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1 Introduction

Let (H, 〈·, ·〉) denote a finite dimensional real Hilbert space and K be a proper cone in H ,
that is, K is a pointed closed convex cone with nonempty interior. We say that a linear
transformation L : H → H is a Z-transformation on K and write L ∈ Z(K ) if

x ∈ K , y ∈ K ∗, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0, (1)

where K ∗ := {z ∈ H : 〈z, x〉 ≥ 0 ∀ x ∈ K } is the dual of K . If both L and −L belong
to Z(K ), we say that L is a Lyapunov-like transformation on K and write L ∈ LL(K ).
Such transformations appear, e.g., in linear algebra (in the form of Z-matrices) (Berman
and Plemmons 1994), optimization (in cone linear complementarity problems) (Cottle et al.
1992; Gowda and Tao 2009), continuous and discrete dynamical systems (Farina and Rinaldi
2000), economics (Arrow 1977), Lie algebras (Gowda et al. 2012), etc. A Z-matrix (which
is a square real matrix with nonpositive off-diagonal entries) is a Z-transformation on the
nonnegative orthant Rn+. For any A ∈ Rn×n , the Lyapunov transformation L A defined by

L A(X) := AX + X AT (X ∈ S n)

and the Stein transformation SA defined by

SA(X) := X − AX AT (X ∈ S n)

are, respectively, well-known examples of Lyapunov-like and Z-transformations on the
semidefinite coneS n+ in the Hilbert spaceS n of all n × n real symmetric matrices (Gowda
and Tao 2009).

Our main objective in this paper is to characterize Z-transformations that keep the corre-
sponding cone invariant. To motivate, we consider two examples. If L is a Z-matrix such that
L(Rn+) ⊆ Rn+, then it is a nonnegative diagonal matrix. On the other hand, if we consider a
Lyapunov transformation L A on S n satisfying L A(S n+) ⊆ S n+, then Corollary 3 in Gowda
and Tao (2014) shows that L A is a nonnegative multiple of the identity transformation. Thus,
over Rn+ (which is a product of irreducible cones) a cone preserving Z-transformation is a
nonnegative diagonalmatrix, while overS n+ (which is an irreducible cone), a cone preserving
Lyapunov-like transformation is a nonnegative multiple of the identity transformation. Do
such results hold for (general)Z-transformations that keep the corresponding cone invariant?
In particular, is there a characterization of SA when SA(S n+) ⊆ S n+? Our motivation also
comes from two recent papers of Song (2015, 2016), where the global unique solvability
property for semidefinite and symmetric cone linear complementarity problems is discussed
for Stein and Z-transformations under the assumption of cone invariance.

Motivated by the above questions and relevance, in this paper, we present the following
results characterizing the (elements of the) set Z(K ) ∩ �(K), where

�(K) := {L ∈ B(H) : L(K ) ⊆ K },
with B(H) denoting the set of all linear transformations on H .

InTheorem1, analogous to the ‘exponential’ characterization of Schneider andVidyasagar
(1970) that

L ∈ Z(K ) ⇐⇒ e−t L(K ) ⊆ K for all t ≥ 0,

we present a ‘linear’ characterization:

L ∈ Z(K ) ⇐⇒ for all large t, (L + t I ) is invertible and (L + t I )−1(K ) ⊆ K .
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In Theorem 2, we show that Z(K ) ∩ �(K) = LL(K ) ∩ �(K) and

L ∈ Z(K ) ∩ �(K) ⇐⇒ L + t I ∈ Aut(K ) for all t > 0,

where Aut(K ) denotes the automorphism group of K (consisting of all invertible linear
transformations preserving K ). Theorem 3 deals with a special case of Theorem 2:

When K is irreducible, Z(K ) ∩ �(K) = R+ I.

