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Abstract

The Lyapunov rank of a proper cone K in a finite dimensional real Hilbert space is defined

as the dimension of the space of all Lyapunov-like transformations on K, or equivalently, the

dimension of the Lie algebra of the automorphism group of K. This (rank) measures the

number of linearly independent bilinear relations needed to express a complementarity system

on K (that arises, for example, from a linear program or a complementarity problem on the

cone). Motivated by the problem of describing spectral/proper cones where the complementarity

system can be expressed as a square system (that is, where the Lyapunov rank is greater than

equal to the dimension of the ambient space), we consider proper polyhedral cones in Rn that

are permutation invariant. For such cones we show that the Lyapunov rank is either 1 (in which

case, the cone is irreducible) or n (in which case, the cone is isomorphic to Rn
+). In the latter

case, we show that the corresponding spectral cone is isomorphic to a symmetric cone.
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1 Introduction

In optimization, from the perspective of conic programming, the nonnegative orthant, the semidefi-

nite cone, and more generally, symmetric cones are considered ‘good’ cones as they admit polynomial-

time algorithms. These are also considered ‘good’ in complementarity theory, as any corresponding

complementarity system/problem could be written as a square system (thus allowing Newton type

or other iterative schemes). The ability to write a complementarity system on a cone as a square

system could be quantified in terms of the so-called Lyapunov rank and one could define ‘good’

cones as those where the Lyapunov rank is greater than or equal to the dimension of the ambient

space. Our motivation comes from the problem of describing such cones.

Given a Euclidean Jordan algebra V of rank n [3], the symmetric cone V+ of V is just the cone of

squares in V . It consists precisely those elements of V with every eigenvalue nonnegative. That

is, V+ = λ−1(Rn+), where λ : V → Rn denotes the eigenvalue map that takes any element x in V

to its eigenvalue vector whose entries are the eigenvalues of x written in the decreasing order. We

note that Rn+ is a convex cone that is permutation invariant, meaning that σ(Rn+) = Rn+ for all

σ ∈ Σn, where Σn denotes the set of all permutation matrices on Rn. By replacing Rn+ by a general

permutation invariant convex cone Q in Rn, one gets λ−1(Q), which is called a spectral cone in

V [10], [11]. Motivated by the usefulness of symmetric cones, we raise a broad question: Can we

find/describe ‘good’ cones among spectral cones? Since we are using Lyapunov rank as a measure

of ‘goodness’ of a proper cone, this question leads to the problem of describing Lyapunov ranks

of proper spectral cones in Euclidean Jordan algebras, especially those induced by permutation

invariant proper polyhedral cones. In the setting of the algebra Rn, this reduces to finding the

Lyapunov ranks of permutation invariant proper polyhedral cones. This is the main focus of the

paper.

The Lyapunov rank of a proper cone K in a real finite dimensional Hilbert space V is defined as

follows. Let K∗ = {y ∈ V : 〈y, x〉 ≥ 0, ∀x ∈ K} denote the dual of K. A linear transformation

L : V → V is said to be a Lyapunov-like transformation on K if

x ∈ K, s ∈ K∗, 〈x, s〉 = 0 =⇒ 〈L(x), s〉 = 0.

The set of all such transformations on K is a real vector space, denoted by LL(K). We define the

Lyapunov rank of K by

β(K) := dim LL(K).

It is known that β(K) is the dimension of the Lie algebra of the automorphism group of K (con-

sisting of invertible linear transformations keeping the cone invariant) [5]. So, we could use β(K)

as a measure of the ‘size’ of the automorphism group of K. To see why this number is useful in

complementarity theory, let us assume without loss of generality that V = Rn and consider the

complementarity problem CP(f,K) corresponding to a mapping f : Rn → Rn: find x, s ∈ Rn such
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that

x ∈ K, s = f(x) ∈ K∗, 〈x, s〉 = 0. (1)

