‖p ‖y‖q. (6)

Equality holds in (6) if and only if, with η := sgn 〈x, y〉,

(i) η x and y strongly operator commute and
(ii)

〈
λ(η x), λ(y)

〉
= ‖λ(η x)‖p ‖λ(y)‖q holds in Rn.

The inequality (6) for a simple algebra is noted in [20], Theorem 4.2. A partial result for the equality in 
a simple algebra is stated in [20], Corollary 4.2, where it is assumed that x, y ≥ 0.

Proof. Without loss of generality, let 〈x, y〉 �= 0. Since η := sgn 〈x, y〉 (which is 1 or −1), from Theorem 1.2
and the (classical) Hölder’s inequality in Rn, we have

|〈x, y〉| = 〈η x, y〉 ≤ 〈λ(η x), λ(y)〉 ≤ ‖λ(η x)‖p ‖λ(y)‖q = ‖x‖p ‖y‖q, (7)

where we note that ‖λ(η x)‖p = ‖x‖p. This proves the inequality (6). Suppose |〈x, y〉| = ‖x‖p ‖y‖q. Then, 
from (7), 〈η x, y〉 = 〈λ(η x), λ(y)〉. It follows from Theorem 1.2 that η x and y strongly operator commute. 
Also, from (7), we get the equality stated in (ii).

Now suppose conditions (i) and (ii) hold. Then, by an application of Theorem 1.2 and (ii) we see that 
the inequalities in (7) turn into equalities. �

We now come to the proof of Theorem 1.1. For the case of V = Sn (or Hn), the inequality (1) can 
be proved using known singular values inequalities: For an n × n real/complex matrix A, let σ(A) :=
(σ1(A), σ2(A), . . . , σn(A)) denote the vector of singular values of A (= the eigenvalues of 

√
A∗A) written 

in the decreasing order. Then, for any two matrices A and B, we have the inequalities 
∑n

1 σi(AB) ≤
〈σ(A), σ(B)〉 and 

∑n
1 σi(A + B) ≤

∑n
1 σi(A) +

∑n
1 σi(B) (see [12], Theorem 3.3.14 and Corollary 3.4.3). 

Using these, for any X, Y ∈ Sn or Hn, we see that

‖X ◦ Y ‖1 :=
n∑
1

|λi(X ◦ Y )| =
n∑
1

σi(X ◦ Y ) =
n∑
1

1
2σi(XY + Y X)

≤ 1
2

( n∑
1

σi(XY ) +
n∑
1

σi(Y X)
)
≤

〈
σ(X), σ(Y )

〉
≤ ‖σ(X)‖p ‖σ(Y )‖q = ‖λ(X)‖p ‖λ(Y )‖q.

The proof given below, based on majorization techniques, is comprehensive and avoids looking at particular 
cases of simple algebras.

Proof. We fix x, y ∈ V. If x ◦ y ≥ 0 or x ◦ y ≤ 0, then,

‖x ◦ y‖1 = tr(|x ◦ y|) = | tr(x ◦ y)| = |〈x, y〉| ≤ ‖x‖p ‖y‖q
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by Proposition 3.1. Moving away from these two cases, consider the spectral decomposition of x ◦ y which 
can be written in the following form: For some natural number k, 1 ≤ k < n,

x ◦ y = (z1e1 + z2e2 + · · · + zkek) − (zk+1ek+1 + · · · + znen),

where zi ≥ 0 for all i. Now, let ε := (e1+e2+ · · ·+ek) −(ek+1+ · · ·+en). Then, ε2 = e and |x ◦y| = (x ◦y) ◦ε. 
We now claim that

‖y ◦ ε‖q ≤ ‖y‖q. (8)

To see this, let c = e1 + e2 + · · · + ek. By the Peirce decomposition theorem [5], V is the orthogonal direct 
sum of V(c, 1), V(c, 12), and V(c, 0). Hence, we can write y = u + v + w, where u ∈ V(c, 1), v ∈ V(c, 12 ), and 
w ∈ V(c, 0). Since ε = 2c − e, an easy computation shows that

y ◦ ε = u− w.

