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1. Introduction

This paper deals with some interconnections between spectral sets/functions, algebra
automorphisms, and majorization in the setting of Euclidean Jordan algebras. Given a
Euclidean Jordan algebra V of rank n, a set E in V is said to be a spectral set [1] if it is
of the form

E=)"1Q),

where () is a permutation invariant set in R™ and A : YV — R" is the eigenvalue map
(that takes z to A(x), the vector of eigenvalues of « with entries written in the decreasing
order). A function F': V — R is said to be a spectral function [1] if it is of the form

F=fol

where f : R™ — R is a permutation invariant function. How these are related to algebra
automorphisms of V (which are invertible linear transformations on ) that preserve the
Jordan product) and majorization is the main focus of the paper.

The above concepts are generalizations of similar concepts that have been extensively
studied in the setting of R™ (where the concepts reduce to permutation invariant sets and
functions) and in 8™ (H™), the space of all n x n real (respectively, complex) Hermitian
matrices, see for example, [3-5,10-14,20], and the references therein. In the case of S™
(H™), spectral sets/functions are precisely those that are invariant under linear trans-
formations of the form X — UXU*, where U is an orthogonal (respectively, unitary)
matrix.

There are a few works that deal with spectral sets and functions on general Euclidean
Jordan algebras. Baes [1] discusses some properties of @) that get transferred to E (such
as closedness, openness, boundedness/compactness, and convexity) and properties of f
that get transferred to F (such as convexity and differentiability). Sun and Sun [22] deal
with the transferability of the semismoothness properties of f to F'. Ramirez, Seeger, and
Sossa [18] and Sossa [21] deal with a commutation principle and a number of applications.

In this paper, we present some new results on spectral sets and functions. In addition
to giving some elementary characterization results, we show that spectral sets/functions
are indeed invariant under automorphisms of ¥V, but the converse may not hold unless
the algebra is R™ or simple (e.g., 8™ or H"). We will also relate the concepts of spectral
sets and functions to that of majorization. Given two elements z, y in V, we say that x is
magjorized by y and write x < y if A(z) is majorized by A(y) in R™ (see Section 2.1 for the
definition); we say that x and y are spectrally equivalent and write x ~ y if A(z) = A(y)
(or equivalently, z < y and y < x). We show that spectral sets are characterized by the
condition

r~y,yelk = zeck
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and spectral functions are characterized by
x~y = Fz)=F(y).

Under the assumption of convexity, by replacing x ~ y by < y and F(x) = F(y) by
F(z) < F(y), we derive similar characterizations. In particular, we observe that convex
spectral functions are Schur-convex, that is,

<y = F(x)<F(y),
and, as a consequence, show that

F(¥(z)) < F(z) (zeV)
whenever F is a convex spectral function and ¥ is a doubly stochastic transformation
on V. We also prove a converse of this latter statement.

We conclude the paper with a discussion on the Transfer Principle which asserts that
(numerous) properties of Q (of f) get transferred to A=1(Q) (respectively, f o \). We
also prove a metaformula

#O =04,

where # is a set operation (such as the closure, interior, boundary, convex hull, etc.)
and < is the set operation defined by

QY =2"4Q) for QCR" and E° =%,(\(E)) for ECV,

with ¥, denoting the set of all n x n permutation matrices.

The organization of the paper is as follows. In Section 2, we cover basic notation,
definitions, and preliminary results. Sections 3 and 4 deal with some characterization and
automorphism invariance properties of (convex) spectral sets and functions. Section 5
deals with Schur-convex spectral functions. Finally, in Section 6 we deal with the transfer
principle and a metaformula.

2. Preliminaries
2.1. Some notation

An n x n permutation matriz is a matrix obtained by permuting the rows of an n x n
identity matrix. Every row and column of such a matrix therefore contains a single 1
with Os elsewhere. The set of all n X n permutation matrices is denoted by X,,.

A set @ in R™ is said to be permutation invariant if o(x) € @ whenever z € Q
and o € ¥,,. (We assume that the empty set vacuously satisfies this condition, hence
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permutation invariant.) A function f : R™ — R is permutation invariant if f(o(z)) =
f(z) for all 0 € X,,. The word ‘symmetric’ is also used in the literature to describe
permutation invariance of a set/function.

Recall that for two vectors v and v in R™ with their decreasing rearrangements u*
and v*, we say that u is majorized by v and write u < v if

k k n
Sute Yk ort ka1 wmd 3ui=Yuk
i=1 i=1 i=1 i=1
We have, by setting k=1 and k =n — 1,
u<v=max u; <max v; and min u; > min v;. (1)
2.2. Euclidean Jordan algebras

Throughout this paper, ¥V denotes a Fuclidean Jordan algebra [7]. For z,y € V, we
denote their inner product by (z,y) and Jordan product by x oy. We let e denote the
unit element in V and V; := {zox : & € V} denote the corresponding symmetric cone. If
V1 and V5 are two Euclidean Jordan algebras, then, V; x Vo becomes a Euclidean Jordan
algebra under the Jordan and inner products, defined, respectively by (21, z2)o(y1,y2) =
(9:1 oY1, T2 0 yg) and  ((z1,22), (y1,42)) = (x1,y1) + (x2,y2). A similar definition is
made for a product of several Euclidean Jordan algebras. Recall that a Euclidean Jordan
algebra V is simple if it is not a direct product of nonzero Euclidean Jordan algebras
(or equivalently, if it does not contain any non-trivial ideal). It is known, see [7], that
any nonzero Kuclidean Jordan algebra is, in a unique way, a direct product of simple
Euclidean Jordan algebras. Moreover, there are only five types of simple algebras, one
of which is: 8", the algebra of n x n real symmetric matrices, with inner and Jordan
products given by

1
(X.Y)=tr(XY) and XoY = (XY +YX).

The algebra R™ is simply the product of n copies of S'. We say that an algebra is
essentially simple if it is either R™ or simple.

An element ¢ € V is an idempotent if ¢> = ¢; it is a primitive idempotent if it is
nonzero and cannot be written as a sum of two nonzero idempotents. We say a finite set
{e1, ea, ..., ey} of primitive idempotents in V is a Jordan frame if

n
e;oe; =0 wheni#j and Zeizﬁ

i=1

Note that (e;, e;) = (e; o e, ) = 0 whenever i # j.
It turns out that all Jordan frames in ¥V will have the same number of elements. This
common number is the rank of V.
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Proposition 1 (Spectral decomposition theorem [7]). Suppose V is a Euclidean Jordan
algebra of rank n. Then, for every x € V, there exist uniquely determined real numbers

Ar(x), ..., Ap(2) (called the eigenvalues of z) and a Jordan frame {ey, ..., e} such
that

x=A(x)er + -+ A(T)epn.