Such a problem appears, for example, in the study of equilibrium and variational inequality prob-

lems, and arises in numerous applications in engineering, sciences, and economics [2]. There are

various strategies for solving complementarity problems, see [2]. In the above complementarity

system, there are 2n real variables xi, si (i = 1, 2, . . . , n), while there are n+ 1 equations, namely,

s = f(x) and 〈x, s〉 = 0. Thus, in order to see if the above system could be written as a square

system (which will help us to analyze the system or describe an algorithm to solve it), we rewrite

the last bilinear relation 〈x, s〉 = 0 as an equivalent system of β(K) linearly independent bilinear

relations and check if β(K) ≥ n. Although this latter property does not always hold, it will be

useful to identify cones where this is possible.

The concept of Lyapunov rank was introduced in [13] using the term ‘bilinearity rank’. Because

these ‘bilinearity relations’ are just Lyapunov-like transformations [5], we have used the term ‘Lya-

punov rank’. The concept of Lyapunov-like transformation was first introduced in [4] as a gener-

alization of the Lyapunov transformation X 7→ AX + XAT that appears in the linear dynamical

system theory, and has been the subject of several recent works. The results and properties related

to Lyapunov-like transformations can be found in [4], [5], and [6].

Beginning with [13], there are a number of works related to Lyapunov rank, see the references. For

the record, we list below some known results [5], [6], [12]:

(1) For any proper cone K in Rn, β(K) ≤ (n− 1)2.

(2) For any proper polyhedral cone in K in Rn, 1 ≤ β(K) ≤ n, β(K) 6= n− 1.

(3) In Sn, β(Sn+) = n2 and β(CPn) = n where Sn+ and CPn denote the set of all n × n positive

semidefinite and completely positive matrices, respectively.

(4) In Rn (n ≥ 3), for any p ∈ [1,∞], let lnp,+ := {x = (x0, x̄) ∈ R ×Rn−1 : x0 ≥ ||x||p}. Then,

β(lnp,+) = 1 for p 6= 2 and β(ln2,+) = (n2 − n+ 2)/2.

In this paper, we raise the issue of describing the Lyapunov ranks of permutation invariant proper

polyhedral cones in Rn. To reiterate, a set Q in Rn is permutation invariant if σ(Q) = Q for all

σ ∈ Σn, where Σn denotes the set of all permutation matrices on Rn. Based on the group theoretic

fact that the permutation group Σn (n ≥ 5) has only three normal subgroups (two trivial ones and

the alternating group), we show that: If a permutation invariant pointed convex cone is reducible

Rn, then it is isomorphic to Rn+. Based on this result, strengthening Item (2) above, we show that:

For a permutation invariant proper polyhedral cone, the Lyapunov rank is either 1 (in which case,

the cone is irreducible) or n (in which case, the cone is isomorphic to Rn+). When a permutation

invariant proper polyhedral cone Q is isomorphic to Rn+, we show that the spectral cone λ−1(Q)

in a Euclidean Jordan algebra V of rank n is isomorphic to V+ thus yielding a ‘good’ cone (albeit,
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a known one). The problem whether such a statement holds for some/all permutation invariant

proper polyhedral cones in Rn with β(Q) = 1 and the more general problem of describing Lyapunov

rank of a permutation invariant proper cone in Rn are left for further study.

2 Preliminaries

Throughout this paper, V denotes a finite dimensional real Hilbert space. For a set S in V , span(S)

denotes the span of S (which is the subspace generated by S); we denote the interior of S by int(S).

A nonempty set K in V is a convex cone if tx+sy ∈ K for all x, y ∈ K and t, s ≥ 0. (So, we require

every convex cone to contain zero.) A convex cone K is said to be pointed if K ∩ (−K) = {0} and

solid if int(K) 6= ∅. A proper cone in V is a closed convex cone that is pointed and solid. We say

that two convex cones are isomorphic if one can be mapped onto the other by an invertible linear

transformation.

Given a nonempty set S in V , the conic hull of S is

cone(S) =

{
k∑
i=1

αixi

∣∣∣∣∣ k ∈ N, xi ∈ S, αi ≥ 0

}
.