As V(c, 1) ◦V(c, 0) = {0}, by working with the spectral decompositions of u in V(c, 1) (which is a Euclidean 
Jordan algebra of rank k) and w in V(c, 0) (which is a Euclidean Jordan algebra of rank n − k), we see 
that the eigenvalues of u − w consist of eigenvalues of u and −w; hence, λ(u − w) is just a permutation of 
the vector formed by λ(u) (which can be viewed as a vector in Rk) and −λ(w) (which can be viewed as a 
vector in Rn−k). A similar statement holds for u + w. Hence,

‖u− w‖q = ‖λ(u− w)‖q = ‖
[

λ(u)
−λ(w)

]
‖q = ‖

[
λ(u)
λ(w)

]
‖q = ‖λ(u + w)‖q = ‖u + w‖q.

Now, it is known (see [7], page 52) that

u + w ≺ y.

With f(ζ) := ‖ζ‖q for ζ ∈ Rn and F (a) := f(λ(a)) = ‖a‖q for a ∈ V, (5) implies

‖u + w‖q ≤ ‖y‖q.

It follows that

‖y ◦ ε‖q = ‖u− w‖q = ‖u + w‖q ≤ ‖y‖q,

proving (8).
Now,

‖x ◦ y‖1 = tr(|x ◦ y|) = 〈|x ◦ y|, e〉 = 〈(x ◦ y) ◦ ε, e〉 = 〈x, y ◦ ε〉, (9)

where the last equality is due to (3). So, by (2) and (8),

‖x ◦ y‖1 = 〈x, y ◦ ε〉 ≤ 〈λ(x), λ(y ◦ ε)〉 ≤ ‖x‖p ‖y ◦ ε‖q ≤ ‖x‖p ‖y‖q. (10)

This completes the proof of the inequality in the theorem. Now we justify the equality statement.
Suppose that ‖x ◦ y‖1 = ‖x‖p ‖y‖q. From (10) we have 〈x, y ◦ ε〉 = 〈λ(x), λ(y ◦ ε)〉. From Theorem 1.2, 

we get Item (a). Item (b) follows from (10). Conversely, suppose conditions (a) and (b) hold. Then, from 
Theorem 1.2 and (10), ‖x ◦ y‖1 = 〈x, y ◦ ε〉 = ‖x‖p ‖y‖q. �
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Theorem 3.2. Let p ∈ [1, ∞] with conjugate q. Then the following statements hold in V:

(i) |〈x, y〉| ≤ ‖x ◦ y‖1 ≤ ‖x‖p ‖y‖q.
(ii) supy �=0

|〈x,y〉|
‖y‖q

= supy �=0
‖x◦y‖1
‖y‖q

= ‖x‖p.
(iii) ‖x ◦ y‖p ≤ ‖x‖p ‖y‖∞.

Proof. (i) follows from (1) and (4). An immediate consequence of (i) is:

sup
y �=0

|〈x, y〉|
‖y‖q

≤ sup
y �=0

‖x ◦ y‖1

‖y‖q
≤ ‖x‖p. (11)

We now prove the reverse inequalities. Consider the spectral decomposition x =
∑

xiei =
∑

sgn(xi)|xi|ei. 
First, suppose p = ∞. Then, for 1 ≤ i ≤ n,

|xi| = |〈x, ei〉| = |〈x, ei〉|
‖ei‖1

≤ sup
y �=0

|〈x, y〉|
‖y‖1

,

hence ‖x‖∞ ≤ supy �=0
|〈x,y〉|
‖y‖1

. By (11), the reverse inequality also holds. Thus, (ii) holds when p = ∞.
Now, let u :=

∑
sgn(xi)|xi|

p
q ei when 1 < p < ∞ and u :=

∑
sgn(xi) ei when p = 1. We easily verify 

that |〈x, u〉| = ‖x ◦ u‖1 = ‖x‖p ‖u‖q. Thus, the inequalities in (11) turn into equalities, proving (ii) for 
1 ≤ p < ∞.

Now,

‖x ◦ y‖p = sup
z �=0

|〈x ◦ y, z〉|
‖z‖q

= sup
z �=0

|〈x ◦ z, y〉|
‖z‖q

≤ sup
z �=0

‖x ◦ z‖1 ‖y‖∞
‖z‖q

≤ ‖x‖p ‖y‖∞,

where the first equality comes from (ii), the first inequality comes from an application of (6), and the second 
inequality comes from (ii). This proves (iii). �
Remark 1. The above result shows that the spectral norms ‖ · ‖p and ‖ · ‖q on V are dual to each other. We 
also have the following inequalities:

‖x ◦ y‖1 ≤ ‖x‖1 ‖y‖∞ and ‖x ◦ y‖∞ ≤ ‖x‖∞ ‖y‖∞.