Conversely, given any Jordan frame {ei, ..., e,} and real numbers A1, s, ..., \n, the
sum Arep + -+ -+ A\pe, defines an element of V whose eigenvalues are Ay, Aa, ..., \y,.

We note that
Vi={zeV: @) >0 Vi=12,...,n}.

We define the trace of an element x € V by:

tr(x) = Z Ai(z).

From now on, A(z) denotes the vector of eigenvalues of x with components written in

the decreasing order. Note that the mapping x — A(x) is well-defined and continuous,
see [1].
Recall by definition,

zr~yinV & Az)=Ay) in R™
As this is an equivalence relation on V, we define the equivalence class of an x € V by:
[z] :={yeV:y~u}

Let ¢ and ¥ be linear transformations on V. We way that

o ¢ is an algebra automorphism (or ‘automorphism’ for short) if it is invertible and
p(zoy) =o(x)odly) Va,yeV.

The set of all automorphisms of V is denoted by Aut(V). The automorphisms of R"
are precisely permutation matrices. Also, automorphisms of ™ (H™) are of the form
X - UXU*, where U is an orthogonal (respectively, unitary) matrix. See [8] for an
explicit description of automorphisms of £".

We note that automorphisms map Jordan frames to Jordan frames. Thus, eigenvalues
of an element remain the same under the action of an automorphism. In particular,

plz)~x VY eV, oeAut(V).
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We say that a set Q in V is invariant under automorphisms (or automorphism in-
variant) if

Q) CQ Ve Aut(V);

similarly, a function F' : ¥V — R is invariant under automorphisms (or automorphism
invariant) if

Fo¢p=F VYV ¢eAut(V).
If ¢ is an automorphism of V, then

o(Vy) = Vs

Linear transformations satisfying the latter property are called cone automorphisms;
the set of all such transformations will be denoted by Aut(Vy).
e U is doubly stochastic [9] if it is
(i) positive, i.e., U(Vy) C Vy,
(ii) unital, i.e., ¥(e) = e, and
(iii) trace preserving, i.e., tr(¥(z)) = tr(x) for all x € V.
When V = R", such a U is a doubly stochastic matriz (which is an n X n nonnegative
matrix with each row/column sum one).
We write DS(V) for the set of all doubly stochastic transformations on V.

The following result will be used in many of our theorems, particularly, in the converse
statements. Here and elsewhere, we implicitly assume that a Jordan frame, in addition
to being a set, is also an ordered listing of its objects. Recall that V is essentially simple
if it is either R™ or simple.

Proposition 2. Let V be essentially simple. If {e1, ...,e,} and {e}, ... e}, } are any two
Jordan frames in V, then there exists ¢ € Aut(V) such that ¢(e;) = e} for all i =
1, ..., n. In particular, if x ~y in V), then there exists ¢ € Aut(V) such that x = ¢(y).

Proof. We observe that in R™, up to permutations, there is only one Jordan frame,
namely, the standard coordinate system. In this case, we can take ¢ to be a permutation
matrix. If V is simple, the existence of an automorphism mapping one Jordan frame to
another comes from Theorem IV.2.5, [7]. The last statement comes from an application
of the spectral decomposition theorem (Proposition 1). O

It is interesting to note that the converse in the above result holds: If every Jordan
frame can be mapped onto another by an automorphism, then the algebra is essentially
simple. While we do not require this result in the main body of the paper, we provide a
proof in the Appendix.

We also recall the following result from [9].
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Proposition 3. Let V; and Vs be two non-isomorphic simple Euclidean Jordan algebras.
If ¢ € Aut(Vy x Vs), then ¢ is of the form (¢1, d2) for some ¢; € Aut(V;), ¢ = 1,2, that
18,

o(x) = (¢1(21), P2(22)) Va = (21,22) € V1 X Va.

2.3. Majorization in R™ and Euclidean Jordan algebras

We start by recalling two classical results in matrix theory. The first one is due to
Hardy, Littlewood, and Pélya and the second one is due to Birkhoff.

Proposition 4 (/2], Theorem I1.1.10). Let z, y € R™. A necessary and sufficient condition
for x <y is that there exists a doubly stochastic matriz A such that x = A(y).

Proposition 5 (/2/, Theorem I1.2.8). The set of all n x n doubly stochastic matrices is a
compact convez set whose extreme points are permutation matrices. In particular, every

doubly stochastic matriz is a convex combination of permutation matrices.

The next proposition, which is essential for Section 4, is somewhat classical and well
known. It easily follows from the above two propositions.

Proposition 6.
(¢) If Q is convex and permutation invariant in R"™, then
u=<v, vEQR = u€eq.

(it) If f : R™ — R is convex and permutation invariant, then f is Schur-convez, that
18,

u<v = fu) < f).
The result below describes a connection between majorization, automorphisms, and
doubly stochastic transformations in the setting of Euclidean Jordan algebras. Recall,
by definition,

r<yinV & Az)<A(y) inR".

Proposition 7 (Gowda [9]). For xz, y € V, consider the following statements:

(a) x = ®(y), where ® is a convex combination of automorphisms of V.
(b) = =V(y), where ¥ is doubly stochastic on V.
(c) z =<y
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Then, (a) = (b) = (¢). Furthermore, when V is essentially simple, reverse implications
hold.

When V is a simple Euclidean Jordan algebra, it is known [17] that Az 4+ y) <
A(z) + A(y) for all z, y € V. Here is a generalization of this result.

Proposition 8. Let V be a Fuclidean Jordan algebra of rank n. Then for x,y € V, there
exist doubly stochastic matrices A and B such that

MMz +y) = AN(z) + BA(y). (2)
When V is simple, we can take A = B.