Illustrating Theorem 3, among other results, we show that L A(S n+) ⊆ S n+ if and only
if A = γ I for some γ ≥ 0 and SA(S n+) ⊆ S n+ if and only if A = γ I for some γ with
|γ | ≤ 1.

Extending Theorem 3, in Theorem 4, we show that every Z-transformation that leaves a
(general) proper cone invariant is a ‘nonnegative diagonal’ transformation. As an application
of Theorem 4, we give short proofs of two results of Song (2015, 2016).

2 Preliminaries

Let C denote a closed convex cone. We say that C is pointed if C does not contain any line
passing through the origin, or equivalently, C ∩ −C = {0}. We write span(C) = C − C for
the span of C . A nonzero vector u in C is an extreme direction of C if u = x + y; x, y ∈ C
imply that x and y are nonnegative multiples of u. In this case, we write u ∈ Ext(C).

A closed convex cone C in H is reducible if there exist nonzero closed convex cones C1

and C2 such that C = C1 +C2 and span(C1)∩ span(C2) = {0}; In this situation, we say that
C is a direct sum of C1 and C2. If C is not reducible, it is said to be irreducible.We have the
following result regarding a reducible proper cone.

Proposition 1 Let K be a reducible proper cone. Then there exists a unique set of nonzero
closed convex (pointed) irreducible cones K1, K2, . . . , Kl such that

K = K1 + K2 + · · · + Kl and span(Ki ) ∩
⎛
⎝∑

j �=i

span(K j )

⎞
⎠ = {0} for all i.

Moreover,

(i) H is the direct sum of spaces span(Ki ), i = 1, 2, . . . , l, and
(ii) Ext(K ) = ⋃l

i=1 Ext(Ki ).

In the above result, the decomposition part is well-known, see for example, Hauser and
Güler (2002), Theorem 4.3. The additional statements are easy to verify.

Throughout this paper, depending on the context, I denotes either the identity transfor-
mation or the identity matrix. For a linear transformation L on H , we denote the spectrum
of L by σ(L); Re σ(L) denotes the set of the real parts of elements in σ(L). We say that L
is positive stable if Re(λ) > 0 for all λ ∈ σ(L).

For any proper cone K , we let Z(K ) and LL(K ) denote, respectively, the set of all Z-
transformations and Lyapunov-like transformations on K . We note that

Z(K ) is a closed convex cone and LL(K ) = Z(K ) ∩ −Z(K ). (2)

For ease of reference, we recall the following results.

Proposition 2 (Gowda and Tao (2009), Theorems 6 and 7) Let L ∈ Z(K ). The following
statements are equivalent:
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(a) L is positive stable.
(b) L is invertible and L−1(K ) ⊆ K.

Proposition 3 (Schneider and Vidyasagar (1970), Theorem 6) Let L ∈ Z(K ). Then, τ :=
min Re σ(L) is an eigenvalue of L with an eigenvector in K .

Given a closed convex cone C and a linear transformation L , we say that L is a cone
preserving transformation or that the cone is invariant under L if L(C) ⊆ C . If L is invertible
and L(C) = C , we say that L is an automorphism of C and write L ∈ Aut(C).

The space S n (of all n × n real symmetric matrices) carries the inner product 〈X, Y 〉 :=
trace(XY ), where the trace of a matrix is the sum of its diagonal entries. InS n , the semidef-
inite coneS n+ of all positive semidefinite matrices is an irreducible cone. We refer to Faraut
and Koranyi (1984) for all things related to Euclidean Jordan algebras.

3 Some characterization results

3.1 A linear characterization of Z-transformations

A well-known result of Schneider and Vidyasagar (1970) gives an exponential characteriza-
tion of Z-transformations. In what follows, we provide a linear characterization.

Theorem 1 The following statements are equivalent:

(a) L ∈ Z(K ).
(b) e−t L (K ) ⊆ K for all t ≥ 0.
(c) There exists t∗ ≥ 0 such that L+ t I is invertible and (L+ t I )−1(K ) ⊆ K for all t > t∗.