A closed convex cone K is a polyhedral cone if it is finitely generated, that is, K = cone(S) for

some finite set S.

Let K be a convex cone in V . A nonzero vector x ∈ K is called an extreme vector of K if x = y+z,

with y, z ∈ K, implies that y and z are both nonnegative scalar multiples of x. We say that two

extreme vectors are equivalent (and hence consider them to be the ‘same’) if they are positive scalar

multiples of each other. Let

ext(K) := {x ∈ K | x is an extreme vector of K} .

Thanks to a well-known theorem of Minkowski, for any proper cone K, ext(K) is nonempty and

K = cone(ext(K)).

A convex cone K in V is said to be reducible if there exist nonempty nonzero sets K1, K2 ⊆ V such

that

K = K1 +K2, and span(K1) ∩ span(K2) = {0}.

(The sets K1 and K2 turn out to be convex cones.) When this happens, we say that K is the direct

sum of K1 and K2. If K is proper, then K1 and K2 are proper in their respective spans; hence, we

can define their Lyapunov ranks. We say that a nonzero convex cone K is irreducible if it is not

reducible. We recall the following result.

Proposition 2.1 ([7], Theorem 4.3) Any nonzero reducible pointed convex cone K can be written

4



as

K = K1 +K2 + · · ·+Kr,

where each Ki is a nonzero irreducible pointed convex cone, and span(M)∩span(N) = {0} whenever

M is the sum of some Kis and N is the sum of the rest. Moreover, these Kis are unique and the

above representation is unique up to permutation of indices.

In the setting of the above result, we say that K is the direct sum of Ki and write K = K1⊕K2⊕
· · · ⊕Kr. We then have

• ext(K) =
⋃r
i=1 ext(Ki) and

• when K is proper, β(K) = β(K1) + β(K2) + · · ·+ β(Kr).

An n × n permutation matrix is a matrix obtained by permuting the rows of an n × n identity

matrix. The set of all n × n permutation matrices is denoted by Σn. For convenience, we treat

an element σ ∈ Σn either as a permutation matrix or as a permutation of indices {1, 2, . . . , n}.
Recall that a convex cone Q in Rn is permutation invariant if σ(Q) = Q for all σ ∈ Σn. It is easy

to generate such cones: for any nonempty subset S in Rn, cone(Σn(S)) is a permutation invariant

convex cone. Some important permutation invariant polyhedral cones are:

(1) Rn+, the nonnegative orthant in Rn,

(2) For any fixed natural number p, 1 ≤ p ≤ n,

Qnp :=
{
u ∈ Rn

∣∣∣ u↓n + u↓n−1 + · · ·+ u↓p ≥ 0
}
,

where u↓ denotes the decreasing rearrangement of u, and

(3) Kγ =
{
u ∈ Rn

∣∣ γmax{u1, . . . , un} ≤ 1
n(u1 + · · ·+ un)

}
, where 0 < γ < 1.

3 A characterization of permutation invariant pointed reducible

cones

Before we present our Lyapunov rank results, we characterize permutation invariant pointed re-

ducible cones in Rn. The following result may be of independent interest. In this result, we let I

denote the identity matrix and E denote the matrix of all ones.

Theorem 3.1 Suppose Q is a pointed convex cone in Rn that is permutation invariant and re-

ducible. Then, Q is isomorphic to Rn+. In fact, Q = A(Rn+), where A = (a−b)I+bE, with a, b ∈ R,

a 6= b, a 6= (1− n)b.
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Proof. As Q is reducible, we can write

Q = Q1 ⊕Q2 ⊕ · · · ⊕Qr,

where r > 1 and each Qi is a nonzero irreducible pointed convex cone. By Proposition 2.1, these

