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Abstract. The commutation principle of Ramı́rez, Seeger, and Sossa [SIAM J. Optim., 23
(2013), pp. 687–694] proved in the setting of Euclidean Jordan algebras says that when the sum of a
Fréchet differentiable function Θ and a spectral function F is minimized (maximized) over a spectral
set Ω, any local minimizer (respectively, maximizer) a operator commutes with the Fréchet derivative
Θ′(a). In this paper, we extend this result to sets and functions which are (just) invariant under
algebra automorphisms. We also consider a similar principle in the setting of normal decomposition
systems.
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1. Introduction. Let V be a Euclidean Jordan algebra of rank n [3] and λ :
V → Rn denote the eigenvalue map (which takes x to λ(x), the vector of eigenvalues
of x with entries written in the decreasing order). A set Ω in V is said to be a spectral
set [1] if it is of the form Ω = λ−1(Q), where Q is a permutation invariant set in Rn.
A function F : V → R is said to be a spectral function [1] if it is of the form F = f ◦λ,
where f : Rn → R is a permutation invariant function.

Extending an earlier result of Iusem and Seeger [7] for real symmetric matrices,
Ramı́rez, Seeger, and Sossa [13] prove the following commutation principle.

Theorem 1.1. Let V be a Euclidean Jordan algebra, Ω be a spectral set in V, and
F : V → R be a spectral function. Let Θ : V → R be Fréchet differentiable. If a is a
local minimizer/maximizer of the map

(1) x ∈ Ω 7→ Θ(x) + F (x),

then a and Θ′(a) operator commute in V.

A number of important and interesting applications are mentioned in [13]. The
proof of the above result in [13] is somewhat intricate, deep, and long. In our paper
we extend the above result by assuming only the automorphism invariance of Ω and
F , and at the same time provide (perhaps) a simpler and shorter proof. To elaborate,
recall that an (algebra) automorphism on V is an invertible linear transformation on V
that preserves the Jordan product. It is known (see [8, Theorem 2]) that spectral sets
and functions are invariant under automorphisms, but the converse may fail unless
the algebra is either Rn or simple. By defining weakly spectral sets/functions as those
having this automorphism invariance property, we extend the above result of Ramı́rez,
Seeger, and Sossa as follows.
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COMMUTATION PRINCIPLES 1391

Theorem 1.2. Let V be a Euclidean Jordan algebra and suppose that Ω in V and
F : V → R are weakly spectral. Let Θ : V → R be Fréchet differentiable. If a is a
local minimizer/maximizer of the map

(2) x ∈ Ω 7→ Θ(x) + F (x),

then a and Θ′(a) operator commute in V.

By noting that a Euclidean Jordan algebra is an inner product space and the
corresponding automorphism group is a subgroup of the orthogonal group (at least
when the algebra is equipped with the canonical inner product), we state a similar
result in the setting of a normal decomposition system. Such a system was introduced
by Lewis [10] to unify various results in convex analysis on matrices. A normal
decomposition system is a triple (X,G, γ), where X is a real inner product space, G is
a (closed) subgroup of the orthogonal group of X, and γ : X → X is a mapping that
has properties similar to those of the map x 7→ λ(x); see section 4. Our commutation
principle on such a system is as follows.

Theorem 1.3. Let (X,G, γ) be a normal decomposition system. Let Ω be a convex
G-invariant set in X, F : X → R be a convex G-invariant function, and Θ : X → R
be Fréchet differentiable. Suppose that a is a local minimizer of the map

(3) x ∈ Ω 7→ Θ(x) + F (x).

Then a and −Θ′(a) commute in (X, G, γ).

The organization of our paper is as follows. We cover some preliminary material
in section 2. In section 3, we define weakly spectral sets/functions and present a
proof of Theorem 1.2. In section 4, we describe normal decomposition systems and
present a proof of Theorem 1.3. In the appendix, we state a structure theorem for the
automorphism group of a Euclidean Jordan algebra and show that weakly spectral
sets and spectral sets coincide only in an essentially simple algebra.

2. Preliminaries.

2.1. Euclidean Jordan algebras. Throughout this paper, V denotes a Eu-
clidean Jordan algebra [3]. For x, y ∈ V, we denote their inner product by 〈x, y〉
and Jordan product by x ◦ y. We let e denote the unit element in V and V+ :=
{x ◦ x : x ∈ V} denote the corresponding symmetric cone. If V1 and V2 are two
Euclidean Jordan algebras, then V1 × V2 becomes a Euclidean Jordan algebra un-
der the Jordan and inner products, defined, respectively, by (x1, x2) ◦ (y1, y2) =(
x1 ◦ y1, x2 ◦ y2

)
and 〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉 + 〈x2, y2〉. A similar definition

is made for a product of several Euclidean Jordan algebras. Recall that a Euclidean
Jordan algebra V is simple if it is not a direct product of nonzero Euclidean Jordan
algebras (or equivalently, if it does not contain any nontrivial ideal). It is known (see
[3]) that any nonzero Euclidean Jordan algebra is, in a unique way, a direct product
of simple Euclidean Jordan algebras. Moreover, there are only five types of simple
algebras, two of which are Sn, the algebra of n×n real symmetric matrices, and Hn,
the algebra of n× n complex Hermitian matrices.