Proof. As the result for a simple algebra is known, we assume that )V is non-simple,
that is, V is a product of simple algebras. For simplicity, we assume V = V; X Vs,
where Vi, V, are simple algebras of rank nj, ne, respectively. Now, let © = (z1, x2),
y = (Y1, y2), where z;, y; € V; for i = 1, 2. Define u; = A(z;) € R™ for i = 1, 2 and
u = (u1, ug) € RM+t"2 = R"™ As eigenvalues of z come from the eigenvalues of z;
and x9, we have A\(x) = o1(u) for some o1 € X,,. Similarly, there exist o3, 03 € X,, such
that

A(y) = o2(v) v = (v1, v2), v;i = A(¥i) )
where fori=1, 2.
MMz +y) = o3(w) w = (wy, wa2), w; = Mz; + y;)

Since V1, Vs are simple,
w; = )\(ﬂfl + yz) < )\(l‘l) + /\(yz) = Uu; + v; for i=1, 2.

Thus, there are doubly stochastic matrices C; on R™ such that w; = C;(u; + v;) for

i=1, 2. So,
wi _(Ci O U + U1
wWa - 0 02 ug + vy )
Letting C' denote the block diagonal matrix that appears above, one can easily verify

that C is doubly stochastic on R™. Moreover, we have w = C(u + v) = C(u) + C(v).
Now, define matrices A and B by

A= 03001_1 and B = 03002_1.

As products of doubly stochastic matrices are doubly stochastic, A and B are doubly
stochastic. Finally, we have A\(x) + BA(y) = Mz +vy). O
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3. Spectral sets
Throughout this paper, V is assumed to be of rank n.

Definition 1. A set E in V is a spectral set if there exists a permutation invariant set @
in R™ such that E = A71(Q).

It is easy to see that arbitrary union and/or intersection of spectral sets is spectral.
So is the complement of a spectral set. Clearly, the symmetric cone V, is a spectral set
in V as it corresponds to R}.

In this section, we describe some properties of spectral sets. We characterize spectral
sets via spectral equivalence. First, we introduce a ‘diamond’ operation on subsets of
R™ and V and state a simple proposition that will facilitate our study. This operation is
motivated by the question of recovering @) from E. We note that in the case of V = S§",
if F is a spectral set, then the corresponding @ is given by @ = {u € R™ : Diag(u) € E},
where Diag(u) is a diagonal matrix with u as the diagonal [11].

Definition 2. For a set @ in R", we define the set Q% in V by
Q% = AHQ) = {z € V: Ax) € Q). (3)
For a set E in V, we let E® in R" be
EY =%, (\E)) = {ueR™: ut = \(z) for some z € E}. (4)
For simplicity, we write Q¥ in place of (Q¥)®, etc.
Proposition 9. The following statements hold:

(i) For any @ that is permutation invariant in R", QY is a spectral set in V and
Q0 =Q.
(it) For any set E in'V, E® is permutation invariant in R™.
(iii) B9 ={x €V : z~y for somey € E} = Uyer [y], where [z] is the equivalence
class of x induced by ~.

Proof. For any set @ in R", we define the core of @ by
QY= {utuecQq}.
We immediately note the following when @ is permutation invariant:

C)i cQ, Q= En(Qi)a and )‘(A_l(Q)) = Qi"

(1): Let @ be permutation invariant. By definition, F := Q? is a spectral set. We have
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Q%)% = BE® = 5,(\(E)) = Z.(0A1(Q)) = Za(QY) = Q.

(ii): Since %, is a group, L,(E®) = S, (S,(A(E)) = X, (ME)) = E®. Thus, E® is
permutation invariant.

(iii): This follows from (E®)® = {z € V : Az) € E®°} = {z € V : \Nz) =
A(y) for some y € E}. O

Example 1. This example shows that in Item (i) above, one needs the permutation
invariance property of Q to get the equality Q¢ = Q. Let V = S? and Q; = {u €
Rﬁ_ : uy > wug}. Then, it is easy to see that Q? = S_%_ and so Q?Q = Ri Thus,
we have Q1 C Q?O. On the other hand, consider Q2 = {u € Ri :up < uz}. Then,
QS = {al : a > 0}; therefore QS = {u € R2 : uy = us}. This means QY C Q..

We now characterize spectral sets.
Theorem 1. The following are equivalent for any set E in V.

(a) E is spectral.
b) x~y,yec E=>z€E.
() E®¢ =E.

Proof. (a) = (b): Let E = A~Y(Q), where @ is permutation invariant. If  ~ y with
y € E, then A\(z) = A\(y) € Q. Hence, z € A71(Q) = E.

(b) & (¢): This comes from Item (#i7) in Proposition 9.

(¢) = (a): When E®® = E, we let Q := E®. By Item (ii) in Proposition 9, Q is
permutation invariant; we see that £ = Q¢ = A71(Q) is spectral. O

Remarks. The above two results show that Q — Q¢ sets up is a one-to-one correspon-
dence between permutation invariant sets in R™ and spectral sets in V.

We now describe spectral sets via automorphisms. This result explains why in S™
or H™, spectral sets are completely characterized by automorphism invariance.

Theorem 2. Fvery spectral set in V is invariant under automorphisms. Converse holds
when V is essentially simple.

Proof. Suppose F is a spectral set, x € E, and ¢ € Aut(V). As eigenvalues remain
the same under the action of automorphisms, we see that ¢(r) ~ x. By Item (b) in
Theorem 1, ¢(x) € E. This proves that E is invariant under automorphisms.

To see the converse, assume that F is invariant under automorphisms and V is essen-
tially simple. We verify Item (b) in Theorem 1 to show that E is spectral. To this end, let
x ~y,y € E. Then, A(x) = A(y). By Proposition 2, there exists ¢ € Aut(V) such that
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x = ¢(y). As E is invariant under automorphisms, we must have x € E. This concludes
the proof. O

Example 2. In the theorem above, the converse may not hold for general algebras. To
see this, let V = R x S? and E = R x Sf_. From Proposition 3, every automorphism ¢
on V is of the form ¢ = (41, ¢2), where ¢ € Aut(R), ¢ € Aut(S?). It is easy to check
that F is invariant under automorphisms. Now consider two elements,

= ofy S])er ma e ()i 5] em

As \(z) = A(y) = (1,0,—1)7, we have = ~ . Thus, E violates condition (b) in Theorem 1.
Hence, E is not a spectral set. It is easy to verify that € E¢¢. Thus, E # E¢ even
though F is invariant under automorphisms.

We now characterize spectral sets that are convex.

Theorem 3. For a set E in V, consider the following:

Then (a) < (b) < (¢) and (¢) = (d). Furthermore, all statements are equivalent when
V is essentially simple.

