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Abstract

Given a closed convex cone C in a finite dimensional real Hilbert space H, a weakly homogeneous map

f : C → H is a sum of two continuous maps h and g, where h is positively homogeneous of degree γ (≥ 0)

on C and g(x) = o(||x||γ) as ||x|| → ∞ in C. Given such a map f , a nonempty closed convex subset K

of C, and a q ∈ H, we consider the variational inequality problem, VI(f,K, q), of finding an x∗ ∈ K such

that 〈f(x∗)+q, x−x∗〉 ≥ 0 for all x ∈ K. In this paper, we establish some results connecting the variational

inequality problem VI(f,K, q) and the cone complementarity problem CP(f∞,K∞, 0), where f∞ := h

is the homogeneous part of f and K∞ is the recession cone of K. We show, for example, that VI(f,K, q)

has a nonempty compact solution set for every q when zero is the only solution of CP(f∞,K∞, 0) and the

(topological) index of the map x 7→ x−ΠK∞(x−G(x)) at the origin is nonzero, where G is a continuous

extension of f∞ to H. As a consequence, we generalize a complementarity result of Karamardian

[13] formulated for homogeneous maps on proper cones to variational inequalities. The results above

extend some similar results proved for affine variational inequalities and for polynomial complementarity

problems over the nonnegative orthant in Rn. As an application, we discuss the solvability of nonlinear

equations corresponding to weakly homogeneous maps over closed convex cones. In particular, we extend

a result of Hillar and Johnson [12] on the solvability of symmetric word equations to Euclidean Jordan

algebras.
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1 Introduction

This paper is motivated by [8], where polynomial complementarity problems over the nonnegative orthant

were considered. Given a polynomial map f : Rn → Rn and a vector q ∈ Rn, the polynomial complemen-

tarity problem, PCP(f, q), is to find an x ∈ Rn such that

x ≥ 0, y := f(x) + q ≥ 0, and 〈x, y〉 = 0.

By decomposing f as a sum of homogeneous polynomial maps with f∞ denoting the ‘leading term’ of f , in

[8], various results connecting PCP(f, q) and PCP(f∞, 0) were established. In particular, it was shown that

if PCP(f∞, 0) has trivial solution (namely, zero) and the (topological) index of the map x 7→ min{x, f∞(x)}
at the origin is nonzero, then for all q, PCP(f, q) has a nonempty compact solution set. With the observation

that every polynomial map f : Rn → Rn is the sum of a homogeneous map h (the leading term of f) and

g (the sum of the rest of the terms of f) which grows much slower than an appropriate power of ||x||, we

extend these results to variational inequality problems over closed convex sets for (what we call) weakly

homogeneous maps.

To elaborate, let H be a finite dimensional real Hilbert space and C be a closed convex cone in H. A

continuous map h : C → H is said to be positively homogeneous of degree γ (≥ 0) if h(λx) = λγh(x) for

all x ∈ C and λ > 0 in R. A mapping f : C → H is said to be a weakly homogeneous map of degree γ

if f = h + g, where h : C → H is positively homogeneous of degree γ and g : C → H is continuous and

g(x) = o(||x||γ) as ||x|| → ∞ in C. Given such a map f on C, a closed convex set K contained in C, and a

vector q ∈ H, we consider the variational inequality problem VI(f,K, q) of finding an x∗ ∈ K such that〈
f(x∗) + q, x− x∗

〉
≥ 0 for allx ∈ K.

When K is a closed convex cone, VI(f,K, q) becomes a complementarity problem, in which case, we denote

it by CP(f,K, q). With numerous applications to various fields, (general) variational inequality problems

and complementarity problems have been extensively studied in the literature, see, e.g., [4], [5], and [2].

In this paper, we consider weakly homogeneous maps of positive degree. Let f : C → H be such a map

and let f(x) = h(x) + g(x), where h and g are as specified above. Then, (the “recession map”) f∞(x) :=

limλ→∞
f(λx)
λγ = h(x), see Section 2. In this paper, we establish some results connecting VI(f,K, q) and the

complementarity problem CP(f∞,K∞, 0), where K∞ denotes the recession cone of K. Among other things,

we show the following:

• Assuming that zero is the only solution of CP(f∞,K∞, 0) and the (topological) index of the map

x 7→ x − ΠK∞(x −G(x)) at the origin is nonzero, where G is a continuous extension of f∞ to H, we

show that for all q, VI(f,K, q) and CP(f,K∞, q) have nonempty compact solution sets.
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• Assuming that CP(f∞,K∞, 0) and CP(f∞,K∞, d) (or CP(f,K∞, d)) have (only) zero solutions for

some d ∈ int
(
(K∞)

∗)
, we show that for all q, VI(f,K, q) and CP(f,K∞, q) have nonempty compact

solution sets.

These results demonstrate a close relationship between variational inequalities and complementarity problems

for weakly homogeneous maps. The first result extends (similar) results proved in the setting of affine

variational inequalities [7] (where f is affine and K is polyhedral) and polynomial complementarity problems

[8]. The second result can be regarded as a generalization (and strengthening) of a result of Karamardian

[13] formulated for homogeneous maps on proper cones.

By way of an application, we consider the solvability of equations of the form f(x) = q over cones. Given

a C and f (as above) and q ∈ C, we describe a method of proving the existence of an x∗ ∈ C such that

f(x∗) = q. In particular, this method will be applied to extend the following result of Hillar and Johnson

[12] to the setting of Euclidean Jordan algebras: Given positive definite matrices A1, A2, . . . , Am, a positive

(semi)definite matrix Q, and positive exponents r1, r2, . . . , rm, the symmetric word equation

XrmAm · · ·Xr2A2X
r1A1X

r1A2X
r2 · · ·AmXrm = Q

has a positive (semi)definite solution X.

2 Preliminaries

Throughout this paper, we fix a finite dimensional real Hilbert space H with inner product 〈x, y〉 and norm

||x||. For any nonempty set S in H, we denote the interior, closure, and the boundary by int(S), S, and ∂S,

respectively. We define the dual of S by S∗ := {x ∈ H : 〈x, s〉 ≥ 0 for all s ∈ S}. We frequently use the fact

that

0 6= x ∈ S, d ∈ int(S∗)⇒ 〈d, x〉 > 0. (1)

(This can be seen by noting d− ε x ∈ S∗ for all small ε > 0.)

A set E in H is convex if tx + (1 − t)y ∈ E for all t ∈ [0, 1] and x, y ∈ E; if in addition, λx ∈ E for all

λ > 0 and x ∈ E, we say that E is a convex cone. A nonempty closed convex cone E is said to be pointed if

E ∩ −E = {0}, or equivalently, int(E∗) 6= ∅. A pointed closed convex cone with nonempty interior is called

a proper cone. The recession cone of a closed convex set E is defined by E∞ := {u ∈ H : u + E ⊆ E}, or

alternatively, see [19, Theorem 8.2],

E∞ =

{
u ∈ H : ∃ tk →∞, ∃xk ∈ E such that lim

k→∞

xk
tk

= u

}
. (2)

This is a closed convex cone.

2.1 Weakly homogeneous maps

Let K be a closed convex set and C be a closed convex cone in H such that K ⊆ C. Recall that a continuous

map f : C → H is weakly homogeneous of degree γ (≥ 0) if f = h + g, where h, g : C → H are continuous

and h(λx) = λγ h(x) for all x ∈ C andλ > 0, and g(x) = o(||x||γ) (that is, g(x)
||x||γ → 0) as ||x|| → ∞ in C.