We say that V is essentially simple if it is either Rn or simple.
An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it

is nonzero and cannot be written as a sum of two nonzero idempotents. We say a
finite set {e1, e2, . . . , en} of primitive idempotents in V is a Jordan frame if ei ◦ ej =
0 if i 6= j and

∑n
i=1 ei = e. It turns out that the number of elements in any Jordan

frame is the same; this common number is called the rank of V.
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1392 M. SEETHARAMA GOWDA AND JUYOUNG JEONG

Proposition 2.1 (spectral decomposition theorem [3]). Suppose V is a Eu-
clidean Jordan algebra of rank n. Then, for every x ∈ V, there exist uniquely de-
termined real numbers λ1(x), . . . , λn(x) (called the eigenvalues of x) and a Jordan
frame {e1, e2, . . . , en} such that

x = λ1(x)e1 + · · ·+ λn(x)en.

Conversely, given any Jordan frame {e1, . . . , en} and real numbers λ1, λ2, . . . , λn,
the sum λ1e1 + λ2e2 + · · · + λnen defines an element of V whose eigenvalues are
λ1, λ2, . . . , λn.

We define the eigenvalue map λ : V → Rn by

λ(x) =
(
λ1(x), λ2(x), . . . , λn(x)

)
,

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x). This is well-defined and continuous [1].
We define the trace of an element x ∈ V by tr(x) := λ1(x) + · · ·+ λn(x). Corre-

spondingly, the canonical (or trace) inner product on V is defined by

〈x, y〉tr := tr(x ◦ y).

This defines an inner product on V that is compatible with the given Jordan structure.
With respect to this inner product, the norm of any primitive element is one.

Throughout this paper, for a linear transformation A : V → V and x ∈ V, we use,
depending on the context, both the function notation A(x) as well as the operator
notation Ax.

Given a ∈ V, we define the corresponding transformation La : V → V by La(x) =
a ◦ x. We say that two elements a and b operator commute in V if La Lb = Lb La.
We remark that a and b operator commute if and only if there exist a Jordan frame
{e1, e2, . . . , en} and real numbers a1, a2, . . . , an, b1, b2, . . . , bn such that

a = a1e1 + a2e2 + · · ·+ anen and b = b1e1 + b2e2 + · · ·+ bnen;

see [3, Lemma X.2.2]. (Note that the ais and bis need not be in decreasing order.)
In particular, in Sn or Hn, operator commutativity reduces to the ordinary (matrix)
commutativity.

A linear transformation between two Euclidean Jordan algebras is a (Jordan alge-
bra) homomorphism if it preserves Jordan products. If it is also one-to-one and onto,
then it is an isomorphism. If the algebras are the same, we call such an isomorphism
an automorphism. Thus, a linear transformation A : V → V is an automorphism of V
if it is invertible and

A(x ◦ y) = Ax ◦Ay for all x, y ∈ V.

The set of all automorphisms of V is denoted by Aut(V). When V is a product, say,
V = V1 × V2, for φi ∈ Aut(Vi), it is easy to see that φ defined by

φ(x) :=
(
φ1(x1), φ2(x2)

)
, x = (x1, x2) ∈ V1 × V2

belongs to Aut(V). Thus,

Aut(V1)×Aut(V2) ⊆ Aut(V1 × V2).

A similar statement can be made when V is a product of several factors.
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COMMUTATION PRINCIPLES 1393

When V carries the canonical inner product, every automorphism is inner product
preserving and so Aut(V) is a closed subgroup of the orthogonal group of V. A linear
transformation D : V → V is a derivation if

D(x ◦ y) = D(x) ◦ y + x ◦D(y) for all x, y ∈ V.

We recall the following result from [8] (essentially, [3, Theorem IV.2.5]).

Proposition 2.2. Let V be essentially simple. If {e1, . . . , en} and {e′1, . . . , e′n}
are any two Jordan frames in V, then there exists φ ∈ Aut(V) such that φ(ei) = e′i
for all i = 1, . . . , n.

3. Weakly spectral sets and functions.

Definition 3.1. We say that a set E in V is weakly spectral if

A(E) ⊆ E for all A ∈ Aut(V).

A function F : V → R is said to be weakly spectral if

F (Ax) = F (x) for all x ∈ V, A ∈ Aut(V).

Remark 3.2. Suppose E is a spectral set, that is, E = λ−1(Q) for some permu-
tation invariant set Q in Rn. Then,

(4) x ∈ E, y ∈ V, λ(y) = λ(x)⇒ y ∈ E.