Proof The equivalence of (a) and (b) is well-known, see Theorem 3 in Schneider and
Vidyasagar (1970).

(a) ⇒ (c): Assume that L ∈ Z(K ). Then, by Prop 3, τ := min Re σ(L) is an eigenvalue
of L .

Hence, for t > t∗ := |τ |, L + t I (which is a Z-transformation) is positive stable and by
Prop. 2, L + t I is invertible with (L + t I )−1(K ) ⊆ K ; this gives (c).

(c) ⇒ (a): Suppose (c) holds (without loss of generality) for some t∗ > 0. Then, t >

t∗ ⇒ (L + t I )−1(K ) ⊆ K , or equivalently (as K is a cone), (I + sL)−1(K ) ⊆ K for all
s ∈ (0, 1

t∗ ). Now, let ||L|| denote the operator norm of L . Then, for 0 < s < min{ 1
t∗ , 1

||L|| },
we have

(I + sL)−1 = I − sL + s2 A(s),

where A(s) := L2 − sL3 + · · · . Now, to show that L ∈ Z(K ), let x ∈ K and y ∈ K ∗ with
〈x, y〉 = 0. Then, as (I + sL)−1(K ) ⊆ K ,

0 ≤ 〈(I + sL)−1x, y〉 = 〈(I − sL + s2 A(s))x, y〉 = −s〈L(x), y〉 + s2〈A(s)x, y〉
for all small positive s. This gives 〈L(x), y〉 ≤ s〈A(s)x, y〉 for all small positive s. Letting
s → 0, we get 〈L(x), y〉 ≤ 0. This proves that L ∈ Z(K ). ��
3.2 A linear characterization of cone preserving Z-transformations

The following result is key to our characterizations of cone preserving Z-transformations
to be presented in the subsequent sections. This result shows that the cone preserving
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Z-transformations are Lyapunov-like and provides a linear characterization of such trans-
formations.

Theorem 2 The following statements are equivalent:

(i) L ∈ Z(K ) ∩ �(K).
(ii) L ∈ LL(K ) ∩ �(K).
(iii) e−t L (K ) ⊆ K for all t ≥ 0 and L(K ) ⊆ K.
(iv) et L(K ) ⊆ K for all t ∈ R and L(K ) ⊆ K.
(v) L + t I ∈ Aut(K ) for all t > 0.

Proof (i)⇒ (ii): Suppose L ∈ Z(K )∩�(K).Weclaim that L is Lyapunov-like on K . Let x ∈
K , y ∈ K ∗, and 〈x, y〉 = 0. By the Z-property, 〈L(x), y〉 ≤ 0. But, as L(K ) ⊆ K , we have
L(x) ∈ K and therefore, 〈L(x), y〉 ≥ 0. Hence 〈L(x), y〉 = 0. Thus, L ∈ LL(K ) ∩ �(K).

(ii) ⇒ (i): This is obvious as LL(K ) ∩ �(K) ⊆ Z(K ) ∩ �(K).

Theequivalenceof (a) and (b) in the previous result gives that of (i) and (iii).As L ∈ LL(K )

if and only if L ,−L ∈ Z(K ), we also get the equivalence of (ii) and (iv).
(i) ⇒ (v): Now suppose L ∈ Z(K ) ∩ �(K). Since L ∈ Z(K ), τ := min Re σ(L) is an

eigenvalue of L and there exists a nonzero u ∈ K such that L(u) = τ u, see Prop 3. Since
L(K ) ⊆ K , we have τ ≥ 0. Thus, for t > τ ≥ 0, L + t I (which is a Z-transformation) is
positive stable and so (L + t I )−1(K ) ⊆ K . Also, (L + t I )(K ) ⊆ K for all t > 0. Hence,
(L + t I )(K ) = K , that is,

L + t I ∈ Aut(K ) for all t > 0.