Some elementary properties of such functions are stated below.
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Proposition 2.1. Suppose f = h+g is weakly homogeneous of degree γ > 0. Then the following statements

hold:

(a) h(0) = 0; if f(0) = 0, then g(0) = 0.

(b) limλ→∞
g(λx)
λγ = 0 for all x ∈ C.

(c) h(x) = limλ→∞
f(λx)
λγ for all x ∈ C.

(d) In the representation f = h+ g, h and g are unique on C.

Proof. (a) h(0) = h(2 · 0) = 2γ h(0). As 2γ 6= 1, we have h(0) = 0. Also, when f(0) = 0, we have

g(0) = f(0)− h(0) = 0.

(b) Clearly this holds if x = 0. For 0 6= x ∈ C, g(λx)
λγ = g(λx)

||λx||γ ||x||
γ → 0 as λ→∞ (since ||λx|| → ∞).

(c) From (b),

f(λx)

λγ
=
h(λx)

λγ
+
g(λx)

λγ
= h(x) +

g(λx)

λγ
→ h(x)

as λ→∞.
(d) Suppose f has two representations f = h1 + g1 = h2 + g2. Then from (c),

h1(x) = lim
λ→∞

f(λx)

λγ
= h2(x) for all x ∈ C.

Hence, g1(x) = f(x)− h1(x) = f(x)− h2(x) = g2(x) for all x ∈ C.

Note: Because of Item (c) above, we denote h by f∞ and call it the ‘leading term’ of f .

We now list some examples of weakly homogeneous maps.

(1) Let C be any closed convex cone in H. Suppose f is a finite sum of homogeneous maps on C of the

form

f(x) = hm(x) + hm−1(x) + · · ·+ h1(x) + h0(x),

where m > 0, hj(x) is positively homogeneous of degree γj on C, and γm > γm−1 > · · · > γ1 > γ0 = 0.

We claim that f is weakly homogeneous. To see this, let ||x|| → ∞ on C. Then, for j < m,
hj(x)
||x||γm =

1
||x||γm−γj hj(

x
||x|| ). As x

||x|| varies over the intersection of the unit sphere and C, and hj is continuous

(resulting in the boundedness of hj(
x
||x|| )), we see that

hj(x)
||x||γm → 0. Letting h = hm and g := f −h, we

see that f is weakly homogeneous.

(2) This is a special case of the previous example. Let H = C = Rn and f : Rn → Rn be a polynomial

map, that is, each component of f is a (real valued) polynomial function in n variables x1, x2, . . . , xn.

We can decompose f as a sum of homogeneous polynomial maps of different (homogeneity) degrees;

assuming that f is nonconstant, we let h denote the one that has the highest homogeneity degree

and g denote the sum of the remaining terms. Then the equality f = h + g shows that f is weakly

homogeneous.

(3) Let H = Rn and C = Rn+. A posynomial on Rn+ is of the form xα1
1 xα2

2 · · ·xαnn , where αi ≥ 0 for all

i = 1, 2, . . . , n. A finite linear combination of posynomials is weakly homogeneous on Rn+.
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(4) Let H = Sn, the space of all n × n real symmetric matrices with C = Sn+, the cone of all positive

semidefinite matrices in Sn. Then, the following are weakly homogeneous on C:

(a) f(X) := XAX +BX +XBT , where A ∈ Sn and B ∈ Rn×n.

(b) f(X) := X −
∑N

1 AiX
δiAi, where Ai ∈ Sn, 0 < δi < 1 for all i.

(c) f(X) = X + sin(X).

(d) f(X) = XAXBXAX, where A,B ∈ Sn.

2.2 Continuity of a projection map

Given a closed convex set E in H, let ΠE(x) denote the orthogonal projection of an x ∈ H onto E. We note

that for any x, ΠE(x) is the unique element x∗ in E that satisfies the inequality 〈x− x∗, z − x∗〉 ≤ 0 for all

z ∈ E or equivalently,

||x− x∗|| ≤ ||x− z|| ∀ z ∈ E. (3)

Also, the map x 7→ ΠE(x) is Lipschitz continuous with Lipschitz constant one and

0 ∈ E and u ∈ E∗ ⇒ ΠE(−u) = 0. (4)

Now, let K be a closed convex set with its recession cone K∞. Define the map

K(t) = tK +K∞, 0 ≤ t ≤ 1.

Note that

K(t) = t(K +K∞) = tK (0 < t ≤ 1) and K(0) = K∞,

where the first statement comes from the fact that K∞ is a cone. In a key result to be presented in Section

4, we will require the joint continuity of the map (t, x) 7→ ΠK(t)

(
θ(x, t)

)
, where θ(x, t) : H × [0, 1] → H is

continuous. This continuity property is shown in the result below, whose proof is essentially given in that

of [4, Lemma 2.8.2].

Proposition 2.2. Let K(t) be as above and θ(x, t) : H × [0, 1] → H be continuous. Then, (x, t) 7→
ΠK(t)

(
θ(x, t)

)
is continuous.

Proof. Fix (x0, t0) ∈ H × [0, 1] and let y0 := θ(x0, t0). Because

ΠK(t)

(
θ(x, t)

)
−ΠK(t0)

(
θ(x0, t0)

)
=
[
ΠK(t)

(
θ(x, t)

)
−ΠK(t)(y0)

]
+
[
ΠK(t)(y0)−ΠK(t0)(y0)

]
and ||ΠK(t)

(
θ(x, t)

)
−ΠK(t)(y0)|| ≤ ||θ(x, t)− y0||, to prove continuity, we need only show that ΠK(t)(y0) is

continuous at t0. If t0 > 0, this follows from the (easily verifiable) equality

ΠK(t)(y0) = ΠtK(y0) = tΠK

(y0
t

)
∀ t ∈ (0, 1].

So, we assume that t0 = 0 and verify the following:

lim
t→0,t>0

ΠK(t)(y0) = ΠK∞(y0). (5)
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To see this, let z0 := ΠK∞(y0) ∈ K∞ and z0(t) := 1
tΠtK(y0) ∈ K for all 0 < t ≤ 1. By (3), for any fixed

u0 ∈ K, we have

||y0 − tz0(t)|| ≤ ||y0 − tu0|| ∀ 0 < t ≤ 1.

This shows that the set {tz0(t) : 0 < t ≤ 1} is bounded. We show that tz0(t) → z0 as t → 0 in (0, 1] by

showing that z0 is the only accumulation point of the set {tz0(t) : 0 < t ≤ 1}. Suppose there is a sequence

tnz0(tn)→ w ∈ H as tn → 0. From (2), w ∈ K∞. Also, letting n→∞ in

||y0 − tnz0(tn)|| ≤ ||y0 − tn
[
u0 +

u

tn

]
|| ∀u ∈ K∞,

we get

||y0 − w|| ≤ ||y0 − u|| ∀ u ∈ K∞.

It follows that w = z0 = ΠK∞(y0). This proves (5).