Proof. (a) = (b): Let E = A~1(Q), where @ is permutation invariant and convex in R™.
The convexity of E has already been proved in Theorem 27, [1]. For completeness,
we provide a (slightly different) proof. Let z,y € E and ¢ € [0,1]. By Proposition 8,
Atxr + (1 —t)y)) = tu + (1 — t)v, where u = A(A(z)), v = B(A(y)) for some doubly
stochastic matrices A and B. By Proposition 6, we see that u,v € Q. As @ is convex,
At 4+ (1 —t)y) € Q. Thus, tx + (1 — t)y € E. This proves the convexity of E.

Now, suppose z < y and y € E. Then, A(z) < A(y) and A(y) € Q. By Proposition 6,
A(z) € @ and hence z € E.
(b) = (c¢): This is obvious as & ~ y implies = < y.
(¢) = (a): When (c) holds, by Theorem 1, E is spectral; let £ = A71(Q), where Q
is permutation invariant. To show that @ is convex, let u, v € @ and ¢ € [0,1]. Then
there exist z, y € E such that  := Y | use; and y := >} v;e} for some Jordan frames
{e1,e2,...,e,} and {e}, €}, ... el }. Now, define T = >} u;e;. Then A\(T) = A\(z), hence

T € E by (¢). AsZ, y € E and FE is convex, we get
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n

n n
Z(tui + (1 —t)v)e; = tZuieg +(1—1) Zvieg =tz+(1—t)yeE.

i=1 i=1 i=1

This proves that tu + (1 — t)v € Q. Thus, Q is convex.
(¢) = (d): Assume (c), let ¢ € Aut(V) and z € E. Then A(xz) = A(¢(x)) and hence
¢(x) ~ x. From (c), we must have ¢(z) € E, proving (d).

Assuming that V is essentially simple, we prove (d) = (c¢). Suppose z, y € V such that
x~yandy € E. As V is essentially simple, by Proposition 2, there exists ¢ € Aut(V)
such that © = ¢(y). By (d), x € E. O

Example 3. We can use Example 2 to show that in a general V, (d) may not imply (a),
(b), or (c) in the above theorem.

4. Spectral functions

Definition 3. A function F': V — R is a spectral function if there exists a permutation
invariant function f : R™ — R such that F' = fo A.

By way of an example, we observe that F/(x) = Apaz(2) (the maximum of eigenvalues
of z) is a spectral function on V as it corresponds to f(u) = max u; on R".

Proposition 10. A set E in V is a spectral set if and only if its characteristic function
XE (which takes the value one on E and zero outside of E) is a spectral function.

Proof. Suppose FE is a spectral set, say E = A\~1(Q), where @ is a permutation invariant
set in R™. Then xg = xgoA. As x¢ is a permutation invariant, x g is a spectral function.

Conversely, if xg = fo ) is a spectral function, then let @ be the set where f takes the
value one. If u € @, then f(u) = 1. As f is permutation invariant, we have f(Pu) =1
for all P € X,. This gives Pu € @Q; hence @) is a permutation invariant set. We now
show E = A71(Q). Suppose x € E. Then 1 = yg(z) = f(A(z)), which implies \(z) € Q
by our construction. Thus, z € A~1(Q). For the reverse implication, let x € A=1(Q). As
Az) € Q, we get xp(z) = f(A(zx))=1,andsoxz € E. O

In this section, we describe some properties of spectral functions. We characterize
spectral sets via spectral equivalence. As with sets, motivated by the question of recov-
ering f from F', we introduce a ‘diamond’ operation on functions on R™ and V. We note
that in the case of V = 8", if F' is a spectral function on 8™, then the corresponding f
is given by f(u) = F(Diag(u)).

Definition 4. Given a function f : R"™ — R, we define f¢ :V — R by

O(x) = f(\(=)) for zeV. (5)
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Fix a Jordan frame {€j, ..., €,} in V. Then, given a function F' : ¥V — R, we define
FO:R™ - R by

n
FOu):=F <Z u%ei> where u = (u1, ..., up)' € R". (6)
i=1

For simplicity, we write £ in place of (f¢)¢, etc. In the result below, F¢ and (f¢)¢
are defined as in (6) with respect to a (fixed) Jordan frame {e1, ..., €,}.

Proposition 11. The following statements hold:
(i) For any permutation invariant function f : R™ — R, f¢ is a spectral function and
190 = f.

(it) For any function F:V — R, F< is permutation invariant.

Proof. (i): When f is permutation invariant, by definition, f¢ is a spectral function.
Now, define (f©)¢ as in (6). Then, for any u € R", we have

790 ) = £ (z ¢> _; (A (z ¢>> _ ) = flu).
=1 =1

Since u is arbitrary, fO¢ = f.
(ii): Take u € R™ and 0 € ¥,,. As ut = o(u)t, we get

n

FO(o(u) = F (Zo—(u)fa> =F <Z ufaZ) = FO(u).

=1

Hence, F® is permutation invariant. O
Example 4. For the equality f¢¢ = f in Item (i) above, it is essential to have f invariant

under permutations. To see this, take V = 82 and define f : R?> — R by f(u1, uz) = us.
Then, for any = € 82, f¢(z) = f(A(x)) = A1 (x). Hence, for any u € R?,

2
f<><>(u) = f¢ (Z Uf@‘) = f(ui) = max{uy, us}.

This proves that fO¢ # f.
We now characterize spectral functions.

Theorem 4. The following are equivalent for a function F :V — R:
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(a) F is a spectral function.

(b) For each o € R, the level set F~1({a}) is a spectral set in V.
(¢) F is constant on each equivalence class of ~.

(d) FOO =

Proof. (a) = (b): Suppose F' is a spectral function, say F' = f o A, where [ is a per-
mutation invariant function. For any a € R, F7'({a}) = A7} (f1({a}). As fis a
permutation invariant function, Q := f~1({a}) is a permutation invariant set in R™.
Thus, F~'({a}) = A71(Q) is a spectral set.

(b) = (c): Suppose F satisfies condition (b) and x ~ y. Let  := F(z). Then, F~1({a})
is a spectral set and x € F~1({a}); hence, by Theorem 1, y € F~1({a}). This implies
that F'(y) = a; hence, F(z) = F(y) whenever x ~ y.

(¢) = (d): Let = € V with its spectral decomposition z = > 7 A\i(z)e;. Define y =
1 Ai(z)é;. Then, z ~y and by (c), F(z) = F(y). This implies,

FOO(z) = FO (A <Z)\ ) F(y) = F(x).