Qis are unique and the above representation is unique up to permutation of indices. Now, by

permutation invariance of Q, for any σ ∈ Σn,

Q = σ(Q) = σ(Q1)⊕ σ(Q2)⊕ · · · ⊕ σ(Qr)

is another decomposition of Q. Hence, for each i, there is a (unique) j such that σ(Qi) = Qj . Thus,

every Qi is (permutation) isomorphic to some Qj . This sets up a binary relation between indices

in {1, 2, . . . , n}. Since Σn is a group, this relation becomes an equivalence relation. Partitioning

this index set or grouping isomorphic Qis together, we may write

Q = E1 ⊕ E2 ⊕ · · · ⊕ Es,

where each Ei is a direct sum of (permutation) isomorphic cones. We now claim that each Ei is

permutation invariant. Without loss of generality, consider

E1 = Q1 ⊕Q2 ⊕ · · · ⊕Qr1 . (2)

As {σ(Q1), . . . , σ(Qr1)} ⊆ {Q1, . . . Qr1} for any σ ∈ Σn, we see that σ(E1) ⊆ E1 for any σ ∈ Σn.

Thus, E1, and more generally any Ei, is permutation invariant. Now Lemma 9.2 in [10] (which

we believe is a folkloric result) says that any (nonempty) nonzero pointed permutation invariant

convex cone contains either 1 (the vector of ones in Rn) or −1. Because Q and all Ei are nonempty,

nonzero, pointed permutation invariant cones, we may assume that 1 belongs to all of them. Since

zero is the only common element in all Eis, we must have s = 1. Thus, Q = E1 = Q1 ⊕ · · · ⊕Qr1 ,

where all the Qis are (permutation) isomorphic. To simplify the notation, let Q = Q1⊕Q2⊕· · ·⊕Qr,
where all the Qis are (permutation) isomorphic. An immediate consequence is the following: As

dim(Qi) = dim(Qj) for every i, j ∈ {1, 2, . . . , r}, n ≥ dim(Q) =
∑r

i=1 dim(Qi) = r dim(Q1) and so

r divides dim(Q).

Claim: r = n.

Suppose, if possible, 1 < r < n. We consider the following cases and in each case, we derive a

contradiction.

The case n = 2 is not possible, as 1 < r < n.

Suppose n = 3. Then r = 2 and dim(Q) (which is is divisible by r and less than or equal to n) must

be 2. In this case, Q is a direct sum of one dimensional (pointed) isomorphic cones Q1 and Q2.

Then Q will have exactly two extreme vectors. Since one of these must be a nonconstant vector

(and consequently will have at least two distinct entries), permuting the entries of this vector will

result in at least three distinct extreme vectors of Q, leading to a contraction. (Here, we have used

the fact that any permutation σ takes an extreme vector to an extreme vector.)
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Let n = 4 so that r is 2 or 3.

Suppose r = 2. Then, as r divides dim(Q), Q must have dimension 2 or 4. If dim(Q) = 2, then Q is

a direct sum of one dimensional (pointed) isomorphic cones Q1 and Q2. We argue as in the previous

case: Q will have exactly two extreme vectors, one of which is a nonconstant vector. Permuting

the entries of this vector will result in at least three distinct extreme vectors of Q, leading to a

contraction.

If dim(Q) = 4, then Q is a direct sum of two 2-dimensional (pointed) isomorphic irreducible cones

Q1 and Q2. This is not possible, as there are no irreducible pointed cones of dimension 2.

We now suppose r = 3. In this case, dim(Q) = 3 and so, Q is a direct sum of three, one- dimensional

(pointed) isomorphic cones. Then Q will have exactly three extreme vectors. Since one of these

must be a nonconstant vector, permuting the entries of this vector will result in at least four distinct

extreme vectors of Q, leading to a contraction.

Thus we have shown that the assumption 1 < r < n is not possible when n is 2, 3 or 4.