2.3 Variational inequalities

Throughout this paper, we will study variational inequalities via their equation formulations. To set up

notation, let E be a nonempty closed convex set in H. Recall that for a continuous map φ : E → H and

q ∈ H, the variational inequality problem, VI(φ,E, q), is the problem of finding an x∗ such that x∗ ∈ E and

〈φ(x∗) + q, x− x∗〉 ≥ 0 for all x ∈ E. We write SOL(φ,E, q) for the solution set of VI(φ,E, q). When E is a

closed convex cone, the above variational inequality becomes the complementarity problem CP(φ,E, q) [4]:

Find x∗ ∈ H such that

x∗ ∈ E, φ(x∗) + q ∈ E∗, and 〈φ(x∗) + q, x∗〉 = 0.

Let Φ : H → H be a continuous extension of φ to all of H. Such an extension exists due to the (Rn version,

hence the H-version of) Tietze extension theorem; since E is a closed convex set, φ◦ΠE is one such extension.

Now consider the ‘natural map’ [4]

Φ(E,q)(x) := x−ΠE

(
x− Φ(x)− q

)
which is defined on all of H. It is well-known, see [4], Prop. 1.5.8, that Φ(E,q)(x

∗) = 0 if and only if x∗ solves

VI(φ,E, q).

We now come to variational inequalities corresponding to weakly homogeneous maps. We make the following

blanket assumption.

Throughout this paper, K denotes a nonempty closed convex set and C denotes a closed convex

cone such that K ⊆ C ⊆ H. We let f : C → H denote a weakly homogeneous map with degree

γ > 0 and let f∞ denote its leading term. We assume that f(0) = 0.

(The assumption f(0) = 0 is due to the equivalence of VI(f,K, q) and VI(f − f(0),K, q + f(0)).)

In order to simplify the notation and avoid repetition, we let

Γ :=
{

(K,C, f, f∞) : K, C, f, and f∞ as above
}
.
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Given (K,C, f, f∞) ∈ Γ, we let F and G denote, respectively, (some) continuous extensions of f and f∞ to

H. We define the corresponding ‘natural maps’ [4]:

F(K,q)(x) := x−ΠK

(
x− F (x)− q

)
and GK∞(x) := x−ΠK∞

(
x−G(x)

)
.

We observe that

F(K,q)(x
∗) = 0⇔ x∗ solves VI(f,K, q) and GK∞(x∗) = 0⇔ x∗ solves CP(f∞,K∞, 0).

The solution set SOL(f,K, q) of VI(f,K, q) is closed. Note that the solution set of CP(f∞,K∞, 0), namely,

SOL(f∞,K∞, 0) always contains zero (as f∞(0) = 0 from Proposition 2.1) and is invariant under multipli-

cation by positive numbers. Moreover,

SOL(f∞,K∞, 0) = {0} if and only if [GK∞(x) = 0⇔ x = 0] . (6)

As γ > 0, we note that if ||xk|| → ∞ and x̄ := lim
k→∞

xk
||xk|| , then

lim
k→∞

f(xk)

||xk||γ
= lim
k→∞

[
f∞
( xk
||xk||

)
+
g(xk)

||xk||γ
]

= f∞(x̄). (7)

2.4 Degree Theory

To study the solvability of VIs, in this paper, we employ degree theory. While [17], [18] are very good sources,

all necessary concepts/results concerning degree theory that we use can be found in [4], specifically Prop.

2.1.3. Here is a short review. Suppose Ω is a bounded open set in H, φ : Ω → H is continuous, and p ∈ H
with p 6∈ φ(∂ Ω). Then the topological degree of φ over Ω with respect to p is defined; it is an integer and

will be denoted by deg (φ,Ω, p). When this degree is nonzero, the equation φ(x) = p has a solution in Ω.

Now let Ω and φ be as above; suppose x∗ ∈ Ω and the equation φ(x) = φ(x∗) has a unique solution in Ω,

namely x∗. Then, deg (φ,Ω′, φ(x∗)) is constant over all bounded open sets Ω′ containing x∗ and contained

in Ω. This common degree is called the (topological) index of φ at x∗; it will be denoted by ind (φ, x∗). So,

in this setting,

ind (φ, x∗) := deg
(
φ,Ω′, φ(x∗)

)
for any bounded open set Ω′ containing x∗ and contained in Ω. In particular, if φ : H → H is a continuous

map such that φ(x) = 0⇔ x = 0, then, for any bounded open set containing 0, we have

ind (φ, 0) = deg
(
φ,Ω, φ(0)

)
= deg

(
φ,Ω, 0

)
;

moreover, when φ is the identity map, ind (φ, 0) = 1.

Let H(x, t) : H × [0, 1]→ H be continuous (in which case, we say that H is a homotopy). Suppose that for

some bounded open set Ω in H, 0 6∈ H(∂Ω, t) for all t ∈ [0, 1]. Then, the homotopy invariance property of

degree says that deg
(
H(·, t),Ω, 0

)
is independent of t. In particular, if the zero set

{x : H(x, t) = 0 for some t ∈ [0, 1]}
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is bounded, then for any bounded open set Ω in H that contains this zero set, we have

deg
(
H(·, 1),Ω, 0

)
= deg

(
H(·, 0),Ω, 0

)
.

To discuss the solvability of VI(f,K, q), we consider the equation F(K,q)(x) = 0 and deg
(
F(K,q),Ω, 0

)
, where

F is a continuous extension of f to H. The following result shows that this degree is independent of the

extension F . A similar statement holds for CP(f∞,K∞, 0).

Proposition 2.3. Let (K,C, f, f∞) ∈ Γ and q ∈ H. Suppose F and F ′ are two continuous extensions of f .

Let Ω be a bounded open set in H such that 0 /∈ F(K,q) (∂Ω). Then 0 /∈ F ′(K,q) (∂Ω) and deg
(
F(K,q),Ω, 0

)
=

deg
(
F ′(K,q),Ω, 0

)
.

Proof. Suppose, if possible, 0 ∈ F ′(K,q) (∂Ω) so that there exists x ∈ ∂Ω such that F ′(K,q)(x) = 0. This

means that x ∈ SOL(F ′,K, q) = SOL(f,K, q) = SOL(F,K, q). Then, 0 ∈ F(K,q) (∂Ω), a contradiction.

Thus, 0 /∈ F ′(K,q) (∂Ω). Now, consider the homotopy

H(x, t) := x−ΠK

(
x−

[
tF (x) + (1− t)F ′(x) + q

])
for x ∈ Ω, t ∈ [0, 1].

Note that for any t ∈ [0, 1], tF ′+ (1− t)F is a continuous extension of f . Then, from what has been proved,

0 /∈ H (∂Ω, t) for all t ∈ [0, 1]. Hence, from the homotopy invariance property of the degree,

deg
(
F(K,q),Ω, 0

)
= deg (H(·, 1),Ω, 0) = deg (H(·, 0),Ω, 0) = deg

(
F ′(K,q),Ω, 0

)
.

3 Boundedness of solution sets

In the proofs of many of our results, we are required to show that a certain collection of sets are uniformly

bounded. To do this, we employ the so-called normalization argument, where a certain sequence of vectors

(with their norms going to infinity) is normalized to yield a unit vector that violates a given criteria. We

illustrate this in the following proposition.

Proposition 3.1. Let (K,C, f, f∞) ∈ Γ. If SOL(f∞,K∞, 0) = {0}, then for any bounded set B in H,⋃
q∈B SOL(f,K, q) is bounded.

Proof. Assume that SOL(f∞,K∞, 0) = {0} and let B be a bounded set in H. Suppose if possible,⋃
q∈B SOL(f,K, q) is unbounded. Then, there exist sequences qk in B and xk ∈ SOL(f,K, qk) such that

||xk|| → ∞. Now, for all k, xk ∈ K, and

〈f(xk) + qk, x− xk〉 ≥ 0 ∀x ∈ K.