Hence, FO¢ = F.
(d) = (a): Let FO® = F. Then, f := F° is permutation invariant by Item (ii) in
Proposition 11. Hence, F = f< is spectral. 0O

Theorem 5. Fvery spectral function is invariant under automorphisms. Converse holds
when V is essentially simple.

Proof. Suppose F' = f o A for some permutation invariant function f. Note that A(z) =
AM¢(x)) for every x € V and ¢ € Aut(V). Thus, F(¢(z)) = f(A(¢(z))) = f(A(x)) = F(z).
For the converse, let F' be invariant under automorphism and V be essentially simple.
If x ~ y, then by Proposition 2, there exists ¢ € Aut(V) such that x = ¢(y). This implies
that F'(z) = F(y). We now use Item (c¢) in Theorem 4 to see that F' is spectral. O

Example 5. The converse in Theorem 5 may not hold in general. To see this, take V =
R x 8% and let F : V — R be defined by

F((a, A) =tr(A) VaeR, AeS2

Since we know the (explicit) description of automorphisms of V (via Proposition 3),
we easily see that F' is automorphism invariant. However, for x and y of Example 2,
Az) = Ay) and so & ~ y. One can easily check that F(z) = 0 # 1 = F(y). As F
violates condition (c¢) in Theorem 4, F' is not a spectral function.

A celebrated result of Davis [6] says that a unitarily invariant function on H" is con-
vex if and only if its restriction to diagonal matrices is convex. This result has numerous
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applications in various fields. A generalization of this result for Euclidean Jordan al-
gebras has already been observed by Baes [1]. In what follows, we consider equivalent
formulations of this generalization and give some applications.

Theorem 6. Let E be a convex spectral set in V so that E = A\=1(Q) with Q convex and
permutation invariant in R™. Let F : E — R. Consider the following statements:

(a) F = foA where f:Q — R is convex and permutation invariant.
(b) F is convex, and x <y implies F(x) < F(y).

(¢) F is convex, and x ~ y implies F(x) = F(y).

(d) F is conver and F o ¢ =F for all ¢ € Aut(V).

Then (a) < (b) < (¢) and (c) = (d). Moreover, all these statements are equivalent when
V is essentially simple.

Proof. (a) = (b): The convexity of F' has already been proved in Theorem 41, [1].
Capturing its essence, we present our proof based on Proposition 8. For ¢ € [0, 1] and
z,y € E, we write A(tx + (1 —t)y) =t AX(x) + (1 —t) BA(y), where A and B are doubly
stochastic matrices. As these matrices are convex combinations of permutation matrices
(see Proposition 6), by permutation invariance and convexity of f on @, we see that

F(AX(z)) < f(A(x)) and f(BA(y)) < f(A(y)). It follows that

F(tz + (1 —t)y) = f(tAX(@) + (1 — ) BA(y))
< tf(AN(®)) + (1 =) f(BA(y))
<tf(Mz) + (1 —1) f(Ay))
= tF(x) + (1 —t)F(y).

Now for the second part of (b), suppose z, y € F with < y. Writing v = A(z) and
v = A(y), we get u < v in @ and hence (from Propositions 4, 5) u = . a;0;(v) for
some a; > 0 with >, a; = 1 and permutation matrices o; € X,. As f is convex and
permutation invariant,

Fw) = f (3 aio50) £ 3 aiflos(0) = 3 aif(v) = F(v).

Since ' = fo A, we get F(z) = f(A(z)) = f(u) < f(v) = f(AMy)) = F(y).

(b) = (c): This is obvious as « ~ y implies x < y.

(¢) = (a): Given F satisfying (c), we define f: @ — R as follows. For any u € @, there
exists © € E such that \(x) = u*. We let f(u) := F(x). This is well defined: if there is a
y € E with \(y) = u', then x ~ y and so by (c), F(z) = F(y). Now, for any permutation
o, ut = o(u)¥; hence, f(o(u)) = F(x) = f(u), proving the permutation invariance of f.
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We also see F(z) = f(u) = f(u*) = f(A(z)). Note that these (relations) hold if we start
with an z € F and let w = A(z). Thus we have F' = fo A

We now show that f is convex. Let u, v € Q and ¢t € [0,1]. As w:=tu+ (1 —t)v € Q,
there exists z € E such that A(2) = wt. Let "] w; e; be the spectral decomposition of z.
Define z = Y [ u;e; and y = > ] v; e;. Note that A\(z) = ut € Q and A(y) = vt € Q;
hence, z,y € E with z = tz + (1 — t)y. Then, as f is permutation invariant and F is

convex, we get

Hence, f is convex.
(¢c) = (d): Let ¢ be an automorphism. For z € V, A(¢(x)) = A(z) and so ¢(z) ~ x.
Then, by (¢), we must have F(¢(x)) = F(z).

Now, we prove (d) = (c¢) when V is essentially simple. Suppose x,y € E such
that « ~ y. By Proposition 2, there exists an automorphism ¢ such that @ = ¢(y).
Then, from (d), F(z) = F(¢(y)) = F(y). Thus, condition (¢) holds. This completes the
proof. O

Remarks. In the case of a general V, (d) may not imply other statements. This can be
seen by taking V and F' as in Example 5. Clearly, this F' is automorphism invariant and
convex (indeed, linear). However, as seen in Example 5, F is not a spectral function.

We now provide two applications of the above theorem.

Example 6. For p € [1, oo], let F(z) = |z|,, ,
pth-norm of a vector u in R". Then, F' is a convex spectral function which is also

:= [|\(z)]|p, where ||u||, denotes the
positive homogeneous. Since F(z) =0 = x = 0, we see that
| |lsp, p is @ norm on V.

This fact has already been observed in [23], where it is proved via Thompson’s triangle
inequality, majorization techniques, and case-by-case analysis.

Example 7 (A Golden-Thompson type inequality). The Golden—Thompson inequality
([2], p. 261) says that for A, B € H",

tr (exp(A + B)) <tr (exp(A) exp(B)).
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It is not known if an analogous result holds in Euclidean Jordan algebras. The Golden—
Thompson inequality easily implies the (weaker) inequality

tr (exp(A + B)) <tr (exp(A)) tr (exp(B)).

Rivin [19], based on a result of Davis [6], gives a simple proof of this. A modification of
this proof, given below, leads to the following generalization:
For any two elements x, y in a Euclidean Jordan algebra V,

tr (exp(:c + y)) < tr (exp(x)) tr (exp(y)), (7)

where exp(z) is defined by exp(z) := > exp(X\i(z)) e; when z has the spectral decom-
position z = Y1 \i(z)e;.