The first inequality has been observed in [21] in a simple algebra setting based on a case-by-case analysis.

4. Pointwise inequalities for positive transformations

Given a ∈ V, we define the corresponding Lyapunov transformation La and quadratic representation Pa

on V by

La(x) := a ◦ x and Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x (x ∈ V).

Now, expressed in terms of La, Theorem 1.1 says that

‖La(x)‖1 ≤ ‖x‖p ‖a‖q

for all a, x ∈ V and p ∈ [1, ∞] with conjugate q. In this section, we consider such inequalities for quadratic 
representations and more generally for the so-called positive transformations. Recall that a linear transfor-
mation P : V → V is said to be a positive transformation [7] if
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x ≥ 0 ⇒ P (x) ≥ 0.

Writing P ∗ for the adjoint/transpose of a linear transformation P , we note that if P is positive, then P ∗ is 
also positive as 〈P ∗(z), y〉 = 〈z, P (y)〉 ≥ 0 for all y, z ≥ 0.

Here are some examples of positive transformations:

• Any nonnegative matrix on the algebra Rn.
• Any quadratic representation Pa on V [5].
• For any A ∈ Rn×n, the transformation P defined on Sn by P (X) := AXAT .
• P = L−1 on V, where L : V → V is linear, positive stable (which means that all eigenvalues of L have 

positive real parts) and satisfies the Z-property [8]:

x ≥ 0, y ≥ 0, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0.

Specifically,
(i) On the algebra Rn, P = A−1, where A is a positive stable Z-matrix (meaning that its off-diagonal 

entries are nonpositive);
(ii) On the algebra Hn, P = L−1

A , where A is a complex n × n positive stable matrix and LA(X) :=
AX +XA∗. The transformation LA (also called a Lyapunov transformation) appears in dynamical 
systems.

• P is a doubly stochastic transformation on V [7]. This means that P is positive and P (e) = e = P ∗(e). 
Being a generalization of a doubly stochastic matrix, such a transformation has the following property 
([7], Theorem 6):

x = P (y) ⇒ x ≺ y.

• ‘Schur product’ induced transformation P defined as follows ([11], Proposition 2.2): Fix a positive 
semidefinite matrix A = [aij ] ∈ Sn and a Jordan frame {e1, e2, . . . , en} in V. Corresponding to this 
Jordan frame, we write the Peirce decomposition ([5], Theorem IV.2.1) of any x ∈ V: x =

∑
i≤j xij . 

Then,

P (x) := A • x =
∑
i≤j

aijxij .

It is known ([7], Example 8) that if such an A has all ones on its diagonal, then P is doubly stochastic.

The following result gives pointwise estimates for positive transformations.

Theorem 4.1. Let P be a positive transformation on V. For any x ∈ V and p ∈ [1, ∞] with conjugate q, we 
have

(a) ‖P (x)‖1 ≤ ‖x‖p ‖P ∗(e)‖q. In particular, ‖P (x)‖1 ≤ ‖x‖1 ‖P ∗(e)‖∞.
(b) ‖P (x)‖p ≤ ‖x‖∞ ‖P (e)‖p. In particular, ‖P (x)‖∞ ≤ ‖x‖∞ ‖P (e)‖∞.

Proof. (a) We start with the observation that when u ≤ v and −u ≤ v in V, we have ‖u‖1 ≤ ‖v‖1. This 
is easy to see: Writing the spectral decomposition u =

∑
uiei, we have ui = 〈u, ei〉 ≤ 〈v, ei〉 and similarly, 

−ui ≤ 〈v, ei〉; thus, |ui| ≤ 〈v, ei〉 for all i and so,

‖u‖1 = tr(|u|) ≤
∑

〈v, ei〉 = 〈v, e〉 = tr(v) = ‖v‖1
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as v ≥ 0. Now, for any x ∈ V, x ≤ |x| and −x ≤ |x|; hence using the positivity of P , P (x) ≤ P (|x|) and 
−P (x) ≤ P (|x|) and so