By dividing the above relation by ‖xk‖γ+1 and noting that x0 + ‖xk‖u ∈ K for every u ∈ K∞ with (fixed)

x0 ∈ K, we obtain, 〈
f(xk) + qk
‖xk‖γ

, u+
x0 − xk
‖xk‖

〉
≥ 0 ∀u ∈ K∞.
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Fixing x0, letting k →∞ and assuming (without loss of generality) lim
k→∞

xk
||xk|| = x̄, we get (from (7)),

〈f∞(x̄), u− x̄〉 ≥ 0, ∀u ∈ K∞.

Because of (2), x̄ ∈ K∞. Hence, x̄ ∈ SOL(f∞,K∞, 0). As ||x̄|| = 1, we reach a contradiction to our

assumption. The conclusion follows.

Remarks 1. When SOL(f∞,K∞, 0) = {0}, the solution set SOL(f,K, q) is compact for any q (but may be

empty).

4 The main result

We now present our main result. Here, the solvability of VI(f,K, q) is studied via a related recession

map/cone complementarity problem. Results of this type have been previously described for affine variational

inequalities and polynomial complementarity problems, see below for more explanation.

Theorem 4.1. Let (K,C, f, f∞) ∈ Γ. Suppose the following conditions hold:

(a) SOL(f∞,K∞, 0) = {0} and

(b) ind(GK∞ , 0) 6= 0.

Then, for all q ∈ H, VI(f,K, q) and CP(f,K∞, q) have nonempty compact solution sets.

Note: From (6), condition (a) implies that x = 0 is the only solution of the equation GK∞(x) = 0. Hence

ind(GK∞ , 0) is well defined. Condition (b) stipulates that this number is nonzero. Also, from Proposition

2.3, ind (GK∞ , 0) is independent of the extension G of f∞.

Proof. We fix a q and show that VI(f,K, q) has a nonempty compact solution set. By replacing K by K∞

we see that CP(f,K∞, q) has a nonempty compact solution set.

For x ∈ H and t ∈ [0, 1], let

H(x, t) := x−ΠK(t)

(
x−

{
(1− t)G(x) + t[F (x) + q]

})
,

where K(t) := tK + K∞. By an application of Proposition 2.2, we see that H(x, t) is jointly continuous.

Thus, H(x, t) defines a homotopy between H(x, 0) = GK∞(x) and H(x, 1) = F(K,q)(x). We now show by a

normalization argument (as in the previous proposition) that the set

Z := {x : H(x, t) = 0 for some t ∈ [0, 1]},

is bounded. Assume if possible that Z is unbounded. Then, there exist sequences tk in [0, 1], xk in H such

that H(xk, tk) = 0 for all k and ||xk|| → ∞. We have xk ∈ K(tk) ⊆ C, G(xk) = f∞(xk), F (xk) = f(xk), and〈
(1− tk)f∞(xk) + tk[f(xk) + q], x− xk

〉
≥ 0 ∀x ∈ K(tk).

By dividing the above relation by ‖xk‖γ+1 and noting that tkx0 + ‖xk‖u ∈ K(tk) for every u ∈ K∞ with

(fixed) x0 ∈ K, we obtain,〈
(1− tk)f∞(xk) + tk[f(xk) + q]

‖xk‖γ
, u+

tkx0 − xk
‖xk‖

〉
≥ 0 ∀u ∈ K∞.
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Letting k →∞ and assuming (without loss of generality) lim
k→∞

tk = t̄ and lim
k→∞

xk
||xk|| = x̄, we get (from (7)),

〈f∞(x̄), u− x̄〉 ≥ 0, ∀u ∈ K∞. (8)

Now, xk ∈ K(tk) = tkK + K∞ for all k. If tk = 0 for infinitely many k, then xk ∈ K∞ for all such k, in

which case, x̄ = lim
k→∞

xk
||xk|| ∈ K

∞ (as K∞ is a closed cone). On the other hand, if tk is positive for infinitely

many k, then xk ∈ K(tk) = tkK + K∞ = tkK for all such k. Writing xk = tkyk for yk ∈ K, we see that

||yk|| = ||xk||
tk
→∞ (whether t̄ is zero or not). From (2),

x̄ = lim
k→∞

xk
||xk||

= lim
k→∞

yk
||yk||

∈ K∞

and from (8),

x̄ ∈ SOL(f∞,K∞, 0).

Since ‖x̄‖ = 1, this contradicts (a). We conclude Z is bounded. Now, let Ω be a bounded open set in H

that contains Z. Then, by the homotopy invariance property of degree and (6), we have

deg
(
H(·, 1),Ω, 0

)
= deg

(
H(·, 0),Ω, 0

)
= ind

(
GK∞ , 0

)
6= 0.

This means that the zero set of H(·, 1) (being a subset of Z) is nonempty and bounded; hence VI(f,K, q)

has a nonempty bounded solution set. From the closedness of SOL(f,K, q), we see that the solution set is

also compact.

We now consider two special cases. First consider VI(f,K, q), whereH = Rn, f is linear, andK is polyhedral.

We let f(x) = Mx, where M is a matrix. Then, VI(f,K, q), denoted by AVI(M,K, q), is called an affine

variational inequality. In this setting,

F (x) = G(x) = f(x) = f∞(x) = Mx,

and, using our previous notation,

F(K,q)(x) = x−ΠK(x−Mx− q) and GK∞(x) = x−ΠK∞(x−Mx).

Because F(K,q) is a piecewise affine map [7], its recession part is ([7], Example 6)

lim
λ→∞

F(K,q)(λx)

λ
:= x−ΠK∞(x−Mx) = GK∞(x).

It has been shown in [7], Theorem 4.2, that a piecewise affine map is surjective if its recession part vanishes

only at the origin and has nonzero topological index. In our setting, this yields: If GK∞(x) = 0⇒ x = 0 and

ind(GK∞ , 0) 6= 0, then the equation F(K,q)(x) = 0 has a nonempty compact solution set, i.e., AVI(M,K, q)

has a nonempty compact solution set. Thus, our result above recovers the AVI result.

Next, consider a polynomial complementarity problem PCP(f, q), which is VI(f,K, q) where H = Rn,

f is a polynomial map, and K = Rn+. In this setting, f∞ is the leading term of f , K∞ = Rn+, and

GK∞(x) = x − ΠRn+(x − f∞(x)) = min{x, f∞(x)}. In this special case, the above theorem reduces to

Theorem 3.1 in [8].
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Remarks 2. One may ask if the above result is of ‘coercive type’ and hence could be deduced from known

results. Recall that a continuous map φ : K → H is said to be “coercive” on K [4] if there is an x0 ∈ K and

ζ ≥ 0 and a c > 0 such that

〈φ(x), x− x0〉 ≥ c||x||ζ

for all sufficiently large x in K. For such a map, it is known that deg(ΦK ,Ω, 0) = 1 for some bounded

open set Ω and VI(φ,K, 0) has a nonempty compact solution set, see [4], Propositions 2.2.3 and 2.2.7. Our

conditions (a) and (b) in the above theorem, generally, do not imply this coercivity property. For example,

let K = K∞ = R2
+ and f(x) = Ax, where A is the 2× 2 matrix given by

A =

[
−1 1

3 −2

]
.