Now, let x ∈ E and A ∈ Aut(V). As A maps Jordan frames to Jordan frames,
λ(Ax) = λ(x). From (4), Ax ∈ E. This proves that E is weakly spectral. Hence,
every spectral set is weakly spectral. Now suppose F : V → R is a spectral function
so that for some permutation invariant function f : Rn → R, F = f ◦ λ. It follows
that F (Ax) = f(λ(Ax)) = f(λ(x)) = F (x) for any A ∈ Aut(V). Thus, F is weakly
spectral. This proves that every spectral function is weakly spectral.

Remark 3.3. It has been observed in [8, Theorem 2] that in any essentially sim-
ple algebra, every weakly spectral set is spectral. The following example shows that
weakly spectral sets/functions can be different from spectral sets/functions in general
algebras.

In the product algebra V = R× S2, let Ω = R+ × S2, and

x =
(

1,
[−1 0

0 2

])
, y =

(
− 1,

[
1 0
0 2

])
.

Since x ∈ Ω, y /∈ Ω, and λ(x) = (2, 1,−1)T = λ(y), we see that Ω cannot be of the form
λ−1(Q) for any (permutation invariant) set Q inR3. Thus, Ω is not a spectral set in V.
Now, identity transformation is the only automorphism of R and any automorphism
of S2 is of the form X 7→ UXUT for some orthogonal matrix U . As R and S2 are non-
isomorphic Euclidean Jordan algebras, we see (from Proposition 1 in [4] or Corollary
5.6 in the appendix) that automorphisms of V are of the form (t,X) 7→ (t, UXUT) for
some orthogonal matrix U . It follows that Ω is weakly spectral. The characteristic
function of Ω is an example of a weakly spectral function that is not spectral.

Remark 3.4. As a consequence of Corollary 5.6 in the appendix, one can show the
following: Suppose V = V1 × V2 × · · · × Vm, where V1,V2, . . . ,Vm are nonisomorphic
simple algebras. Let Ei be a spectral set in Vi, i = 1, 2, . . . ,m. Then, E1×E2×· · ·×Em
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1394 M. SEETHARAMA GOWDA AND JUYOUNG JEONG

is weakly spectral in V. Not every weakly spectral set in V arises this way: Referring
to the example given in Remark 3.3,

{(t,X) ∈ Ω : t+ tr(X) = 0}

is weakly spectral but not a product of two spectral sets.
We also note, as a consequence of Theorem 5.1, that a product of (weakly) spectral

sets need not be (weakly) spectral. The set {0}× S2 in S2 ×S2 is one such example.

Remark 3.5. It will be shown in Theorem 5.7 that in any algebra that is not essen-
tially simple, the class of weakly spectral sets is strictly larger than the class of spectral
sets. This shows that Theorem 1.2 is applicable to a wider class of sets/functions than
Theorem 1.1.

Proof of Theorem 1.2. We first prove the result by assuming that a is a local
minimizer of the map (2). Then we have

Θ(a) + F (a) ≤ Θ(x) + F (x) for all x ∈ Na ∩ Ω,

where Na denotes some open ball around a. Let u and v be arbitrary (but fixed)
elements of V. Let D := LuLv −LvLu. Then, Proposition II.4.1. in [3] shows that D
is a derivation on V; hence, as observed in [3, p. 36], etD is an automorphism of V for
all t ∈ R. Therefore, by the continuity of t 7→ etDa and the automorphism invariance
of Ω, x := etDa ∈ Na ∩ Ω for all t close to zero in R. Then,

Θ(a) + F (a) ≤ Θ(etDa) + F (etDa) for all t close to 0.

As F (etDa) = F (a) by the automorphism invariance of F , we see that

Θ(a) ≤ Θ(etDa) for all t near 0.

This implies that the derivative of t 7→ Θ(etDa) at t = 0 is zero. Thus, we have
〈Θ′(a), Da〉 = 0. Putting b := Θ′(a) and recalling D = LuLv − LvLu, we get〈

b, (LuLv − LvLu)a
〉

= 0.

Since Lu and Lv are self-adjoint, the above expression can be rewritten as

〈v ◦ a, u ◦ b〉 − 〈u ◦ a, v ◦ b〉 = 0.

This, upon rearrangement, leads to 〈(LbLa − LaLb)u, v〉 = 0. As this equation holds
for all u and v, we see that LbLa = LaLb, proving the operator commutativity of a
and b (= Θ′(a)) in V.

Now suppose that a is a local maximizer of the map (2). Then a is a local
minimizer of the map x ∈ Ω 7→ −Θ(x) − F (x). From the above, we conclude that a
operator commutes with −Θ′(a). It follows that a operator commutes with Θ′(a).

Remark 3.6. As noted by a referee, the above proof only requires the invariance
of Ω and F under automorphisms of the form etD, where t ∈ R, and D is a derivation.
Since these belong to K, the connected component of identity in Aut(V), we may
weaken the hypothesis of the theorem by only requiring the K-invariance of Ω and F .
A result of this type for V = Sn and K = SOn (the special orthogonal group) has
already been observed in [16, Theorem 9].