‖P (x)‖1 ≤ ‖P (|x|)‖1 =
〈
P (|x|), e

〉
=

〈
|x|, P ∗(e)

〉
≤

〈
λ(|x|), λ(P ∗(e))

〉
≤ ‖x‖p ‖P ∗(e)‖q,

where the second inequality comes from (2) and the last inequality is just the classical Hölder’s inequality.
(b) Since P is a positive transformation, P ∗ is also positive. Hence, by applying (a) to P ∗ and y, we get 
‖P ∗(y)‖1 ≤ ‖y‖q ‖P (e)‖p. Now, by an application of (6), we get

‖P (x)‖p = sup
y �=0

|〈P (x), y〉|
‖y‖q

= sup
y �=0

|〈x, P ∗(y)〉|
‖y‖q

≤ sup
y �=0

‖x‖∞ ‖P ∗(y)‖1

‖y‖q
≤ ‖x‖∞ ‖P (e)‖p. �

Here are some illustrations of the above theorem.

• Let A ∈ Rn×n and consider the positive transformation P on Sn defined by P (X) := AXAT . Then, for 
any X ∈ Sn, P ∗(X) := ATXA. So, with e = I (the identity matrix), we have the inequalities

‖AXAT ‖1 ≤ ‖X‖p ‖ATA‖q and ‖AXAT ‖p ≤ ‖X‖∞ ‖AAT ‖p.

• Let A = [aij ] ∈ Sn be positive semidefinite. Then, considering the ‘Schur product’ positive transforma-
tion X �→ A •X, we have, for any X ∈ Sn,

ρ(A •X) = ‖A •X‖∞ ≤ ‖X‖∞ ‖A • I‖∞ = ‖X‖∞ ( max
1≤i≤n

|aii|) = ρ(X) ρ(diag(A)),

where ρ(X) denotes the spectral radius of X and diag(A) := A • I with I denoting the identity matrix. 
We remark that eigenvalue and spectral radius inequalities for the Schur/Hadamard product have been 
well-studied in the matrix theory literature.

We now specialize the above result to Pa. It is well-known that Pa is self-adjoint and positive. Moreover, 
Pa(e) = a2. Hence, we have the following: For any a, x ∈ V and p ∈ [1, ∞] with conjugate q,

‖Pa(x)‖1 ≤ ‖x‖p ‖a2‖q and ‖Pa(x)‖p ≤ ‖x‖∞ ‖a2‖p.

As we see below, some finer inequalities can be obtained.

Theorem 4.2. For any a, x ∈ V,

Pa(x) ≺ a2 ◦ x. (12)

Hence, for any p ∈ [1, ∞] with conjugate q,

‖Pa(x)‖1 ≤ ‖a2 ◦ x‖1 ≤ ‖x‖p ‖a2‖q and ‖Pa(x)‖p ≤ ‖a2 ◦ x‖p ≤ ‖x‖∞ ‖a2‖p. (13)

Proof. The inequalities in (13) follow from (12) by an application of (5) (with f denoting the usual p-norm 
on Rn) and Theorem 3.2. We now prove (12). Since Pa(x) ≺ a2 ◦ x means that λ(Pa(x)) ≺ λ(a2 ◦ x), by 
continuity of the eigenvalue map λ and the compactness of the set of all n × n doubly stochastic matrices, 
it is enough to prove (12) when a is invertible (that is, all eigenvalues of a are nonzero). So, assume that a
is invertible. Then, we have the formula (see [19], Lemma 8, Item 3)

Pa,a−1Pa = La2 ,
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where Pa,a−1 := LaLa−1 + La−1La − La ◦ a−1 . By Lemma 7.1 in the Appendix, the linear transformation 
Pa,a−1 is invertible and its inverse, (Pa,a−1)−1, is doubly stochastic. Now, writing

Pa(x) = (Pa,a−1)−1(a2 ◦ x)

and invoking Theorem 6 in [7], we see that Pa(x) ≺ a2 ◦ x. �
We now mention some consequences of the majorization inequality (12).

(1) Writing λmax(u) and λmin(u) for the maximum and minimum of eigenvalues of u, we have

λmax(Pa(x)) ≤ λmax(a2 ◦ x) and λmin(Pa(x)) ≥ λmin(a2 ◦ x).