We prove (7) as follows. For v € R™ with components uq, ..., u,, let f(u) =
In(>"7 exp(u;)), which is known to be convex [19]. Since f is also permutation invariant,
F := f o \is convex by the above theorem. It follows that

F(x;y) SRRSO}

for all z, y € V. As F(z) =In (tr (exp(:c))), this leads to

[tr (exp (zﬂ))] ’ <tr (exp(a:)) tr (exp(y)).
This, with the observation tr (exp(QZ)) < [tr (exp(z))] ’ for any z € V, yields (7).

5. Schur-convex functions

Definition 5. A function F' : V — R is said to be Schur-convez if
x<y= F(z) < F(y).
Theorem 6 (together with Proposition 7) immediately yields the following.

Theorem 7. Every convex spectral function on V is Schur-convex. In particular, for any
doubly stochastic transformation ¥ on V, and for any convex spectral function F' onV,
we have

F(¥(x)) < F(x) forall zeV.

We illustrate the above result with a number of examples.
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Example 8. For p € [1, oc], as in Example 6, consider F'(z) = [|z|, , := [|\(z)|[p. Then,
F' is a convex spectral function and hence, for any doubly stochastic transformation ¥
onV,

¥ (@)l 5, < Il

sp, P — sp,p”

This extends Proposition 2 in [9], where it is shown that ||¥(z)||sp, 2 < ||Z]|sp, 2 for all =
in a simple Euclidean Jordan algebra.

Example 9. Consider an idempotent ¢ (# 0,e) in V and the corresponding orthogonal
decomposition [7]

V=V 1)+ V(c, 3)+ V(c, 0),
where V(c, v) ={z € V:zoc =z}, v €{0,3,1}. For each = € V, we write
r=u+v+w  where uw€V(c1),vEV(, 1), weV(,D0).
For any a € V, let P, denote the corresponding quadratic representation defined by
P,(z) =2ao0 (aox)—a®ox. Then for ¢ = 2¢ — e, one verifies that P.(z) = u — v+ w

and (£5H)(2) = u+w. As €% = e, P. is an automorphism of V ([7], Prop. 11.4.4). Thus,

P. and & 52+ L are doubly stochastic on V. Then, for any convex spectral function F on V,

Flu—v+w) < F(x) and F(u+w) < F(x).

We note that the process of going from x = w + v + w to u + w is a ‘pinching’ process;
in the context of block matrices, this ‘pinching’ is obtained by setting the off-diagonal
blocks to zero.

Example 10. Let A be an n X n real symmetric positive semidefinite matrix with each
diagonal entry one. In V, we fix a Jordan frame {ej,es,...,e,} and consider the cor-
responding Peirce decomposition (Theorem IV.2.1 [7]) of any x € Vi z = 37, xi; =
Sl wie; + > i<j Tij- Then the transformation

\I/(Jt) =Ae Xr = Zaijxij

i<j
is doubly stochastic, see [9]. It follows that when F is a convex spectral function on V),
F(Aex) < F(x).

By taking A to be the identity matrix, this inequality reduces to
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F (i%‘%) < F(x).

Example 11. Let g : R — R be any function. Then the corresponding Léewner mapping
Ly, : V — V [22] is defined as follows: For any « € V with spectral decomposition

x =3 N(z)ey,

Clearl}I7 F(‘T) = tr(Lg(m)) = Zg()‘z(x)) = f © >‘7 where f(ula RS un) = Zg(uz)v is a
spectral function. Thus, when g is convex, F' is a convex spectral function. Hence, the
function z — tr(Ly(x)) is Schur-convex for any convex function g: R — R.

The second part of Theorem 7 says that a doubly stochastic transformation decreases
the value of a convex spectral function. Below, we present a converse to this statement:

Theorem 8. The following statements hold:

(i) If z,y € V with F(x) < F(y) for all convex spectral functions F on V), then x < y.
(ii) If x,y € V with F(x) = F(y) for all convex spectral functions F on V, then x ~ y.
(iii) If U is a linear transformation on V such that F(¥(z)) < F(x) for allx € V and

for all convex spectral functions F, then ¥ is a doubly stochastic transformation
on V.

This result is based on two lemmas. The first lemma (noted on page 159 in [16]) is a
consequence of a result of Hardy, Littlewood, and Pdlya.

Lemma 1. Suppose u,v € R™ with the property that f(u) < f(v) for all convex permuta-
tion invariant functions f : R™ — R. Then, u < v.

Our second lemma is a generalization of a well-known result: An n x n matrix A is
doubly stochastic if and only if Az < x for all x € R™, see Theorem A.4 in [16].

Lemma 2. A linear transformation ¥ : V — V is doubly stochastic if and only if ¥(x) < x
forallz e V.

Proof. First, suppose ¥ is doubly stochastic. Then by Proposition 7, we have ¥(z) < x.
To prove the converse, suppose ¥(x) < z for all x € V. First, let « € V.. Then all
the eigenvalues of z are nonnegative. Now, ¥(z) < z implies, from (1) in Section 2.1,
An(¥(z)) > Ap(x) > 0. As Ay (¥(z)) is the smallest of the eigenvalues of ¥(x), we see
that all eigenvalues of ¥(z) are nonnegative; hence ¥(x) € V;. Thus, ¥(Vy) C Vy.
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Next, we show that ¥(e) =e. As ¥(e) < e and every eigenvalue of e is one, from (1),
the smallest and largest eigenvalues of ¥(e) coincide with 1. Thus, all eigenvalues of ¥(e)
are equal to one. By the spectral decomposition of e, we see that U(e) = e.

We now show U is trace-preserving: For any Jordan frame {ej, ..., e,}, we have
U(e;) < e, so tr(V(e;)) = tr(e;) = 1. Thus for z € V with (spectral decomposition)

T =), Ti€,

tr(U(z)) = tr <\I/ (Z xiei>> Z x; (P Z x; = tr(z

Thus, ¥ is doubly stochastic on V. 0O
We now come to the proof the theorem.

Proof. (i) Suppose x,y € V with F(z) < F(y) for all convex spectral functions F' on V.
Then, for any f that is convex and permutation invariant on R", we let F' = f o A and
get f(A(z)) < f(A(y)). Now from Lemma 1, A(z) < A(y). This means that = < y.