D
ow

nl
oa

de
d 

08
/1

0/
17

 to
 1

30
.8

5.
14

5.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUTATION PRINCIPLES 1395

Remark 3.7. As can be seen, the above proof consists of two parts. In the first
part, using the automorphisms of the form etD, we prove that 〈Θ′(a), Da〉 = 0 for
all derivations D. In the second part, knowing the precise form of the derivations,
we further relate a and Θ′(a), thus proving the commutativity. With the observation
that the set of all derivations is just the Lie algebra of Aut(V), we can extend the
first part in the following way: Let H be a finite dimensional real Hilbert space and G
be a Lie subgroup of the group of all invertible linear transformations on H. Suppose
Ω ⊆ H and F : H → R are G-invariant, and Θ : H → R is differentiable. If a is a
minimizer (or a maximizer) of the map x ∈ Ω 7→ Θ(x) + F (x), then

(5) 〈Θ′(a), L(a)〉 = 0 for allL ∈ Lie(G),

where Lie(G) denotes the Lie algebra of G.
This is seen by noting that L ∈ Lie(G) ⇔ etL ∈ G for all t ∈ R and imitating

the first part of the above proof. Knowing the precise nature of Lie(G), one can
then get a refined relation between Θ′(a) and a. We remark that (5) is a type of
“orbital relation” discussed in a very broad setting in [15] for extremal problems
under invariance assumptions; see also [16].

An immediate special case of Theorem 1.2 is obtained by taking F = 0: If Ω
is weakly spectral and Θ is Fréchet differentiable, then any local minimizer a of
minx∈Ω Θ(x) operator commutes with Θ′(a). This can further be specialized by
assuming that Θ is linear, that is, of the form Θ(x) = 〈b, x〉.

A number of applications mentioned in [13] have analogues for weakly spectral
sets and functions. We mention one application that is especially important.

Theorem 3.8. Suppose Ω ⊆ V and F : V → R are weakly spectral. Let G : V → V
be arbitrary. Consider the variational inequality problem VI(G,Ω, F ): Find x∗ ∈ Ω
such that

〈G(x∗), x− x∗〉+ F (x)− F (x∗) ≥ 0 for all x ∈ Ω.

If a solves VI(G,Ω, F ), then a operator commutes with G(a).

Proof. The proof is similar to the one given in [13, Proposition 1.9]. If a solves
VI(G,Ω, F ), then

〈G(a), x− a〉+ F (x)− F (a) ≥ 0 for all x ∈ Ω.

This implies

〈G(a), x〉+ F (x) ≥ 〈G(a), a〉+ F (a) for all x ∈ Ω.

So, a minimizes 〈G(a), x〉+F (x) over Ω. By Theorem 1.2 applied to Θ(x) := 〈G(a), x〉,
we see that a operator commutes with G(a).

As an illustration of the above result, let K be a closed convex cone in V and
G : V → V be arbitrary. Consider the cone complementarity problem CP(G,K) of
finding an x∗ ∈ K such that

x∗ ∈ K, G(x∗) ∈ K∗, and 〈x∗, G(x∗)〉 = 0,

where K∗ is the dual of K defined by K∗ = {y ∈ V : 〈y, x〉 ≥ 0 for all x ∈ K}.
Corollary 3.9. Suppose K is weakly spectral. If a solves the cone complemen-

tarity problem CP(G,K), then a operator commutes with G(a).
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Remark 3.10. The above corollary yields the following: Suppose K is a closed
convex cone in V that is weakly spectral. If a ∈ K and b ∈ K∗ satisfy 〈a, b〉 = 0, then
a and b operator commute. Such a result for K = V+ (the symmetric cone of V) is
well-known; see Proposition 6 in [5].

4. Normal decomposition systems. Before giving a proof of Theorem 1.3, we
briefly recall the definition of a normal decomposition system and mention relevant
properties.

Definition 4.1. Let X be a real inner product space, G be a closed subgroup of
the orthogonal group of X, and γ : X → X be a mapping satisfying the following
properties:

(a) γ is G-invariant, that is, γ(Ax) = γ(x) for all x ∈ X, A ∈ G,
(b) for each x ∈ X, there exists A ∈ G such that x = Aγ(x), and
(c) for all x,w ∈ X, we have 〈x, w〉 ≤ 〈γ(x), γ(w)〉.

Then, (X, G, γ) is called a normal decomposition system [10]. In such a system, a
set Ω ⊆ X is said to be G-invariant if A(Ω) ⊆ Ω for all A ∈ G; a function F : X → R
is said to be G-invariant if F (Ax) = F (x) for all x ∈ X and A ∈ G.

In [10], various results on normal decomposition systems are given. In particular,
the following is proved.

Proposition 4.2 (see [10, Proposition 2.3]). In a normal decomposition system,
for any two elements x and w, we have

max
A∈G

〈Ax, w〉 = 〈γ(x), γ(w)〉 .

Also, 〈x, w〉 = 〈γ(x), γ(w)〉 holds for two elements x and w if and only if there exists
an A ∈ G such that x = Aγ(x) and w = Aγ(w).