(2) When a ≥ 0, we have P√
a(x) ≺ a ◦x. Such a majorization inequality was proved in [17] on a case-by-case 

basis under the assumptions that V is simple, a > 0, x > 0, and a ◦ x > 0.
(3) When a ≥ 0, for any real number μ, P√

a(x) −μe ≺ a ◦x −μe. It follows from (5) that for any p ∈ [1, ∞],

‖P√
a(x) − μe‖p ≤ ‖a ◦ x− μe‖p.

Such inequalities, for p ∈ {2, ∞}, appear in interior point methods, see e.g., [19], Lemma 30.

5. Norms of Lyapunov transformations, quadratic representations, and positive transformations

In a recent paper [7], it was shown that for a positive transformation P on a Euclidean Jordan algebra, 
the infinity norm of P is attained at the unit element. This result applies to the quadratic transformation 
Pa and the inverse of a positive stable Z-transformation [8] on a Euclidean Jordan algebra. In this section, 
we consider calculating the norms of the Lyapunov transformation La, the quadratic representation Pa, and 
positive transformations relative to spectral norms. We remark that questions related to the norm of the 
Lyapunov transformation LA on Sn (defined by LA(X) := AX + XAT for A ∈ Rn×n) arise in connection 
with stability of dynamical systems, see [6] and citations therein.

Given a linear transformation T : V → V, and r, s ∈ [1, ∞], we define the norm of the operator
T : (V, ‖ · ‖r) → (V, ‖ · ‖s) by

‖T‖r→s := sup
x�=0

‖T (x)‖s
‖x‖r

.

By the duality of norms (see Theorem 3.2), we immediately see that

‖T‖r→s = ‖T ∗‖s′→r′ ,

where T ∗ denotes the adjoint/transpose of T and r′ (s′) denotes the conjugate of r (respectively, of s).
Now consider the spectral decomposition a =

∑
aiei. Then,

La(ei) = aiei and Pa(ei) = a2
i ei

for all i. For any r, s ∈ [1, ∞], ‖ei‖r = ‖ei‖s = 1 and so, |ai| = ‖aiei‖s = ‖a ◦ ei‖s ≤ ‖La‖r→s ‖ei‖r =
‖La‖r→s. Taking the maximum over i, we see that

‖a‖∞ ≤ ‖La‖r→s (r, s ∈ [1,∞]). (14)
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Similarly,

‖a2‖∞ = ‖a‖2
∞ ≤ ‖Pa‖r→s (r, s ∈ [1,∞]). (15)

Theorem 5.1. For any a ∈ V and p ∈ [1, ∞] with conjugate q, the following statements hold:

(i) ‖La‖∞→q = ‖La‖p→1 = ‖a‖q.
(ii) ‖La‖1→q = ‖La‖p→∞ = ‖a‖∞.

(iii) ‖La‖p→p = ‖a‖∞.

Proof. (i) As La is self-adjoint, the first equality comes from the duality of norms. The second equality is 
immediate from Item (ii) in Theorem 3.2.
(ii) The first equality is due to the duality of norms. Now for the second equality. We have, from Remark 1, 
‖a ◦ x‖∞ ≤ ‖a‖∞ ‖x‖∞. As ‖x‖∞ ≤ ‖x‖p, we see that ‖a ◦ x‖∞ ≤ ‖a‖∞ ‖x‖p and so, ‖La‖p→∞ ≤ ‖a‖∞. 
On the other hand, ‖a‖∞ ≤ ‖La‖p→∞ from (14). This proves the equality ‖La‖p→∞ = ‖a‖∞.
(iii) From Theorem 3.2(iii), ‖a ◦x‖p ≤ ‖x‖p ‖a‖∞. From this, we get ‖La‖p→p ≤ ‖a‖∞. On the other hand, 
‖a‖∞ ≤ ‖La‖p→p from (14). Thus, ‖a‖∞ = ‖La‖p→p. �
Theorem 5.2. Let P be a positive transformation on V and p ∈ [1, ∞] with conjugate q. Then,

(i) ‖P‖∞→p = ‖P (e)‖p and ‖P‖p→1 = ‖P ∗(e)‖q.
(ii) ‖P‖p→∞ ≤ ‖P (e)‖∞ and ‖P‖1→p ≤ ‖P ∗(e)‖∞.