Now suppose n ≥ 5. We know that, for each σ ∈ Σn and Qi, we have σ(Qi) = Qj for some unique

Qj . Define φ : Σn → Σr which takes σ ∈ Σn to φ(σ) ∈ Σr such that

σ(Qi) = Qφ(σ)[i]∀ i = 1, 2, . . . , r,

where φ(σ)[i] denotes the image of index i under the permutation φ(σ). We now show that φ is a

group homomorphism. Let σ1, σ2 ∈ Σn. Then we have σ1σ2(Qi) = Qφ(σ1σ2)[i] as well as

σ1σ2(Qi) = σ1(Qφ(σ2)[i]) = Qφ(σ1)[φ(σ2)[i]] = Q(φ(σ1)φ(σ2))[i],

for all i = 1, 2, . . . , r. This shows that φ(σ1σ2) = φ(σ1)φ(σ2) implying that φ is a group homo-

morphism. Hence, ker(φ) is a normal subgroup of Σn. However, as n ≥ 5,

Σn has only three normal subgroups, namely, {I}, Σn, and An,

where I represents the identity permutation/matrix and An is the alternating group (of all even

permutations in Σn), see Corollary 6.19 in [8].

We now consider the following three possibilities:

Case 1. Suppose ker(φ) = {I}. Then φ is injective and hence comparing cardinalities, we get

|Σn| ≤ |Σr|. This implies n ≤ r. Since r < n, this is not possible.

Case 2. Suppose ker(φ) = Σn. In this case, we have φ(σ)[i] = i for all i. This means that for each

i = 1, 2, . . . , n, we have

σ(Qi) = Qi forall σ ∈ Σn.

However, this is not possible, as all Qis are (permutation) isomorphic.

Case 3. Suppose ker(φ) = An. Then φ(σ)[i] = i, or equivalently, σ(Qi) = Qi for any even

permutation σ ∈ An. Now, 1 (that belongs to Q) can be decomposed as

1 = u1 + u2 + · · ·+ ur,
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where ui ∈ Qi for all i; we assume without loss of generality that u1 6= 0. Let u1 = (u11, u12, . . . , u1n)T ,

where n ≥ 5. For the even permutation

ρ =

(
1 2 3 4 · · · n

2 3 1 4 · · · n

)
we have

1 = ρ(1) = ρ(u1) + ρ(u2) + · · ·+ ρ(ur).

Notice that for all i, ρ(ui) ∈ ρ(Qi) = Qi. Hence, by the uniqueness of a decomposition, we have

ρ(ui) = ui for each i, especially ρ(u1) = u1. This implies that u11 = u12 = u13. Similarly, by using

all even permutations which permute only three entries of u1, we verify that all entries of u1 are the

same. This means that u1 is a nonzero multiple of 1 and consequently (as Q is pointed) 1 ∈ Q1.

However, as all Qi are (permutation) isomorphic, we must have 1 ∈ Qi for all i = 1, 2, . . . , r,

leading to a contradiction.

Thus, we have shown that 1 < r < n is not possible, proving the claim that r = n. This shows that

each Qi has dimension one and that Q is isomorphic to Rn+.

Now let Q = B(Rn+) for some invertible B ∈ Rn×n. We show that columns of B can be permuted

to get a matrix of the form A := (a− b)I + bE where a, b ∈ R with a 6= b, a 6= (1−n)b. This A will

then satisfy Q = A(Rn+).

Since ext(Q) is the set of all columns of B and Q is permutation invariant, permuting the entries

of any column of B will result in another column of B. As B is invertible, B cannot just have all

constant columns. Among all nonconstant columns of B, let a be a real number that appears the

least number of times. Without loss of generality, let this column be of the form

u := [a, a, . . . , a, ∗, ∗, . . . , ∗]T ,

where a appears m-times (1 ≤ m < n) and ∗ denotes any number different from a.

Claim: m = 1 and all ∗s are equal.

As this statement is obvious for n = 2, we assume that n > 2.