Motivated by the above proposition, we say that x and w commute in (X,G, γ)
if there exists an A ∈ G such that x = Aγ(x) and w = Aγ(w).

Now consider an essentially simple Euclidean Jordan algebra V. We assume that
V carries the canonical inner product and let G = Aut(V). Let {e1, . . . , en} be a fixed
Jordan frame in V. Define for any x ∈ V,

(6) γ(x) :=

n∑
i=1

λi(x)ei,

where λi(x) are components of λ(x). As eigenvalues are preserved under automor-
phisms, we see that γ satisfies condition (a) in the definition of normal decomposition
system. Since V is essentially simple, any Jordan frame can be mapped onto any
other by an element of G (by Proposition 2.2). Thus, given any x ∈ V with its spec-
tral decomposition x =

∑n
1 λi(x)fi, we can find A ∈ G such that A(ei) = fi for all i.

Then,

x = A

(
n∑
i=1

λi(x)ei

)
= Aγ(x).

This verifies condition (b) in the definition of normal decomposition system. Finally,
for all x, w ∈ X, we have the so-called Theobald–von Neumann inequality 〈x, w〉 ≤
〈γ(x), γ(w)〉; see, for example, [12], [1], or [6]. Putting all these together, we have the
following result.
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Proposition 4.3. Every essentially simple Euclidean Jordan algebra V is a nor-
mal decomposition system with X=V, G = Aut(V), and γ : V → V defined as in (6).

In this setting, two elements x, y ∈ X commute if and only if there exists a Jordan
frame {f1, f2, . . . , fn} such that

(7) x =

n∑
1

λi(x)fi and y =

n∑
1

λi(y)fi.

We note that this is stronger than the operator commutativity of x and y. For
example, in V = R2, x = (1, 0)T and y = (0, 1)T operator commute but do not
commute in the above sense.

Remark 4.4. Lim, Kim, and Faybusovich [12, Corollary 4] show that when V is a
simple Euclidean Jordan algebra, (V,K, γ) is a normal decomposition system, where
K is the connected component of identity in Aut(V) and γ is defined as in (6).

In [10], Lewis provides numerous examples of normal decomposition systems. In
particular, the algebras Sn and Hn (see section 2) are normal decomposition systems
where G is the corresponding automorphism group, and γ(X) is the diagonal matrix
with λ(X) as the diagonal. Another example is the space Mm,n of all real m × n
matrices with inner product 〈X,Y 〉 := tr(XTY ), with G consisting of transformations
of the form X 7→ UXV T , where U and V are orthogonal matrices, and γ(X) is
an m × n matrix with diagonal consisting of singular values of X written in the
decreasing order and zeros elsewhere. These examples suggest the use of the phrase
“simultaneous ordered diagonalization” to describe “commutation in (X,G, γ).”

Proof of Theorem 1.3. Since a is a local minimizer of problem (3), we have

Θ(a) + F (a) ≤ Θ(x) + F (x) for all x ∈ Na ∩ Ω,

where Na denotes (some) neighborhood of a. Let A be an arbitrary element of G. As Ω
is convex and G-invariant, we have, for all positive t near zero, (1−t)a+tAa ∈ Na∩Ω.
Thus,

Θ(a) + F (a) ≤ Θ
(

(1− t)a+ tAa
)

+ F
(

(1− t)a+ tAa
)

for all positive t near 0. As F is convex and G-invariant,

F
(

(1− t)a+ tAa
)
≤ (1− t)F (a) + tF (Aa) = (1− t)F (a) + tF (a) = F (a);

hence,

Θ(a) ≤ Θ
(

(1− t)a+ tAa
)

for all positive t near 0. This implies that 〈Θ′(a), Aa− a〉 ≥ 0, that is, 〈Θ′(a), Aa〉 ≥
〈Θ′(a), a〉. Now let b := −Θ′(a) so that 〈b, Aa〉 ≤ 〈b, a〉. Then, as A ∈ G is arbitrary,
we have

max
A∈G

〈b, Aa〉 ≤ 〈b, a〉 .

Using Proposition 4.2, we see that 〈γ(b), γ(a)〉 ≤ 〈b, a〉. Since the reverse inequality
always holds in a normal decomposition system, the above inequality turns into an
equality. By Proposition 4.2, a and b commute in (X, G, γ).
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Remark 4.5. One might ask if the commutativity of a and −Θ′(a) in the above
theorem could be replaced by that of a and Θ′(a). To answer this, we consider
X = R2 with the usual inner product, let G be the set of all 2× 2 signed permutation
matrices (having exactly one nonzero entry, either 1 or −1, in each row/column), and
γ(x) = |x|↓ (which is the vector of absolute values of entries of x written in decreasing
order). Let a = (−1, 1)T, b = (3,−2)T, c = −b, Ω := convex-hull{Aa : A ∈ G},
Θ(x) = 〈b, x〉, and F = 0. Then, it is easy to see that a minimizes Θ over Ω and
commutes with −b (which is −Θ′(a)) but does not commute with b in (X, G, γ).
We further note that a maximizes the map x 7→ Ψ(x) := 〈c, x〉 over Ω but does not
commute with −Ψ′(a) in (X, G, γ).