Proof. (i) From Theorem 4.1(b), ‖P (x)‖p ≤ ‖x‖∞ ‖P (e)‖p with equality when x = e. Hence ‖P‖∞→p =
supx�=0

‖P (x)‖p

‖x‖∞
= ‖P (e)‖p. The dual version of this gives the second statement in (i).

(ii) From Theorem 4.1(b), we have ‖P (x)‖∞ ≤ ‖x‖∞ ‖P (e)‖∞ ≤ ‖x‖p ‖P (e)‖∞. This gives ‖P‖p→∞ ≤
‖P (e)‖∞. The second statement is the dual version of this. �
Remark 2. The above result shows that for a positive transformation on V, ‖P‖1→1 ≤ ‖P ∗(e)‖∞ and 
‖P‖∞→∞ ≤ ‖P (e)‖∞. Using Theorem 6.1 (see the next section), for any p ∈ [1, ∞] we have

‖P‖p→p ≤ ‖P ∗(e)‖
1
p
∞ ‖P (e)‖1− 1

p
∞

and when P is self-adjoint, ‖P‖p→p ≤ ‖P (e)‖∞. To see a special case, suppose L : V → V is linear, positive 
stable, and satisfies the Z-property (see Section 3 for definitions). Then,

‖L−1‖p→p ≤ ‖(L∗)−1(e)‖
1
p
∞ ‖L−1(e)‖1− 1

p
∞ .

In particular, by taking V = Hn and L = LA with A positive stable (see Section 3), we can estimate 
‖L−1

A ‖p→p. See [2] for a discussion of this type of an estimate on the space of all n × n complex matrices.

For quadratic representations, we can compute the norms precisely.

Theorem 5.3. For any a ∈ V and p ∈ [1, ∞] with conjugate q, the following statements hold:

(i) ‖Pa‖p→1 = ‖Pa‖∞→q = ‖a2‖q.
(ii) ‖Pa‖1→p = ‖Pa‖q→∞ = ‖a‖2

∞.
(iii) ‖Pa‖p→p = ‖a‖2

∞.
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Proof. (i) Since Pa is self-adjoint and Pa(e) = a2, this comes from the previous theorem, Item (i).
(ii) From Item (ii) in the previous theorem, ‖Pa‖1→p = ‖Pa‖q→∞ ≤ ‖a‖2

∞. The reverse inequality follows 
from (15).

As a consequence of Item (ii), ‖Pa‖1→1 = ‖a‖2
∞ = ‖Pa‖∞→∞. By invoking Theorem 6.1 (see the 

next section), we see that ‖Pa‖p→p ≤ ‖a‖2
∞. Since the reverse inequality also holds, see (15), we have 

‖Pa‖p→p = ‖a‖2
∞. �

6. An interpolation theorem

In this section, we prove the following interpolation theorem for a linear transformation on V with respect 
to the spectral norms.

Theorem 6.1. Suppose 1 ≤ r, s, p ≤ ∞, 0 ≤ θ ≤ 1, and

1
p

= 1 − θ

r
+ θ

s
. (16)

Then, for any linear transformation T : V → V we have

‖T‖p→p ≤ ‖T‖1−θ
r→r ‖T‖θs→s. (17)

In particular,

‖T‖p→p ≤ ‖T‖
1
p

1→1 ‖T‖1− 1
p

∞→∞.

There are numerous interpolation theorems in analysis, two classical ones being the Riesz–Thorin and 
Marcinkiewicz interpolation theorems. The interpolation theorems are usually proved using either the real 
or the complex methods. We present a proof of the above theorem using the K-method of real interpolation 
theory [15]. While the above result deals with the norm of T relative to the same spectral norm (such as 
‖T‖p→p), we anticipate a broader result similar to the Riesz–Thorin theorem that deals with the norm of 
T relative to two spectral norms (such as ‖T‖p0→p1). We note that a Riesz–Thorin type result is available 
for linear transformations on the space of complex n × n matrices with respect to Schatten p-norms, see 
the interpolation theorem of Calderón–Lions ([18], Theorem IX.20). A key idea in our proof is the use of a 
majorization result that connects a K-functional defined on V to a K-functional on an Lp-space.