This is an N-matrix of first category (which means that all principle minors of N are negative and A has

some nonnegative entries). Based on the results of Kojima and Saigal [14], it can be verified that conditions

(a) and (b) hold with ind(GK∞ , 0) = −1. Clearly, this f is not coercive.

Remarks 3. Suppose, in the above theorem, we let C = K = K∞ = H. As ΠK(x) = ΠK∞(x) = x for all

x, conditions (a) and (b) reduce to: (i) f∞(x) = 0⇒ x = 0 and (ii) ind(f∞, 0) 6= 0. The conclusion(s) says

that the equation f(x) + q = 0 has a solution for all q. In other words, f is surjective when (i) and (ii) hold.

A result of this type is, perhaps, known in the degree theory literature.

We now provide a simple example to illustrate Theorem 4.1.

Example 1. In R2, consider the closed convex set K := {(t, s) : t, s > 0 and ts ≥ 1}. Then K∞ = R2
+ (the

nonnegative orthant inR2). Let A be a 2×2 real matrix which is an R0-matrix with deg(A) 6= 0. (This simply

means that for θ(x) := x−ΠR2
+

(x−Ax) = min{x,Ax}, θ(x) = 0⇔ x = 0 and deg(A) := ind(θ, 0) 6= 0. For

example, A could be the identity matrix, or an R-matrix [2], or the matrix given in the Remark 2 above.)

On C := R2
+, let g(x) =

√
x or g(x) = sinx (which are defined componentwise), and f(x) := Ax + g(x).

Then, f is weakly homogeneous and satisfies the conditions of the above theorem. We conclude that for all

q, VI(f,K, q) has a nonempty compact solution set.

5 A generalization of Karamardian’s theorem

A well-known result of Karamardian [13] deals with a proper cone C and a nonconstant positively homoge-

neous continuous map h : C → H. It asserts that, if CP(h,C, 0) and CP(h,C, d) have (only) trivial (that is,

zero) solutions for some d ∈ int(C∗), then CP(h,C, q) has nonempty compact solution set for all q. Below,

we generalize it to weakly homogeneous variational inequalities.

Theorem 5.1. Let (K,C, f, f∞) ∈ Γ with K∞ pointed. Suppose there is a vector d ∈ int
(
(K∞)

∗)
such that

one of the following conditions holds:

(a) SOL(f∞,K∞, 0) = {0} = SOL(f∞,K∞, d).

(b) SOL(f∞,K∞, 0) = {0} = SOL(f,K∞, d).
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Then, ind (GK∞ , 0) = 1. Hence, for all q ∈ H, VI(f,K, q) and CP(f,K∞, q) have nonempty compact

solution sets.

Proof. In order to handle both cases (a) and (b) together, we let φ denote f∞ when (a) holds or f when (b)

holds. Let, correspondingly, Φ denote G or F (which are continuous extensions of f∞ and f , respectively).

In either case, for any t ∈ [0, 1], the leading term of the weakly homogeneous map (1− t)f∞(x) + t[φ(x) + d]

is f∞(x). Now consider the homotopy

H(x, t) := x−ΠK∞

(
x−

{
(1− t)G(x) + t[Φ(x) + d]

})
.

Since SOL(f∞,K∞, 0) = {0}, by a normalization argument (as in the Proof of Theorem 4.1), we see that

the zero set

{x : H(x, t) = 0 for some t ∈ [0, 1]}

is contained in a bounded open set Ω. Since H(·, 0) = GK∞ and H(·, 1) = Φ(K∞,d) are homotopic, by the

homotopy invariance property of degree,

ind (GK∞ , 0) = deg (GK∞ ,Ω, 0) = deg
(
Φ(K∞,d),Ω, 0

)
= ind(Φ(K∞,d), 0),

where the last equality holds due to SOL(φ,K∞, d) = {0} (which comes from (a) when φ = f∞ and (b)

when φ = f). Now, when x is close to zero, x−Φ(x)− d is close to 0− φ(0)− d = −d ∈ −int((K∞)∗) (note

that φ(0) = 0 as f∞(0) = 0 = f(0)). Hence, by (4), for all x close to zero, ΠK∞(x − Φ(x) − d) = 0. This

means that Φ(K∞,d)(x) = x near zero; hence ind(Φ(K∞,d), 0) = 1. This implies that ind (GK∞ , 0) = 1. From

Theorem 4.1, we get the stated conclusion.

Remarks 4. The above result, under condition (a), even strengthens Karamardian’s theorem: While

Karamardian’s theorem says that CP(f∞,K∞, q) has a nonempty compact solution set for all q, our result

gives a stronger conclusion that CP(f,K∞, q) has a nonempty compact solution set for all q.

6 Copositivity results

In this section, we consider copositive maps. Given a set E in H, we say that a map φ : E → H is copositive

(respectively, strictly copositive) on E, if 〈φ(x), x〉 ≥ 0 (respectively, > 0) for all 0 6= x ∈ E.

Theorem 6.1. Let (K,C, f, f∞) ∈ Γ. Suppose one of the following conditions holds:

(a) SOL(f∞,K∞, 0) = {0} and f∞ is copositive on K∞.

(b) f∞ is strictly copositive on K∞.

Then, ind (GK∞ , 0) = 1. Hence, for all q ∈ H, VI(f,K, q) and CP(f,K∞, q) have nonempty compact

solution sets.

Proof. As f∞(0) = 0, (b)⇒ (a). Hence, it is enough to prove the result under (a). Consider the homotopy

H(x, t) := x−ΠK∞

(
x−

{
(1− t)G(x) + tx

})
.
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Suppose that H(x, t) = 0 for some x and t. Then,

x ∈ K∞, (1− t)f∞(x) + tx ∈ (K∞)∗, and 〈(1− t)f∞(x) + tx, x〉 = 0.

In particular, (1− t)〈f∞(x), x〉+ t||x||2 = 0. Since f∞ is copositive on K∞, we have 〈f∞(x), x〉 ≥ 0 and so

t||x||2 = 0. If t = 0, then x ∈ K∞, f∞(x) ∈ (K∞)∗, and 〈f∞(x), x〉 = 0 and so x ∈ SOL(f∞,K∞, 0) = {0}.
If t 6= 0, then t||x||2 = 0 implies x = 0. Hence, H(x, t) = 0 ⇒ x = 0. Let Ω be any bounded open set

containing 0. Since H(·, 0) = GK∞ and H(·, 1) (=identity map) are homotopic on Ω, by the homotopy

invariance property of degree,

ind (GK∞ , 0) = 1

(as the degree of the identity map at zero is one). Now the stated conclusion follows from Theorem 4.1.

All the previous results require that SOL(f∞,K∞, 0) = {0}. In the next result we drop this assumption,

but require that f be copositive on K. A result of this type for copositive multivalued maps on Rn+ appears

in [9].

Theorem 6.2. Let (K,C, f, f∞) ∈ Γ such that 0 ∈ K and int (K∗) 6= ∅. Assume further that f is copositive

on K. If S := SOL(f∞,K∞, 0) and q ∈ int (S∗), then VI(f,K, q) has a nonempty compact solution set.

Proof. We fix a d ∈ int (K∗) and consider the homotopy

H(x, t) := x−ΠK(t)

(
x− [F (x) + (1− t)d+ tq]

)
,

where K(t) := tK +K∞. Then,

H(x, 0) = x−ΠK∞

(
x− [F (x) + d]

)
and H(x, 1) = x−ΠK

(
x− [F (x) + q]

)
.