Remark 4.6. We note that the conclusion in Theorem 1.2 is the same whether
we consider a minimization or a maximization problem. However, in Theorem 1.3,
the conclusion is specific to minimization problems. If in Theorem 1.3 we retain the
convexity of Ω and F but consider a maximization problem, we may not get the
commutativity of a and −Θ′(a) in (X, G, γ); see the example in the above remark.
Also, if we assume convexity of Ω and concavity of F and consider a maximization
problem, we would get the commutativity of a and Θ′(a) in (X, G, γ).

We now state analogues of Theorem 3.8 and Corollary 3.9 in normal decomposi-
tion systems.

Theorem 4.7. Suppose Ω ⊆ X and F : X → R are convex and G-invariant. Let
G : X → X be arbitrary. Consider the variational inequality problem VI(G,Ω, F ) on
X: Find x∗ ∈ Ω such that

〈G(x∗), x− x∗〉+ F (x)− F (x∗) ≥ 0 for all x ∈ Ω.

If a solves VI(G,Ω, F ), then a commutes with −G(a) in (X, G, γ).

When Ω = K is a closed convex cone and F = 0, we write CP(G,K) for
VI(G,Ω, F ).

Corollary 4.8. Suppose K is closed convex cone in X that is G-invariant and
let G : V → V be arbitrary. If a solves the cone complementarity problem CP(G,K),
then a commutes with −G(a) in (X, G, γ).

Remark 4.9. The above corollary yields the following: Suppose K is a closed
convex cone in X that is G-invariant. If a ∈ K and b ∈ K∗ satisfy 〈a, b〉 = 0, then a
and −b commute in (X, G, γ).

Remark 4.10. We specialize the above remark to essentially simple algebras. Let
V be such an algebra and let K be a spectral cone (which is a closed convex cone that
is spectral) in V. If a ∈ K and b ∈ K∗ satisfy 〈a, b〉 = 0, then there exists a Jordan
frame {f1, f2, . . . , fn} such that

a =

n∑
1

λi(a)fi, b =

n∑
1

λn+1−i(b)fi, and

n∑
1

λi(a)λn+1−i(b) = 0.

This comes from (7) by noting −λi(−b) = λn+1−i(b) and 〈a, b〉 = 0.

Remark 4.11. Another consequence of Remark 4.9 is the following: Suppose
(X,G, γ) is a normal decomposition system where

〈γ(x), γ(y)〉 = 0⇒ x = 0 or y = 0.
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(We note that Mm,n and the system considered in Remark 4.5 are such systems.) If
K is a closed convex cone in X that is G-invariant, then K = {0} or X. This can be
seen as follows. Suppose K is different from {0} and X. Let a be a nonzero element
in the boundary of K. By an application of the supporting hyperplane theorem,
we can find a nonzero b ∈ K∗ such that 〈a, b〉 = 0. By Remark 4.9, a and −b
commute in (X, G, γ), hence, a = Aγ(a), −b = Aγ(−b) for some A ∈ G. Then,
〈γ(a), γ(−b)〉 = 〈a,−b〉 = 0. It follows that a = 0 or b = 0, leading to a contradiction.

5. Appendix. Here, we describe a result on the automorphism group of a Eu-
clidean Jordan algebra which is written as a product of simple algebras. While this
result can be deduced from Theorem VI.18 in [9], for completeness, we present a di-
rect (perhaps, elementary) proof. Using this result, we show that a Euclidean Jordan
algebra V is essentially simple if and only if every weakly spectral set in V is spectral.

Consider a (general) Euclidean Jordan algebra V. We assume that V is product
of distinct nonisomorphic simple algebras V1,V2, . . . ,Vm (with possible repetitions).
Regrouping the factors, we assume that

(8) V =
(
V1×V1× · · · × V1

)
×
(
V2×V2× · · · × V2

)
× · · · ×

(
Vm×Vm× · · · × Vm

)
.

By letting Wi := Vi × Vi × · · · × Vi, we write

(9) V =W1 ×W2 × · · · ×Wm.

Theorem 5.1.

Aut(V) = Aut(W1)×Aut(W2)× · · · ×Aut(Wm).

Moreover, any automorphism φ of Aut(Wi) has the following form:

φ =
(
φ1, φ2, . . . , φk

)
◦ σ,

where k is the number of factors in Wi, φj ∈ Aut(Vi), j = 1, 2, . . . , k, and σ is a k×k
permutation matrix.

Note. The explicit form of the automorphism φ written with a permutation σ is

φ(x) =
(
φ1(xσ(1)), φ2(xσ(2)), . . . , φk(xσ(k))

)
for allx= (x1, x2, . . . , xk)∈Vi×Vi×· · ·×Vi.

Before giving a proof, we present two lemmas. In what follows, we write dim(X)
for the dimension of a space X.