Suppose, if possible, m > 1. Let σ(i, j) denote a permutation/transposition which interchanges the

indices i and j while keeping all others unchanged. Applying permutations σ(1,m + 1), σ(1,m +

2), . . . , σ(1, n) to u will result in n − m distinct columns of B each different from u. Applying

permutations σ(2,m + 1), σ(2,m + 2), . . . , σ(2, n) to u will result in n −m distinct columns of B

that are different from the previously generated columns. More generally, applying permutations

σ(k, l) to u, where 1 ≤ k ≤ m and m+ 1 ≤ l ≤ n, we can generate distinct columns of B totaling

m(n−m) columns all different from u. This leads to the inequality 1 +m(n−m) ≤ n. As m > 1,

a simple calculation gives n = m + 1. But then, a appears n − 1 times and ∗ appears once. As

n > 2, we reach a contradiction to the choice of a. Hence, m = 1. Now, u is of the form

u = [a, ∗, ∗, . . . , ∗]T .
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Then, applying permutations σ(1, 2), σ(1, 3), . . . , σ(1, n− 1) to u, we get n− 1 distinct columns of

B which together with u yield all columns of B. If two ∗s are different, interchanging these will

result in a column that does not appear in the previous listings. Hence, all ∗s are equal. So, we

may write

u = [a, b, b, . . . , b]T

where b 6= a. Now, let A = (a − b)I + bE. Clearly, A is obtained by permuting the columns of

B. Hence, Q = B(Rn+) = A(Rn+) and A is invertible. We have already observed that a 6= b. Note

that b = 0 is an acceptable value for A. When b 6= 0, A = b
(
E + a−b

b I). Since the eigenvalues of

E are 0 (with multiplicity n − 1) and n, the eigenvalues of E + a−b
b I are a−b

b (with multiplicity

n − 1) and n + a−b
b . As A is invertible, we must have n + a−b

b 6= 0, that is, a 6= b(1 − n). Hence,

A = (a− b)I + bE, where a, b ∈ R with a 6= b, a 6= (1− n)b.

We end the proof by observing that if A = (a − b)I + bE with a 6= b and a 6= (1 − n)b, then

Q = A(Rn+) is a permutation invariant proper polyhedral cone in Rn.

Remarks. The above proof reveals the following: If a real square matrix B is invertible and the

cone Q = B(Rn+) is permutation invariant, then there is a permutation σ ∈ Σn such that

Bu = (a− b)σ(u) + b tr(u)1 (u ∈ Rn).

It is interesting to observe that the above B is a particular instance of an ‘isotone’ linear map on

Rn (which is a ‘majorization preserving’ linear map), see [1], Corollary 2.7.

4 Lyapunov rank of a permutation invariant proper polyhedral

cone

As mentioned in the Introduction (see [5]), for any proper polyhedral cone K in Rn, the Lyapunov

rank β(K) = r satisfies 1 ≤ r ≤ n, r 6= n−1. Moreover, for any such r, there is a proper polyhedral

cone in Rn with β(K) = r. The cones Qnp mentioned in Section 2, in addition to being proper and

polyhedral, are also permutation invariant. For these cones, it has been shown, see [9], that the

Lyapunov rank is either 1 or n. In [9], the problem of proving such a result for any permutation

invariant proper polyhedral cone was raised, but not completely solved. The motivation for our

paper comes from this question; the following result completely answers this in the affirmative.

Theorem 4.1 Suppose Q is a proper polyhedral cone in Rn that is permutation invariant. Then,

either

(a) Q is irreducible, in which case, β(Q) = 1, or

(b) Q is reducible, in which case, Q is isomorphic to Rn+ and β(Q) = n.

9



Proof. As Q is a proper polyhedral cone, (a) follows from [5], Corollary 5.

Now suppose Q is reducible. As Q is permutation invariant and pointed, from Theorem 3.1, Q is

isomorphic to Rn+; hence β(Q) = β(Rn+) = n.

Remarks. It was shown in [9] that for Qnp , p = 2, 3, . . . , n−2, the Lyapunov rank is one. It follows

that these cones are irreducible.

The following are easy to verify.

Corollary 4.2 Let Q be a permutation invariant proper polyhedral cone in Rn. If Q has more than

n extreme vectors, then Q is irreducible and β(Q) = 1.