Note that K(t) ⊆ K for all t ∈ [0, 1] because 0 ∈ K and K is convex. We claim that the zero sets of H(x, t)

are uniformly bounded. If not, we can find sequences tk ∈ [0, 1] and 0 6= xk ∈ K(tk) such that ||xk|| → ∞
and H(xk, tk) = 0 for all k. Since F = f on K, we have, for all k, xk ∈ K(tk), and

〈f(xk) + (1− tk) d+ tk q, x− xk〉 ≥ 0 ∀x ∈ K(tk). (9)

Without loss of generality, we may assume that lim
k→∞

xk
‖xk‖ = x̄. A normalization argument (as in the proof

Theorem 4.1) shows that x̄ ∈ SOL(f∞,K∞, 0). Thus, x̄ ∈ S and ||x̄|| = 1. By putting x = 0 in (9), we

obtain

〈f(xk), xk〉+ (1− tk)〈d, xk〉+ tk〈q, xk〉 ≤ 0 ∀ k.

Since 〈f(xk), xk〉 ≥ 0 and 〈d, xk〉 > 0 (recall d ∈ int(K∗) and 0 6= xk ∈ K), we must have tk > 0 and

〈q, xk〉 ≤ 0. This yields 〈q, x̄〉 ≤ 0. Since q ∈ int (S∗), we reach a contradiction, see (1). Hence, the zero sets

of H(x, t) are uniformly bounded. In particular, SOL(f,K, q) (which is the zero set of H(x, 1)) is bounded.

Let Ω be a bounded open set in H that contains all these zero sets. By the homotopy invariance property,

deg
(
H(·, 1),Ω, 0

)
= deg

(
H(·, 0),Ω, 0

)
.
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Note thatK∞ ⊆ K because 0 ∈ K. Then, d ∈ int (K∗) ⊆ int
(
(K∞)

∗)
. Hence, as f is copositive and f(0) = 0

(by our blanket assumption), we have SOL(f,K∞, d) = {0}. Now, if x is close to zero, x − [F (x) + d] is

close to −d. Since d ∈ int
(
(K∞)

∗)
, by (4), for all x close to zero, H(x, 0) = x−ΠK∞

(
x− [F (x) + d]

)
= x.

This means that deg (H(·, 0),Ω, 0) = 1. Hence, deg (H(·, 1),Ω, 0) = 1 and so, H(·, 1) has a zero in Ω, that

is, SOL(f,K, q) 6= ∅. As we have already shown that this set is bounded, we conclude that SOL(f,K, q) is

nonempty and compact.

Corollary 6.3. Let (K,C, f, f∞) ∈ Γ such that 0 ∈ K and C is pointed. Assume further that f is copositive

on C. If S := SOL(f∞,K∞, 0) and q ∈ int (S∗), then VI(f,K, q) and CP(f, C, q) have nonempty compact

solution sets.

Proof. As C is pointed, C∗ has nonempty interior. Since K ⊆ C ⇒ C∗ ⊆ K∗, we see that K∗ has nonempty

interior. Also, f is copositive on K. If q ∈ int (S∗), the conditions of the above theorem are satisfied. Hence,

VI(f,K, q) has nonempty compact solution set. Now, applying the above theorem with C in place of K, we

see that VI(f, C, q), that is, CP(f, C, q) has nonempty compact solution set.

7 A uniqueness result

Theorem 7.1. Suppose C is a pointed closed convex cone and f : C → H is weakly homogeneous of positive

degree with leading term f∞. Suppose that SOL(f∞, C, 0) = {0}. Then the following are equivalent:

(a) CP(f, C, q) has a unique solution for every q ∈ H.

(b) CP(f, C, q) has at most one solution for every q ∈ H.

Proof. Clearly, (a) ⇒ (b). Suppose (b) holds. By our blanket assumption, f(0) = 0. Then for any d ∈
int(C∗), {0} ⊆ SOL(f, C, d), and by (b), SOL(f, C, d) = {0}. Since (by assumption) SOL(f∞, C, 0) = {0},
by Theorem 5.1 (applied to C = K = K∞), for every q, CP(f, C, q) has a solution; this solution is unique

by (b). Thus (a) holds.

Remark 5. It is not clear if the above result holds without the assumption that SOL(f∞, C, 0) = {0}.

8 Solvability of nonlinear equations over cones

As an application of our results, we now describe a method of proving the solvability of certain equations

over cones. To motivate, first we consider linear equations in matrix variables. Let Sn and Hn denote,

respectively, the spaces of all n × n real symmetric matrices and n × n complex Hermitian matrices. With

the inner product given by 〈X,Y 〉 := tr(XY ), both are real Hilbert spaces. Sn+ and Hn+ denote, respectively,

the closed convex cones of positive semidefinite matrices in Sn and Hn. (Either of these cones will be called

a semidefinite cone.) We write X � 0 for positive semidefinite matrices and X � 0 for positive definite

matrices. Both Sn+ and Hn+ are self-dual cones and the following implication holds [10]:

X � 0, Y � 0 and 〈X,Y 〉 = 0⇒ XY = 0. (10)

14



(1) Given a matrix A ∈ Rn×n, the Lyapunov transformation LA : Sn → Sn is defined by LA(X) :=

AX + XAT . This appears in continuous dynamical systems. It is well known that for any/some

positive definite Q, the equation LA(X) = Q has a positive definite solution X if and only if A is

positive stable, that is, all the eigenvalues of A have positive real parts. One interesting feature of LA

is that it satisfies the following implication ([11], Example 2):

X � 0, Y � 0 and 〈X,Y 〉 = 0⇒ 〈LA(X), Y 〉 = 0.

(2) Given a matrix A ∈ Rn×n, the Stein transformation SA : Sn → Sn is defined by SA(X) := X−AXAT .

This appears in discrete dynamical systems. Similar to the Lyapunov transformation, the following

statement holds: For any/some positive definite Q, the equation SA(X) = Q has a positive definite

solution X if and only if A is Schur stable, that is, all the eigenvalues of A lie in the open unit disc of

the xy-plane. We also have the following implication ([11], Example 3) :

X � 0, Y � 0 and 〈X,Y 〉 = 0⇒ 〈SA(X), Y 〉 ≤ 0.

(3) Suppose C is a proper cone in H, L : H → H is linear and satisfies the Z-property:

x ∈ C, y ∈ C∗, 〈x, y〉 = 0⇒ 〈L(x), y〉 ≤ 0.

It has been shown in [11], Theorems 6 and 7, that for every/some q ∈ int(C), the equation L(x) = q

has a solution in int(C) if and only if L is positive stable.

In the result below, we consider an extension of the Z-property for nonlinear maps.

Proposition 8.1. Suppose C is a closed convex cone and f : C → H satisfies:

x ∈ C, y ∈ C∗, and 〈x, y〉 = 0⇒ 〈f(x), y〉 ≤ 0. (11)

Then, the following statements hold:

• q ∈ C, x∗ ∈ SOL(f, C,−q)⇒ f(x∗) = q.

• x∗ ∈ C, f(x∗) ∈ int(C)⇒ x∗ ∈ int(C).

Proof. Assume q ∈ C and x∗ ∈ SOL(f, C,−q). Letting y∗ := f(x∗) − q, we see that x∗ ∈ C, y∗ ∈ C∗ and

〈x∗, y∗〉 = 0. By the condition imposed on f , we have 〈f(x∗), y∗〉 ≤ 0. From this we get 〈q+ y∗, y∗〉 ≤ 0. As

q ∈ C (which implies 〈q, y∗〉 ≥ 0), this leads to y∗ = 0 and to f(x∗) = q.