Lemma 5.2. Suppose that V and W are simple Euclidean Jordan algebras and
A : V → W is a nonzero Jordan homomorphism. Then,

(i) dim(V) ≤ dim(W),
(ii) if dim(V) = dim(W), A is an isomorphism,
(iii) if dim(V) < dim(W), then zero is the only homomorphism from W to V.

Proof. (i) Since the kernel of a homomorphism is an ideal of V and V is simple,
we see that A is either zero or one-to-one. Since our A is nonzero, its kernel is {0};
hence it is one-to-one and so dim(V) ≤ dim(W).

(ii) When dim(V) = dim(W), this A is also onto; hence it is an isomorphism.
(iii) Assume dim(V) < dim(W). If there is a nonzero Jordan homomorphism from

W to V, by (i), dim(W) ≤ dim(V). This is a contradiction.
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Lemma 5.3. Consider a product Euclidean Jordan algebra Z = Z1×Z2 · · ·×Zm.
Let A : Z → Z be a linear transformation written in the matrix form A = [Aij ],
where Aij : Zj → Zi is linear. If A is a Jordan homomorphism, then so is Aij for
any i, j. Furthermore, AT

ik Ail = 0 for all i and k 6= l.

Proof. For x, y ∈ Z, we haveA(x◦y) = Ax◦Ay. Taking x = (0, . . . , 0, xj , 0, . . . , 0)T

and y = (0, . . . , 0, yj , 0, . . . , 0)T, we get, for any i, j, Aij(xj ◦ yj) = Aijxj ◦Aijyj . This
proves that Aij is a homomorphism. Now suppose k 6= l and let x = (0, . . . , 0, xk,
0, . . . , 0)T and y = (0, . . . , 0, yl, 0, . . . , 0)T. Then A(x ◦ y) = Ax ◦ Ay yields, 0 =
Aikxk ◦Ailyl. This leads to 〈Aikxk, Ailyl〉 = 0 and to 〈xk, AT

ik Ail yl〉 = 0. As xk and
yl are arbitrary, we get AT

ik Ail = 0.

Proof of Theorem 5.1. We may assume without loss of generality that all algebras
involved carry canonical inner products. Since Aut(W1)×Aut(W2)×· · ·×Aut(Wm) ⊆
Aut(V), it is enough to prove the reverse inclusion. As the result is obvious for m = 1,
we assume that m ≥ 2. Let A ∈ Aut(V). Since we are given V by (8) and (9), we
think of A as a matrix of linear transformations A = [Aij ], where each Aij is a linear
transformation from some Vk to Vl. By partitioning this matrix, we write A = [Bkl],
where (each block) Bkl : Wl → Wk is a linear transformation. The main part of our
proof consists in showing

(10) B1j = 0 for all j ≥ 2.

Once we establish this, the same argument can then be used for AT (which is the
inverse of A as we are using the canonical inner product). This results in Bj1 = 0 for
all j ≥ 2. It then follows that B11 ∈ Aut(W1) and A could be viewed as an element
of Aut(W1)×Aut(W2 ×W3 × · · · ×Wm). We then invoke the induction principle to
see that A ∈ Aut(W1)×Aut(W2)× · · · ×Aut(Wm).

Now toward proving (10), we make the following claims.

Claim 5.4.
(a) If for some k 6= l (the off-diagonal block) Bkl has a nonzero entry, then

dim(Vl) < dim(Vk) and Blk = 0.
(b) If Aij is a nonzero entry in (a diagonal block) Bkk, then all other entries in

the row/column of A containing Aij are zero, that is, Ail = 0 and Ali = 0
for all l 6= j.

To see (a), suppose Aij is a nonzero entry in Bkl. Then, Aij from Vl to Vk is a
nonzero homomorphism (by Lemma 5.3). As Vl and Vk are simple and nonisomorphic,
by Lemma 5.2, dim(Vl) < dim(Vk). Lemma 5.2 also shows that there cannot be a
nonzero homomorphism from Vk to Vl. Thus, every entry in Blk is zero.

To see (b), suppose that Aij is a nonzero entry in a diagonal block Bkk. Then,
by Lemma 5.3, Aij : Vk → Vk is an isomorphism. From the same lemma, for l 6= j,
we have AT

ij Ail = 0 and so Ail = 0. Thus, in the row containing Aij , all other entries
are zero. By working with the transpose of A, we see that the column containing Aij
is zero except for the Aijth entry. This proves the claim.

Claim 5.5. Suppose for some l with 1 ≤ l ≤ m − 1, B12,B23, . . . ,Bl l+1 are
nonzero. Then, l < m− 1 and there exists j > l + 1 such that Bl+1 j is nonzero.