Corollary 4.3 Let Q be a permutation invariant proper polyhedral cone in Rn. Suppose there exist

d1, d2 ∈ ext(Q) such that σ(d1) 6= d2 for all σ ∈ Σn. Then Q is irreducible and β(Q) = 1.

5 Spectral cones induced by permutation invariant proper poly-

hedral cones

Let V be an Euclidean Jordan algebra of rank n with λ : V → Rn denoting the eigenvalue map

(see the Introduction). For any permutation invariant proper polyhedral cone Q in Rn, consider

the spectral cone defined by

K := λ−1(Q).

In the result below, we partially address the question of when the above spectral cone is ‘good’.

Here, e denotes the unit element in V ; for any x ∈ V , tr(x) denotes the trace of x which is the sum

of all eigenvalues of x.

Theorem 5.1 Let V be any Euclidean Jordan algebra of rank n (≥ 2) with the symmetric cone V+.

Let Q be a permutation invariant proper polyhedral cone in Rn that is reducible. Let Q = A(Rn+)

as in Theorem 3.1. Then, the spectral cone λ−1(Q) is isomorphic to V+. In fact,

λ−1(Q) = L(a,b)(V+),

where L(a,b)(x) := (a− b)x+ b tr(x)e is an isomorphism of V .

Proof. Clearly, L(a,b) is linear on V . If L(a,b)(x) = 0 for some x, then, (a−b)x+b tr(x)e = 0. Upon

taking the trace and noting that tr(e) = n, we get (a− b)tr(x) + b tr(x)n = 0. Since a 6= b(1− n),

we get tr(x) = 0 and hence, (a − b)x = 0. As a 6= b, we have x = 0. This proves that L(a,b) is an

isomorphism of V . Hence, L(a,b)(V+) is isomorphic to V+. We now show that

λ−1(Q) = {(a− b)x+ b tr(x)e : x ∈ V+}.
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Let y ∈ λ−1(Q) with its spectral representation y =
∑
yifi, where y1, y2, . . . , yn are the eigenval-

ues of y (written in the decreasing order) and {f1, f2, . . . , fn} is a Jordan frame. Then, λ(y) =

[y1, y2, . . . , yn]T = Aq = [(a−b)I+bE]q for some q ≥ 0 in Rn. With tr(q) := q1+q2+· · ·+qn, we see

that yi = (a− b)qi + b tr(q) for all i and so y = (a− b)x+ b tr(x)e, where x :=
∑
qifi ∈ V+. Now to

see the reverse inclusion, let y = (a− b)x+ b tr(x)e for some x ∈ V+. Then, starting with the spec-

tral decomposition x =
∑
xiei (where x1, x2, . . . , xn are the eigenvalues of x and {e1, e2, . . . , en}

is a Jordan frame), we see that y has the spectral decomposition y =
∑

[(a− b)xi + b tr(x)] ei.

Letting yi := (a − b)xi + b tr(x), we see that y1, y2, . . . , yn are the eigenvalues of y. Writing

q = [x1, x2, . . . , xn]T , we see that q ∈ Rn+ (as x ∈ V+) and λ(y) = (Aq)↓ ∈ A(Rn+) = Q. This

completes the proof.

While the above result holds in any Euclidean Jordan algebra of rank n ≥ 2 (such as Sn, the

algebra of all n× n real symmetric matrices), it is especially interesting for n = 2. In this case, we

have three types of Euclidean Jordan algebras, namely, R2, the Jordan spin algebra Lm for m ≥ 2

(whose symmetric cone is the Lorentz cone) and S2. (We note that R2 is isomorphic to L2 and S2

is isomorphic to L3.) As every proper cone in R2 is polyhedral and reducible, the above result is

applicable. Moreover, λ−1(Q) is a proper cone in V whenever Q is a proper cone in Rn [10]. Thus,

we have the following result.

Corollary 5.2 In the Jordan spin algebra Lm (m ≥ 2), every proper spectral cone is isomorphic

to the corresponding symmetric cone.
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