(#) From the proof of Item (i), A(z) < A(y) and A(y) < A(z). From the defining (ma-
jorization) inequalities of Section 2.1, A(z) = A(y). Thus, z ~ y.

(#ii) Now suppose that ¥ is linear and F(¥(z)) < F(z) for all z € V and all con-
vex spectral functions F' on V. By (i), ¥(z) < z for all . By Lemma 2, ¥ is doubly
stochastic. O

It has been observed before that automorphisms preserve eigenvalues. The following
result shows that in the setting of essentially simple algebras, automorphisms are the
only linear transformations that preserve eigenvalues.

Corollary 1. Suppose V is essentially simple and ¢ : V — V is linear. If ¢(x) ~ z for all
x €V, then ¢ € Aut(V).

Proof. Suppose that ¢(a) ~ x for all z € V. Then, ¢ is invertible: If ¢(z) = 0 for some z,
then 0 ~ z and so x = 0. Now, take any convex spectral function F on V. As ¢(z) ~ z,
we have F(x) = F(¢(x)). From Theorem 8, we see that ¢ and ¢~! are doubly stochastic
on V. Recall, by definition, these are positive transformations, that is, ¢(V;+) C V4 and
¢~ 1(V1) C V4. Hence, ¢(V4) = Vg, that is, ¢ belongs to Aut(V, ). Since V is essentially
simple, from Theorem 8 in [9] we have

Aut(V4) NDS(V) = Aut(V),

where DS(V) denotes the set of all doubly stochastic transformations on V. This proves
that ¢ € Aut(V). O
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6. The transfer principle and a metaformula

In the context of spectral sets E = A~1(Q) and spectral functions F = f o A, the
Transfer Principle asserts that (many) properties of @ (of f) get transferred to E (re-
spectively, to F). Theorems 3 and 6, where convexity gets transferred, illustrate this
principle. In addition to this, Baes (1], Theorem 27) shows that closedness, openness,
boundedness and compactness properties of @) are carried over to E. Sun and Sun [22]
show that semismoothness property of f gets transferred to F' in the setting of a Eu-
clidean Jordan algebras. Numerous specialized results exist in the setting of S™ and H";
see the recent article [5] and the references therein for a discussion on the transferability
of C*°-manifold property of @ and various types differentiability properties of f (e.g.,
prox-regularity, Clarke-regularity, and smoothness). Related to this, in the context of
normal decomposition systems, Lewis [12] has observed that the ‘metaformula’

holds for sets ) that are invariant under a group of orthogonal transformations and
certain set operations #. In particular, it was shown in Theorem 5.4, [12], that the
formula holds when # is the closure/interior /boundary operation. Consequently, because
of a result in [15], it is also valid in any (essentially) simple Euclidean Jordan algebra; see
[10,11] for results of this type for spectral cones in §™. Motivated by these, we present
the following ‘metaformula’ in the setting of general Euclidean Jordan algebras.

In what follows, for a set S (either in R™ or in V), we consider closure, interior,
boundary, and convex hull operations, which are respectively denoted by S, S°, 9 S, and
conv(S). Recall that for a set @) in R™ and a set E in V,

QY :=2"1Q) and E° :=3%,(\E)).
(We remark that when ¥V = R™ and E = @, these two definitions coincide.)

Theorem 9. Let # denote one of the operations of closure, interior, boundary, or convex
hull. Then, over permutation invariant sets in R™ and spectral sets in V, the operations
# and & commute; symbolically,

#O=0#

In preparation for the proof, we state (and prove, for the record) the following ‘folk-
loric’ result:

Proposition 12. Let Q be a permutation invariant set in R™ and E = A\=Y(Q) in V. Then,
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(iil) 9E = \"1(0Q).
(iv) conv(A™1H(Q)) = A7 (conv(Q)).

Consequently, the closure/interior/boundary/conver hull of a spectral set is spectral.
Proof. (i) By continuity of A, E = A=1(Q) € A71(Q). To see the reverse inclusion,
let z € A™1(Q) so that A(x) € Q. Let A\(z) = lim g, where g, € Q. We consider the
spectral decomposition z = Y 1 \;(z)e; and define xy, := > 7 (qx)i€;, for k = 1,2,....
Then, A(zg) = q,t € Q (recall that @ is permutation invariant). Thus, x; € A~1(Q) for
all k. As xj, — x, we see that = € E. Hence, E = A~1(Q).

(7) As Q° is permutation invariant and A~! preserves complements, we see, by (i),
that F¢ = A~1(Q°). Taking complements and using the identity E° = (E°)¢, we get
B = 2A1(Q0).

(7ii) This comes from the previous items using the definition 9 F = E\E° and the fact
that A~! preserves set differences.

(iv) We first prove that conv(A~1(Q)) C A~!(conv(Q)) in V. It is clear that conv(Q)
is convex and permutation invariant. Hence, by Theorem 3, A~!(conv(Q)) is convex.
As A7HQ) € A (conv(Q)), we see that conv(A~1(Q)) € A~ (conv(Q)). To prove the
reverse implication, let z € A~"!(conv(Q)). Then, \(x) = Zszl ay qr, where ags are
positive with sum one and ¢, € @ for all k. Writing the spectral decomposition of
z =", N(x)e;, we see that

=1 1

n N N n
r=Y ( o (Qk)i> 6= (Z(%h&) .
k=1 k=1
Letting x5 := > (qr)i€i, we get A(xy) = qi € Q. Hence, 2 € A"1(Q) and x is now a
convex combination of elements of A=1(Q). Thus, x € conv(A~1(Q)) proving the required
reverse inclusion.

Finally, the last statement follows from Items (¢)—(iv) together with the observation
that the closure/interior/boundary/convex hull of a permutation invariant set in R”™ is
permutation invariant. O

Proof of the Theorem. Suppose @ is any permutation invariant set in R™. Then from
Proposition 12 we have A7 (#(Q)) = #(A71(Q)), that is,

[#(Q)]° = #(Q°).

This means that on permutation invariant sets in R"™, the operations # and < commute.

Now suppose that E is any spectral set in V. Then, Q := E is permutation invariant
and Q¥ = E9® = E (by Theorem 1). Hence, #(E) = #(Q%) = [#(Q)]°. As #(Q) is
permutation invariant, from Proposition 9, [#(Q)]¢¢ = #(Q). Thus,
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[#(E)® = Q)0 = #(Q) = #(E°).
This proves that the operations # and < commute on spectral sets in V. 0O

It will be shown below that the equality ES = E° holds for any set £ C V. We
now provide examples to show that in the above theorem, permutation invariance of ()
and/or spectrality of E' is needed to get the remaining results.