Before presenting the proof, we describe some background material. Corresponding to our Euclidean 
Jordan algebra V of rank n, we let Ω := {1, 2, . . . , n} and μ denote the measure on (the power set of) Ω with 
μ({k}) = 1 for all k ∈ Ω. Let Lp(Ω) (abbreviated as Lp) denote the corresponding Lebesgue measure space 
(consisting, for our consideration, only of real valued functions). We regard any element f in Lp(Ω) either 
as an n-tuple or as a real valued function on Ω. We let ‖f‖p denote the usual p-norm of f . We assume the 
notation/conditions of Theorem 6.1. We will use the following abbreviations:

Vr := (V, ‖ · ‖r), Vs := (V, ‖ · ‖s), Mr := ‖T‖r→r, and Ms := ‖T‖s→s.

For any real number t > 0, x ∈ V, and f : Ω → R, we consider all possible decompositions x = a + b with 
a, b ∈ V and f = g + h with g, h : Ω → R, and define the K-functionals:

K(t, x, Vr, Vs) := inf
{
‖a‖r + t ‖b‖s : x = a + b

}
,

and
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K(t, f, Lr, Ls) := inf
{
‖g‖r + t ‖h‖s : f = g + h

}
.

We describe/recall some preliminary results.

Proposition 6.2. ([15], Definition 1.2 and Example 1.27) Suppose 1 ≤ r, s, p ≤ ∞, r < s, 0 < θ < 1, and

1
p

= 1 − θ

r
+ θ

s
.

Then, for any f : Ω → R,

‖f‖p =
[ ∞∫

0

(
t−θK(t, f, Lr, Ls)

)p dt

t

] 1
p

.

The following can be regarded as a majorization result. In a simple Euclidean Jordan algebra, it is known 
that λ(a + b) ≺ λ(a) + λ(b) [9] so that λ(a + b) = A(λ(a) + λ(b)) for some doubly stochastic matrix A. For 
a general Euclidean Jordan algebra, we have the following.

Proposition 6.3. ([13], Proposition 8) Given a, b ∈ V, there exist doubly stochastic matrices A and B in 
Rn×n such that

λ(a + b) = Aλ(a) + Bλ(b).

Based on the above majorization result, we connect the two K-functionals defined earlier.

Lemma 6.4. For any t > 0 and x ∈ V, we have

K(t, x, Vr, Vs) = K(t, λ(x), Lr, Ls).

Proof. We fix x ∈ V and consider the decomposition x = a + b. By Proposition 6.3,

λ(x) = Aλ(a) + Bλ(b),

where A and B are doubly stochastic matrices in Rn×n. Let g := Aλ(a) and h := Bλ(b) so that

λ(x) = g + h.

As A and B are convex combinations of permutation matrices (by Birkhoff’s Theorem [3]), we see that 
‖g‖r ≤ ‖λ(a)‖r = ‖a‖r and ‖h‖s ≤ ‖λ(b)‖s = ‖b‖s. Hence, for any t > 0,

K(t, λ(x), Lr, Ls) ≤ ‖g‖r + t ‖h‖s ≤ ‖a‖r + t ‖b‖s.

As this holds for any decomposition x = a + b, taking the infimum,

K(t, λ(x), Lr, Ls) ≤ K(t, x, Vr, Vs).

Now for the reverse inequality. Consider any decomposition λ(x) = g+h where g, h : Ω → R. Corresponding 
to the spectral decomposition x =

∑
λi(x)ei, we define

a :=
∑

g(i)ei and b :=
∑

h(i)ei.
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Then, x = a + b in V. So,

K(t, x, Vr, Vs) ≤ ‖a‖r + t ‖b‖s = ‖g‖r + t ‖h‖s.

Taking the infimum, we get

K(t, x, Vr, Vs) ≤ K(t, λ(x), Lr, Ls).

This completes the proof of the lemma. �
Lemma 6.5. Let T : V → V be linear and nonzero. Then,

K(t, T (x), Vr, Vs) ≤ Mr K
(Ms

Mr
t, x, Vr, Vs

)
.

Proof. Fix x ∈ V with decomposition x = a + b. Then, T (x) = T (a) + T (b) and so,

K(t, T (x), Vr, Vs) ≤ ‖T (a)‖r + t ‖T (b)‖s ≤ Mr‖a‖r + tMs‖b‖s ≤ Mr

[
‖a‖r + t

Ms

Mr
‖b‖s

]
.