(v) ⇒ (i): Suppose L + t I ∈ Aut(K ) for all t > 0. Then, (L + t I )−1(K ) ⊆ K for all t > 0.
By the previous theorem, L ∈ Z(K ). Also, from (L + t I )(K ) ⊆ K for all t > 0, we get
L(K ) ⊆ K . Hence we have L ∈ Z(K ) ∩ �(K). ��
3.3 A characterization of cone preserving Z-transformations over an irreducible

cone

In this subsection, we characterize cone preserving Z-transformations over an irreducible
cone and provide several examples.

Theorem 3 Suppose K is an irreducible proper cone in H. Then,

Z(K ) ∩ �(K) = R+ I.

In particular, the above statement holds if K is a symmetric cone in a simple Euclidean
Jordan algebra.

Proof From Theorem 2, Z(K )∩�(K) = LL(K )∩�(K). When K is irreducible, Corollary
3 in Gowda and Tao (2014) shows that LL(K ) ∩ �(K) = R+ I . This gives the stated result.
Since a symmetric cone in a simple Euclidean Jordan algebra is irreducible (Faraut and
Koranyi 1984), the additional statement follows. ��
Remark 1 Suppose K is an irreducible proper cone in H . An easy consequence of the above
theorem is that if L and I − L are in �(K), then L is a nonnegative multiple of I . This is
equivalent to saying that I is an extreme direction of the convex cone �(K). (This in turn, is
equivalent to saying that (any) L in �(K) that satisfies L(K ) = K is an extreme direction of
�(K).) That these statements are actually equivalent to the irreducibility of K is shown in
Theorem 3.3 of Loewy and Schneider (1975). Thus, the equalityZ(K )∩�(K) = R+ I holds
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for a proper cone if and only if it is irreducible. (This also can be seen from our Theorem
4 given in the next Section.) We note that the results of Loewy and Schneider (1975) are
proved in a purely algebraic way (without relying on the inner product structure of H ) and
are valid for convex cones more general than proper cones.

We now illustrate the above theorem by some examples. Recall thatS n+ is an irreducible
cone in S n .

Example 1 Let H = S n with K = S n+. Consider, for any A ∈ Rn×n , the Lyapunov
transformation L A. We claim that

L A(S n+) ⊆ S n+ ⇐⇒ A = γ I with γ ≥ 0.

Clearly, L A(S n+) ⊆ S n+ holds when A = γ I where γ ≥ 0. Now suppose L A(S n+) ⊆ S n+.
Since L A is a Lyapunov-like transformation, it is a Z-transformation. By the above theorem,
L A = α I for some α ≥ 0. Then, AX + X AT = αX for all X ∈ S n . By taking X to be
an arbitrary diagonal matrix, one can easily show that A must be a diagonal matrix with a
constant diagonal. Writing A = γ I , we have 2γ X = L A(X) ∈ S n+ for all X ∈ S n+; hence
γ ≥ 0.

Example 2 Let H = S n with K = S n+. Consider, for any A ∈ Rn×n , the so-called (two-
sided)multiplication transformation MA definedbyMA(X) = AX AT . One important (easily
verifiable) property of MA is that MA(S n+) ⊆ S n+. Now, we claim that

MA ∈ Z(S n+) ⇐⇒ A = γ I where γ ∈ R.

One implication is obvious: When A = γ I , MA is a multiple of the identity transformation,
hence a Z-transformation. Now suppose that MA ∈ Z(S n+). Since MA(S n+) ⊆ S n+, by
Theorem 3, MA = α I for some α ≥ 0. This means that AX AT = αX for all X ∈ S n .
If α = 0, we put X = I (the identity matrix) to get AAT = 0 and A = 0. If α > 0, let
B = 1√

α
A so that BXBT = X for all X ∈ S n . Since this holds when X = I , B is invertible,

so BX = XC for all X ∈ S n where C = (BT )−1. Putting X = I , we see that B = C . So,
B commutes with every X ∈ S n . From this it is elementary to see that B is a multiple of the
identity matrix. Thus, A is a multiple of the identity matrix.