If this were not true, then either l = m − 1 or l < m − 1 and Bl+1 j = 0 for
all j > l + 1. From Claim 5.4(a), dim(Vl+1) < dim(Vl) < · · · < dim(V1). From
Lemma 5.2(iii), Bl+1 1,Bl+1 2, . . . ,Bl+1 l are all zero. This means that in the matrix
with entries Bij , in the l + 1 row, all entries except possibly Bl+1 l+1, are zero. As
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A is invertible, this lone entry Bl+1 l+1 cannot be zero. In fact, no row in the matrix
Bl+1 l+1 can be zero. By Claim 5.4(b), each row of Bl+1 l+1 contains exactly one
nonzero entry. This implies that in the square matrix Bl+1 l+1, each column will also
contain exactly one nonzero entry. By Claim 5.4(b), all columns of Bl l+1 will be zero.
This contradicts our assumption that Bl l+1 is nonzero. This proves our claim.

Now suppose, if possible, (10) is false so that B1j 6= 0 for some j ≥ 2. We may
assume, by relabeling, that j = 2, so B12 is nonzero. By Claim 5.5 (with l = 1),
2 < m and there exists j > 2 such that B2j is nonzero. Relabeling, we may assume
that j = 3 so that B23 is nonzero. We can use Claim 5.5 again, to see that B34 is
nonzero, etc. Claim 5.5 allows us to repeat this process; however, as m is finite, this
cannot continue forever. Thus, we reach a contradiction. Hence, (10) holds and, as
discussed before, leads to the completion of the proof of the first part of the theorem.

We now come to the second part of the theorem. For simplicity, we let i = 1.
We need to describe the matrix A which is now B11. As A is invertible, each row of
B11 is nonzero. By Claim 5.4(b), each row of B11 contains exactly one nonzero entry
which, by Lemma 5.2, is an automorphism of V1. (This means that each column of
B11 also has the same property.) Thus, B11 can be regarded as a permutation of a
diagonal matrix of transformations where each diagonal entry is an automorphism of
V1. This gives the stated assertion.

The following is immediate.

Corollary 5.6. Suppose V = V1 × V2 × · · · × Vm, where V1, . . . ,Vm are non-
isomorphic simple algebras. Then,

Aut(V) = Aut(V1)×Aut(V2)× · · · ×Aut(Vm).

As an application of the above results, we prove the following.

Theorem 5.7. V is essentially simple if and only if every weakly spectral set in
V is spectral.

Proof. The “only if” part has been observed in [8, Theorem 2]. We prove the “if”
part. Suppose, if possible, V is not essentially simple; let V be given by (8) and (9).
We consider two cases.

Case 1: V = W1 ×W2 × · · · × Wm, m ≥ 2. For i = 1, 2, . . . ,m, let rank(Wi) =
ni, Pi denote the set of all primitive idempotents in Wi, and let 0 denote the zero
element in any Wi. Since automorphisms map primitive idempotents to primitive
idempotents, P1 is invariant under automorphisms of W1, and so, by Theorem 5.1,
Ω := P1 × {0} × {0} . . .× {0} is weakly spectral in V. Let c1 ∈ P1, c2 ∈ P2,

x =
(
c1, 0, 0, . . . , 0

)
and y =

(
0, c2, 0, 0 . . . , 0

)
.

As both x and y have eigenvalues 1 (appearing once) and 0 (appearing n1 +n2 + · · ·+
nm−1 times), we see that λ(x) = λ(y). However, x ∈ Ω while y /∈ Ω. Thus, Ω cannot
be of the form λ−1(Q) for any (permutation invariant) set Q.

Case 2: V = W1 = V1 × V1 × · · · × V1, where V1 is a simple algebra of rank
at least 2 and the number of factors in this product, say, m, is more than one. Let
n = rank(V1). In Rn, let si denote the coordinate vector containing 1 in its ith
slot and zeros elsewhere; let Q = {s1, s2, . . . , sn}. As Q is permutation invariant,
the set P1 := λ−1(Q) (which equals the set of all primitive elements in V1) is a
spectral set in V1, where λ : V1 → Rn is the eigenvalue map. As P1 is invariant
under automorphisms of V1, an application of Theorem 5.1 shows that the set Ω :=
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P1 × P1 × · · · × P1 is weakly spectral in V. We now claim that Ω is not a spectral
set in V. Let e denote the unit vector in V1 and {e1, e2 . . . , en} be a Jordan frame
in V1. Then, λ(e1) = (1, 0, 0, . . . , 0)T and so the vector x := (e1, e1, . . . , e1) in Ω has
eigenvalues 1 (repeated m times) and 0 (repeated m(n − 1) times). When m ≤ n,
let y := (e1 + e2 + · · · + em, 0, 0, . . . , 0) ∈ V. We see that y /∈ Ω while λ(y) = λ(x).
On the other hand, when n < m, we write m = nk + l with 0 ≤ l < n and define
y := (e, e, . . . , e, e1 + e2 + · · ·+ el, 0, 0 . . . , 0), where e is repeated k times. We see that
y /∈ Ω while λ(y) = λ(x). Thus, Ω is not a spectral set. This completes the proof.

Acknowledgments. We thank the referees for their comments and suggesting
the works of Seeger [15], [16].
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