Taking the infimum over all decompositions x = a + b, we get the stated inequality. �
We now come to the proof of Theorem 6.1.

Proof. As (17) holds when T = 0 or r = s or when θ ∈ {0, 1}, we assume that T �= 0, r �= s, and 0 < θ < 1. 
We first assume that r < s (so that conditions of Proposition 6.2 are met).

We fix x ∈ V and let y := T (x). Then, ‖y‖p = ‖λ(y)‖p and

‖λ(y)‖pp =
∞∫
0

[
t−θK(t, λ(y), Lr, Ls)

]p dt
t

=
∞∫
0

[
t−θK(t, y, Vr, Vs)

]p dt
t

≤
∞∫
0

[
t−θMr K

(Ms

Mr
t, x, Vr, Vs

)]p dt
t

=
∞∫
0

[(Mr

Ms
t
)−θ

MrK(t, x, Vr, Vs)
]p dt

t

=
(Mr

Ms

)−θ p

Mp
r

∞∫
0

[
t−θK(t, x, Vr, Vs)

]p dt
t

= Mp(1−θ)
r Mpθ

s ‖x‖pp,

where the first equality is due to Proposition 6.2, the second equality is due to Lemma 6.4, the first inequality 
is due to Lemma 6.5, and the third equality is due to a change of variable. Also, the last equality is seen by 
applying Lemma 6.4 and Proposition 6.2. Hence,

‖T (x)‖p ≤ M1−θ
r Mθ

s ‖x‖p.
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This implies that

‖T‖p→p ≤ ‖T‖1−θ
r→r ‖T‖θs→s.

Note that we proved this inequality under the assumption that r < s. When s < r, we let φ := 1 − θ and 
observe that 1

p = 1−φ
s + φ

r . Then, by what has been proved,

‖T‖p→p ≤ ‖T‖1−φ
s→s ‖T‖φr→r = ‖T‖1−θ

r→r ‖T‖θs→s.

We thus have (17) in all cases. In particular, by putting r = 1 and s = ∞ we get

‖T‖p→p ≤ ‖T‖
1
p

1→1 ‖T‖
1− 1

p
∞→∞. �

7. Appendix

For a, b ∈ V, we define (see [19], page 4 or [5], page 32)

Pa,b := LaLb + LbLa − La ◦ b.

Lemma 7.1. Suppose a ∈ V is invertible. Then, the linear transformation Pa,a−1 is invertible and (Pa,a−1)−1

is doubly stochastic.

Proof. We consider the spectral decomposition a =
∑

aiei, where the eigenvalues ai are nonzero and 
{e1, e2, . . . , en} is a Jordan frame. With respect to this Jordan frame, we consider the Peirce decomposition 
of any element u ∈ V ([5], Theorem IV.2.1) in the form u =

∑
i≤j uij . Then, from [11] (page 720),

La(u) =
∑
i≤j

ai + aj
2 uij and La−1(u) =

∑
i≤j

a−1
i + a−1

j

2 uij .

Since a ◦ a−1 = e, an easy computation shows that

Pa,a−1(u) =
∑
i≤j

a2
i + a2

j

2aiaj
uij .

As Pa,a−1(u) = 0 ⇒ u = 0, the linear transformation Pa,a−1 is invertible and

(Pa,a−1)−1(u) =
∑
i≤j

2aiaj
a2
i + a2

j

uij .

Now consider the real symmetric matrix A = [aij ], where aij = 2aiaj

a2
i+a2

j
. By considering the functions φi(t)

in L2([0, ∞)), i = 1, 2, . . . , n, defined by

φi(t) =
√

2 ai e−a2
i t,

we see that the inner product (computed in L2([0, ∞)))

〈φi, φj〉 =
∞∫

2aiaje−(a2
i+a2

j )t dt = aij .
0
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Hence, A is the Gram matrix corresponding to the set {φ1, φ2, . . . , φn} in L2([0, ∞)). It follows that A is 
positive semidefinite. Now, using the definition of ‘Schur product’ induced transformation (see Section 4)

(Pa,a−1)−1(u) = A • u (u ∈ V).

As A is positive semidefinite and has ones on the diagonal, from Example 8 in [7] we see that the transfor-
mation u → A • u is doubly stochastic. This proves that (Pa,a−1)−1 is doubly stochastic. �
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