Example 3 Let H = S n with K = S n+. Consider, for any A ∈ Rn×n , the Stein transforma-
tion SA. We claim that

SA(S n+) ⊆ S n+ ⇐⇒ A = γ I where |γ | ≤ 1.

As SA is a Z-transformation, by Theorem 3, SA(S n+) ⊆ S n+ ⇒ SA = α I for some α ≥ 0.
We show that A = γ I with |γ | ≤ 1. Since SA(X) = X − AX AT = αX for all X ∈ S n ,
AX AT = βX for all X ∈ S n , where β = 1 − α. We argue as in Example 2 to see that
A = γ I for some γ ∈ R. Then, SA = (1− γ 2) I . From the assumption SA(S n+) ⊆ S n+, we
get |γ | ≤ 1. The reverse implication in our claim is obvious.

Example 4 This example can be considered as a combination of the previous examples. Here
we consider

L = L A −
N∑
i=1

MBi ,

which is a Z-transformation on S n+. We show that if L(S n+) ⊆ S n+, then A and all Bi are
multiples of the identity transformation. To see this, suppose L(S n+) ⊆ S n+. In view of
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Example 1, we may assume that the sum in L is nonvacuous. Since L is a Z-transformation
on S n+, by Theorem 3, L = α I for some α ≥ 0. Then, MB1 = L A − α I or MB1 =
L A − α I − ∑N

i=2 MBi , depending on whether N = 1 or N > 1. In both cases, MB1 is a
Z-transformation; hence from Example 2, B1 is a multiple of the identity matrix. Similarly,
we can show that every Bi is a multiple of the identity matrix. Now, since L and every MBi

keep the semidefinite cone S n+ invariant, we see that L A = L + ∑N
i=1 MBi also keeps the

semidefinite cone invariant. Hence, from Example 1, A is a multiple of the identity matrix.
This completes the proof.

We note a special case: In S n ,

L A =
N∑
i=1

MBi �⇒ A and all Bi are multiples of I.

Thismeans that aLyapunov transformation canbewritten as a nonnegative linear combination
of multiplication transformations only in some trivial cases. A similar statement can be made
by replacing the multiplication transformations by Stein transformations.

3.4 A ‘diagonal’ characterization of cone preserving Z-transformations

In this subsection, we consider the problem of characterizing cone preserving
Z-transformations over general cones. Our next result says that such a transformation is
a ‘nonnegative diagonal’ transformation and is an extension of Theorem 3 to a direct sum of
irreducible cones.

Theorem 4 Suppose K is a reducible proper cone. Let K be the direct sum of irreducible
cones Ki , i = 1, 2 . . . , l (as in Proposition 1). If L ∈ Z(K ) ∩ �(K), then on each Ki , L
is a nonnegative multiple of the identity transformation. Hence, there exist nonnegative real
numbers αi , i = 1, 2 . . . , l, such that

L(x) = α1x1 + α2x2 + · · · + αl xl for all x = x1 + x2 + · · · + xl ,

where xi ∈ span(Ki ), i = 1, 2 . . . , l. (3)

Note: As K ∗ ⊆ ∩K ∗
i , it is easy to see that (3) defines a linear transformation L which is

in Z(K ) ∩ �(K) when all the αi s are nonnegative.

Proof Suppose L ∈ Z(K )∩�(K). We show that for each i , L(Ki ) ⊆ Ki and the restriction
of L to span(Ki ) is a Z-transformation on cone Ki (which is a proper cone in span(Ki )).
Then, we invoke Theorem 3 to say that on Ki , L = αi I for some αi ≥ 0. The diagonal
representation given in the theorem follows immediately as H is the direct sum of the spaces
span(Ki ).