To see the second item, suppose x∗ ∈ C and q := f(x∗) ∈ int(C). Suppose, if possible, x∗ 6∈ int(C). Then,

x∗ lies on the boundary of C. By the well-known separation theorem (also called supporting hyperplane

theorem, see [19, Theorem 11.6]), there exists a nonzero y∗ ∈ C∗ such that 〈x∗, y∗〉 = 0. By (11),

〈q, y∗〉 = 〈f(x∗), y∗〉 ≤ 0.

On the other hand, since q ∈ int(C) and 0 6= y∗ ∈ C∗, we must have 〈q, y∗〉 > 0, yielding a contradiction.

Hence, x∗ ∈ int(C).

Remarks 6. The set of all maps satisfying (11) is closed under nonnegative linear combinations. It also

contains maps of the form −φ, where φ(C) ⊆ C.
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Corollary 8.2. Suppose conditions of Theorem 4.1 (or Theorem 5.1 or Theorem 6.1) hold with K = K∞ =

C and f satisfies (11). Then for all q in C (in int(C)), the equation f(x) = q has a solution in C (respectively,

in int(C)).

Proof. CP(f, C, q) has a solution for all q; in particular, for any q ∈ C, CP(f, C,−q) has a solution. This

solution, by the above proposition, solves the equation f(x) = q in C. If q ∈ int(C), then such an x belongs

to int(C).

We now illustrate the above corollary by some examples.

Example 2. On H = Hn, with K = C = Hn+, let

f(X) := X −
N∑
1

AiX
δiA∗i ,

where Ai is an n × n complex matrix and 0 < δi < 1 for all i = 1, 2, . . . , N . Then, for every Q ∈ Hn+,

the equation f(X) = Q has a solution in Hn+. Moreover, if Q is positive definite, then so is X. (A similar

result holds for H = Sn.) To see these statements, we first observe that f is a sum of homogeneous maps,

hence weakly homogeneous. Also, as 0 < δi < 1, the leading term f∞ is the identity map and g := f − f∞

satisfies −g(Hn+) ⊆ Hn+. We see that f satisfies condition (11) in Proposition 8.1. Because f∞ is the identity

map, it is strictly copositive on C, hence conditions of Theorem 6.1 hold. From the above corollary, we

conclude that for every Q in Hn+, there is a solution X of f(X) = Q in Hn+. If Q is positive definite, then

X =
∑N

1 AiX
δiA∗i +Q is also positive definite.

Note: In [16], Lim considers the case 0 < |δi| < 1. Using the Hilbert metric on int(Hn+) and the contraction

principle, he proves the existence and uniqueness of solutions. See [3] for another fixed point proof.

Example 3. On H = Sn, with K = C = Sn+, let

f(X) = X + α sin X,

where α ∈ R. Since sin t is bounded over R, we see that sinX is bounded, hence sinX = o(||X||). With

f∞(X) = X, f is weakly homogeneous on Sn+. By an application of Theorem 6.1, we conclude that

CP(f,Sn+, Q) has a solution for all Q. Now, to verify the property (11) in Proposition 8.1. Let X � 0, Y � 0

and 〈X,Y 〉 = 0. From (10), XY = 0. From the series expansion of sinX, we verify that (sinX)Y = 0. Thus,

〈sinX,Y 〉 = 0, that is, 〈f(X), Y 〉 = 0. Since we have verified all conditions in the above corollary, it follows

that for every Q ∈ Sn+, f(X) = Q has a semidefinite solution. We note that this semidefinite solution is

positive definite if Q is positive definite.

Example 4. On H = Sn, with C = K = Sn+, we consider the Riccati equation XAX + BX + XBT = Q,

where A is positive definite, Q is positive semidefinite, and B ∈ Rn×n. With homogeneous maps f∞(X) =

XAX, g(X) = BX+XBT , we see that f = f∞+g is weakly homogeneous. If X � 0, Y � 0 and 〈X,Y 〉 = 0,

we have XY = 0 and hence, 〈f(X), Y 〉 = 0. (Note: g(X) = LB(X) is a Lyapunov transformation, see Item

(1) at the beginning of this Section.) We verify conditions of Theorem 6.1. Suppose X ∈ SOL(f∞,Sn+, 0)

so that X � 0, XAX � 0 and 〈X,XAX〉 = 0. An application of (10) gives XXAX = 0 and consequently,
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X2AX2 = 0. Since A is positive definite, we conclude that X = 0. The verification of copositivity of f∞ is

easy: Since A is positive definite, XAX � 0 for any X. Thus, for all X ∈ Sn+, 〈XAX,X〉 ≥ 0. (We have

actually proved that f∞ is strictly copositive on Sn+.)

Note: If B = 0 and Q is positive definite, the equation XAX = Q has a positive definite solution X which

is called the geometric mean of A−1 and Q [15].

Our next section is devoted to symmetric word equations.

9 Solvability of symmetric word equations in Euclidean Jordan

algebras

Given letters X and A1, . . . , Am, a symmetric word W (X,A1, . . . , Am) is a juxtaposition of letters Ai that

alternate with positive powers of X in a symmetric way, that is, it is of the form

XrmAm · · ·Xr2A2X
r1A1X

r1A2X
r2 · · ·AmXrm ,

where the exponents r1, . . . , rm are positive real numbers.

A symmetric word equation in Sn (or inHn) is of the formW (X,A1, . . . , Am) = Q, where A1, . . . , Am are pos-

itive definite matrices and Q is positive semidefinite. Any positive semidefinite matrix X for which this equa-

tion holds is called a solution. A symmetric word equation (corresponding to m and exponents r1, . . . , rm)

is called solvable if there exists a solution for every collection of positive definite matrices A1, . . . , Am and

positive semidefinite matrix Q. The solvability of symmetric word equation arises in many situations. In

[12], C. Hillar and C. R. Johnson prove that every symmetric word equation is solvable via a fixed point

argument. Armstrong and Hillar [1] give an alternate proof based on degree theory and the following lemma:

Lemma 9.1. ([1], Lemma 6.1) Suppose A1, . . . , Am are positive definite matrices. Then, for any positive

semidefinite X (either in Sn or Hn, depending on the context),

Ker(X) = Ker
(
X l1A1X

l2A2 · · ·X lk−1Ak−1X
lk
)
,

where ‘Ker’ denotes the kernel and l1, l2, . . . , lk are positive real numbers.

Based on this lemma, one can give a complementarity proof of the result of Hillar and Johnson by observing

that f(X) := XrmAm · · ·Xr2A2X
r1A1X

r1A2X
r2 · · ·AmXrm is strictly copositive and satisfies (11) on the

semidefinite cone. We will use this idea to extend the result of Hillar and Johnson to Euclidean Jordan

algebras.

Let (V, 〈·, ·〉, ◦) be a Euclidean Jordan algebra of rank r and unit element e [6]. Let V+ := {x ◦ x : x ∈ V }
denote the symmetric cone of V with V++ denoting its interior. We note that

(i) V+ is a self-dual cone; in particular, 〈x, y〉 ≥ 0 for all x, y ∈ V+.

(ii) When a ∈ V++ and 0 6= x ∈ V+, 〈a, x〉 > 0.