Now, from Theorem 2, Item (v),

L + t I ∈ Aut(K ) for all t > 0.

Putting t = 1
s , we see that I + sL ∈ Aut(K ) for all s > 0. Note that the last statement

holds even for s = 0. Thus, (I + sL)(Ext(K )) = Ext(K ) for all s ≥ 0. We now show, via a
connectedness argument, that

(I + sL)(K1) ⊆ K1 for all s > 0.

Take any x ∈ Ext(K1) (note that x �= 0). Then, from Item (ii) in Proposition 1, x ∈ Ext(K )

and so (I + sL)x ∈ Ext(K ) for all s ≥ 0. As Ext(K ) is the union of Ext(Ki ), x is nonzero,
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and I + sL is invertible, we must have (I + sL)x ∈ ⋃l
i=1 Ei , where Ei := Ki\{0}. Clearly,

the set {(I + sL)x : s ≥ 0} is connected and contains x . Also, the sets E1, E2, · · · , El are
separated (that is, Ei

⋂ ⋃
j �=i Ei = ∅ for all i). Hence, we must have (I + sL)x ∈ E1 for

all s ≥ 0. This means that

x ∈ Ext(K1) ⇒ (I + sL)x ∈ K1 ∀ s ≥ 0.

Now, K1 is a proper cone in span(Ki ); hence it is the convex hull of Ext(K1) by the cone
version ofMinkowski’s theorem, see Holmes (1975), page 36. It follows that (I +sL)(K1) ⊆
K1 for all s > 0. Replacing s by 1

t , we see that (L + t I )(K1) ⊆ K1 for all t > 0. Letting
t → 0, we get L(K1) ⊆ K1. A similar argument with (I + sL)−1 in place of I + sL shows
that (L + t I )−1(K1) ⊆ K1, that is, K1 ⊆ (L + t I )(K1) for all t > 0. As L(K1) ⊆ K1, we
may consider the restriction of L to span(K1); let L1 denote this restriction. Then,

(L1 + t I )(K1) ⊆ K1 and K1 ⊆ (L1 + t I )(K1) for all t > 0.

This means that

(L1 + t I ) ∈ Aut(K1) for all t > 0.

By Theorem 2, L1 ∈ Z(K1) ∩ �(K1). As K1 is irreducible, from Theorem 3, L1 = α1 I for
some α1 ≥ 0. By replacing 1 by any i , we see that L(Ki ) ⊆ Ki and the restriction of L to
span(Ki ) is a nonnegative multiple of the identity transformation. This concludes the proof.

��
Remark 2 Part of the above proof becomes simpler if the spans of Ki are orthogonal, see
Gowda and Ravindran (2015), Corollary 1. We now apply the above result to Euclidean
Jordan algebras. Let H be a Euclidean Jordan algebra with its symmetric cone K . Then,
we may decompose H as an orthogonal direct sum of simple Euclidean Jordan algebras Hi ,
i = 1, 2, . . . , l, with K = K1 + K2 + · · · + Kl , where Ki is the symmetric cone of Hi , see
Faraut and Koranyi (1984), Propositions III.4.4 and III.4.5. Since Hi is simple, each Ki is
irreducible, hence we can apply the above theorem and say that any L in Z(K ) ∩ �(K) has
the diagonal form (3). As span(Ki ) = Hi , we note that the restriction of L to any Hi is a
nonnegative multiple of the identity transformation.

3.5 Symmetric cone linear complementarity problems

In this subsection, we show how our characterization results (Theorems 3 and 4) lead to
simplified proofs of some results of Song on symmetric cone and semidefinite linear com-
plementarity problems. First, we recall some necessary concepts and results. Let H denote
a Euclidean Jordan algebra with symmetric cone K . Given a linear transformation L on H
and an element q ∈ H , the symmetric cone linear complementarity problem, SCLCP(L , q),
is to find x ∈ H such that

x ∈ K , y := L(x) + q ∈ K , and 〈x, y〉 = 0.

When H = Rn with K = Rn+, the above problem reduces to the linear complementarity
problem (Cottle et al. 1992). If H = S n , K = S n+, the problem becomes the semidefinite
linear complementarity problem (Gowda and Song 2000). These are particular instances of
(cone) complementarity problems and variational inequalities which have been extensively
studied in the literature, see e.g., Facchinei and Pang (2003a, b).

We say that L
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(1) has the Q-property if for every q ∈ H , SCLCP(L , q) has a solution;
(2) has the GUS-property if for every q ∈ H , SCLCP(L , q) has a unique solution;
(3) has the P-property if

[x ◦ L(x) ≤ 0, x and L(x) operator commute] ⇒ x = 0,

where we say that two elements a and b operator commute if a ◦ (b ◦ x) = b ◦ (a ◦ x)
for all x ∈ H with x ◦ y denoting the Jordan product of elements x and y in H and
z ≤ 0 in H means that −z ∈ K ;

(4) is monotone if 〈L(x), x〉 ≥ 0 for all x ∈ H ;
(5) is strictly copositive if 〈L(x), x〉 > 0 for all 0 �= x ∈ K .

The above properties have been well studied for linear complementarity problems and
many inter-connections have been noted in the general case (Cottle et al. 1992; Gowda
et al. 2004). While the GUS-property reduces to the P-property for linear complementarity
problems, so far there is no characterization result known for general transformations. For
Lyapunov-like transformations, the following are known:

Proposition 4 (Gowda and Sznajder (2007), Theorem 7.1; Gowda et al. 2012, Theorem 5)
Suppose H is a Euclidean Jordan algebra with symmetric cone K and L ∈ LL(K ). Then,

(i) L has the GUS-property if and only if L is positive stable and monotone;
(ii) L has the Q-property if and only if it has the P-property.

Whether statements (i) and (ii) hold for Z-transformations remains an open question.
With a view towards characterizing theGUS-property forZ-transformations, in Song (2016),
Corollary 3.2, Song proves the following result:

Proposition 5 Suppose H is a Euclidean Jordan algebra with symmetric cone K and L ∈
Z(K ). If L(K ) ⊆ K, then the following are equivalent:

(a) L is strictly copositive.
(b) L has the GUS-property.
(c) L has the P-property and monotone.

We now show that this result can be recovered via Theorem 4 and Remark 1 as follows.
When L(K ) ⊆ K , L has a representation given in (3). Additionally, in that representation,
the vectors xi , 1 ≤ i ≤ l, are mutually orthogonal. When L has one of the properties (a),
(b), or (c), the nonnegative scalars α1, α2, . . . , αl in (3) are positive. But then all properties
(a)–(c) hold, proving the required equivalence. This argument actually shows that

For a cone invariant Z-transformation, the Q and P properties are equivalent.

We conclude the paper with another result of Song (2015) proved for the Stein transformation
SA on S n :

When SA(S n+) ⊆ S n+, SA has the GUS property if and only if I ± A are positive definite.

The following result recovers this and says more.

Corollary 1 Let H = S n and SA(S n+) ⊆ S n+. Then SA has the GUS-property if and only
if A = γ I with |γ | < 1.

We note that when A = γ I with |γ | < 1, I ± A are positive definite.
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Proof Suppose A = γ I with |γ | < 1. Then SA(X) = X − γ 2X = (1 − γ 2)X . Hence,
SA = α I with α > 0, and SA has the GUS-property. Conversely, suppose SA has the
GUS property. Since SA(S n+) ⊆ S n+, we see that A = γ I with |γ | ≤ 1. If |γ | = 1, then
SA(X) = (1 − γ 2)X = 0. Obviously SA cannot have the GUS property. Hence, |γ | < 1.
This completes the proof. ��
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