Given any a ∈ V , we define the corresponding quadratic representation by

Pa(x) := 2 a ◦ (a ◦ x)− a2 ◦ x.
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Then, a symmetric word in V is defined by

W (x, a1, . . . , am) := PxrmPam · · ·Pxr2Pa2Pxr1 (a1),

where m is a natural number, the variable x various over V+, a1, . . . , am are in V++, and the exponents

r1, . . . , rm are positive real numbers. As Px(a) is quadratic in x, the homogeneity degree of W (x, a1, . . . , am)

is

γ := 2(r1 + r2 + · · ·+ rm).

In the setting of V = Sn (or Hn), PA(X) = AXA and the above word reduces to a symmetric word in Sn

(or Hn).

We collect some relevant properties of these transformations which are either well-known or can be deduced

from known results.

Proposition 9.2. The following statements hold:

(a) For any x ∈ V , Px is a self-adjoint linear operator on V .

(b) V+ is invariant under any quadratic representation, that is, Px(V+) ⊆ V+ for any x. Same holds for

any composition of quadratic representations. In particular, such a composition is copositive on V+.

(c) If x ∈ V+ (x ∈ V++), then Px is positive semidefinite (respectively, positive definite) on V .

(d) When x, y ∈ V+, 〈x, y〉 = 0⇒ Px(y) = 0.

(e) Pxα = (Px)
α

and PxPxα = Pxα+1 for every x ∈ V+ and every α > 0.

(f) Px(a) is invertible if and only if both x and a are invertible.

(h) Pu(v) = 0⇒ Puα(v) = 0, when u, v ∈ V+ and α > 0.

Proposition 9.3. Let L(x) denote a finite linear combination of symmetric words in the variable x (which

varies over V+). Then, the following statements hold:

(i) u, v ∈ V+, 〈u, v〉 = 0⇒ 〈L(u), v〉 = 0.

(ii) x ∈ V+, L(x) ∈ V++ ⇒ x ∈ V++.

Proof. (i) Suppose u, v ∈ V+, 〈u, v〉 = 0, and let PxrmPam · · ·Pxr2Pa2Pxr1 (a1) be a term in L(x) (ignoring

the scalar factor). As Pu(v) = 0 and Purm (v) = 0 (from Items (d) and (h) in the above proposition), we

have

〈PurmPam · · ·Pur2Pa2Pur1 (a1), v〉 = 〈Pam · · ·Pur2Pa2Pur1 (a1), Purm (v)〉 = 0.

It follows that 〈L(u), v〉 = 0.

From Item (i), we see that L satisfies the condition (11). Item (ii) now follows from Proposition 8.1.

We now extend the result of Hillar and Johnson as follows.
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Theorem 9.4. Let a1, . . . , am be in V++, r1, . . . , rm be positive real numbers and γ := 2(r1 + r2 + · · ·+ rm).

Let continuous maps g1, g2 : V+ → V satisfy the following conditions:

• g1 is a finite linear combination of symmetric words,

• g2(0) = 0, g2(V+) ⊆ V+, and

• (g1 − g2)(x) = o(||x||γ) as ||x|| → ∞ in V+.

Then, for every q ∈ V+, there exists x ∈ V+ such that

W (x, a1 . . . , am) + g1(x)− g2(x) = q.

If q ∈ V++, such an x is in V++.

Proof. We let f∞(x) := W (x, a1, . . . , an), g := g1− g2, and f := f∞+ g. Clearly, f is weakly homogeneous

on V+ of degree γ > 0 and f(0) = 0. Letting H = V , C = K = K∞ = V+ (which is a proper cone as it is

self-dual), we show that f satisfies condition (b) in Theorem 6.1 and (11). Then an application of Corollary

8.2 yields the stated conclusion.

First, let x ∈ V+. As a1 ∈ V++, from Item (b) in Proposition 9.2,

f∞(x) =
(
PxrmPam · · ·Pxr2Pa2Pxr1

)
(a1) ∈ V+

hence 〈f∞(x), x〉 ≥ 0. Thus, f∞ is copositive on V+.

Now, let 0 6= x ∈ V+. We show that 〈f∞(x), x〉 > 0. Suppose, on the contrary that 〈f∞(x), x〉 = 0. Putting

y := f∞(x), we see that

x ∈ V+, y ∈ V+, and 〈x, y〉 = 0.

By Item (d) in Proposition 9.2, Px(y) = 0, that is,

Px

(
PxrmPam · · ·Pxr2Pa2Pxr1

)
(a1) = 0.

From (e), this shows that

a1 ∈ Ker
(

(Px)rm+1Pam · · · (Px)r2Pa2(Px)r1
)
.

Noting that each Pai is a positive definite operator on V (by Item (c) in Proposition 9.2), and Px is positive

semidefinite (as x ∈ V+), we may apply the operator version of Lemma 9.1 and get

a1 ∈ Ker(Px).

This means that Px(a1) = 0. Now, with e denoting the unit element of V , we have

0 = 〈Px(a1), e〉 = 〈a1, Px(e)〉 = 〈a1, x2〉.

As a1 ∈ V++ and x2 ∈ V+, we see that x2 = 0, that is, x = 0. We conclude that f∞ is strictly copositive on

V+. Hence, conditions of Theorem 6.1 are satisfied.

Now for the verification of (11). Let u ∈ V+, v ∈ V+ and 〈u, v〉 = 0. Then,

L(x) := W (x, a1 . . . , am) + g1(x)

is a finite linear combination of symmetric words. By the previous proposition, 〈L(u), v〉 = 0. From this we
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get,

〈f(u), v〉 = 〈L(u), v〉 − 〈g2(u), v〉 = −〈g2(u), v〉 ≤ 0,

as g2(u) ∈ V+. This proves that f satisfies (11).

Thus, we have verified all conditions in Corollary 8.2. Hence, for any q ∈ V+, the equation f(x) = q has a

solution x in V+. Now suppose q ∈ V++. Then, there is an x ∈ V+ such that f∞(x) + g1(x) − g2(x) = q.

This implies that L(x) = g2(x) + q. As g2(x) ∈ V+ and q ∈ V++, we must have L(x) ∈ V++. As x ∈ V+, by

Item (ii) in the previous proposition, x ∈ V++.

Example 5. To illustrate the above result, let V = Sn and consider positive definite matrices A,B,C,

and a positive semidefinite matrix D. Let f(X) := XAXBXAX +XCX −DX 1
2D. Then, for any positive

semidefinite Q ∈ Sn, the equation f(X) = Q has a positive semidefinite solution. If Q is positive definite,

such a solution is positive definite.

Remarks 7. We note that in the above theorem/proof, the condition that g1 is a finite linear combination

of symmetric words was primarily used to get the conclusions of Proposition 9.3 for L(x) = f∞(x) + g1(x).

In some settings, e.g., V = Sn and g1(X) := sinX, we could get the same conclusions and the above result

could be modified.

Concluding Remarks. In this paper, we studied variational inequalities corresponding to weakly homo-

geneous maps. We showed that under appropriate settings, the study of variational inequality problems

could be reduced to that of corresponding recession map/cone complementarity problems. We described a

method of solving nonlinear equations over cones. We note that all the results of this paper are applicable to

polynomial maps. Since the problem of minimizing a (real valued) polynomial function over a closed convex

set is closely related to the variational inequality problem of its gradient, we anticipate that our results will

be useful in the study of polynomial optimization.
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