Example 12.

o Let V=38"and Q = {ue R} :u; <ug <--- <up}. Clearly, Q is not permutation
invariant. As Q¥ = A"1(Q) = 0, we have Q¥ = (. On the other hand, we have
Q={ueR? :uy <upy <---<u,}and @O = A"}(Q) is the (nonempty) set of all
nonnegative multiples of the identity matrix. Thus, QO #+ @

e One consequence of Theorem 3 is that when E is spectral and convex, E® is convex.
This may fail if E is not spectral: In V = R?, let e; and e, denote the standard coor-
dinate vectors. Then, E = {e;} is convex, while E® = {e;, e} is not. In particular,
[conv(E)]® # conv(E?).

e Let V = 82 and let E be the set of all nonnegative diagonal matrices. Then, one
can easily verify that E¢ = Ri and so (EO)O = R?H, where R?Hr denotes the

set of all positive vectors in R2. However, we have E° = ) and (EO)<> = (). Hence,
(E®)° # (E°)°.

The preservation of certain properties is an important feature of the ‘diamond’ oper-
ation.

Theorem 10. If a set E is closed/open/bounded/compact in V, then so is EV in R".

Proof. We assume, without loss of generality, that E is nonempty.

e Suppose that E is closed. Let {ux} be a sequence in E< such that uj, — u for some
u € V. For each up € E®, we can find z;, € E with A(zy) = ut Let x, =), )\i(:vk)egk)
be the spectral decomposition of xj for each k. As the set of all primitive idempotents in

(an
i ) — €;

V forms a compact set, see [7], page 78, there exists a sequence k,, such that e
foralli=1, 2, ..., n. Thus,

n n
(km) 1
Thy = Niln, e ™ =Y ujes.
=1 =1

Since F is closed, we have z := limxy, € E, which implies that A\(z) = u'. Hence,
u € E¢ proving the closedness of E©.

e For any (primitive) idempotent ¢ in V we observe that ||c||> = (c,c) = (coc,e) =
(e,e) < |lel| |le]| and hence ||c|| < [|e]|- Then, for any Jordan frame {ej,es,...,e,} in V
and u € R"™, we have
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1D wiesl| < (ZUi|>II6II§\/ﬁlluIIII6II (8)

where ||u|| denotes the 2-norm of w.

Now assume that E is open in V. To show that E® open, let v € E®. Then there
exists x € E such that A\(x) = u*. As E is open, there exists € > 0 such that B(z, €) :=
{y €V :|y—z| < e C E. Putting ¢ := e We show that the ball B(u, 8) =
{v € R": lu—v| < 6} is contained in E¥. To this end, let z = Y, ure; be the
spectral decomposition of x. Then, there exists a permutation matrix o € ¥,, such that
T =), uiey(;). Now, for any v € B(u, 0), define y := 3, vie,(;) € V. Then, from (8),

lz = yll < Vallell lu—vll <e.

This proves that y € E. As A(y) = v}, we see that v € E®. This shows that B(u, §) C
E?: hence E° is open.

e Now let E be compact. Then A(F) is compact, by the continuity of A. As %, is compact,
we see that E¢ = %, (A(E)) is also compact.

e Finally, if E is bounded, then E is compact. Hence, (E)® is compact. Clearly, E¢ is
bounded as it is a subset of (E)¢. O

Corollary 2. For any set E in V, E¢ = EO.

Proof. Without loss of generality, we assume that F is nonempty.

Since E¢ C E¥ and EV is closed by the above Theorem, we have E® C .

To see the reverse inclusion, let u € E. Then there exists = € E such that A(z) = u*.
As ut is some permutation of u, there exists a permutation o € 3,, such that o~ (u) =
ut = \(z). As z € E, there exists a sequence {z;} of E converging to . Then, by the
continuity of A, we get A\(x) = limg_,00 A(zg). This implies

k—o0 —00

u=oc(A(z)) =0 ( lim )\(xk)> = klim o(A(zk)).

Letting uy, := o(A(zk)), we get ut = Mxp); thus uy, € E® for all k. As uj, — u, we have
ue E® proving EO C E°. This completes the proof. O

Our final result deals with the ‘double diamond’ operation. For a set E in V, we call
E©9 the spectral hull of E in V. Here are some properties of the spectral hull.

Proposition 13. For any set E CV, we have

(i) E C E°9.
(i) If Ey C By, then EPY C ESY.
(iii) E9C is the smallest spectral set containing E.
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(iv) E is spectral if and only if E = E9°.

(v) (By N E2)%0 = EYONES®, (B U Ey)%0 = EPC UES©.
(vi) B¢ = (E)°°. In particular, if E is closed, then so is E®C.
vii) If E is open, then E° is open.

(vid) If pen, P

(viit) If E is compact, then E® is compact.

—~

Proof. Items (i)—(v) follow from Item (7), Proposition 9.

(vi): As E¥(= Q) is permutation invariant, this follows from Proposition 12 and Corol-
lary 2.

(vii): As E¥ is permutation invariant, it is clear from Theorem 10 and Proposition 12
that E¥® is open whenever E is open.

(viii): Suppose F is compact. Then, by Theorem 10, Q := E® is compact and permuta-
tion invariant. By Theorem 27 in [1], E¢¢ = A71(Q) is also compact. O

Appendix A

Theorem 11. V is essentially simple (that is, V is either R™ or simple) if and only if any
Jordan frame of V can be mapped onto another by an automorphism of V.

Proof. The ‘only if’ part has been observed in Proposition 2. We prove the ‘if’ part.
Suppose, if possible, V is a product of simple algebras with at least one of the factors,
say, V1, has rank more than one. Let Vs denote the product of the remaining factors.

Then, V = V; X V,. Let eg,ea,...,ey (m > 2) and fi1, fa,,..., fr be Jordan frames
in V1 and Vs respectively. Let ¢; = (e;,0)" and d; = (0, f;)T for i = 1,2,...,m and
j=1,2,..., k. Then these m + k objects, in any specified order, form a Jordan frame.

We show that V does not have an automorphism taking ¢; to ¢; and c¢s to di. Assuming
the contrary, let such an automorphism be given in the block form by

A B

L =
¢ D

)

where A : V; — V; is linear, etc. It is easy to verify that A is Jordan homomorphism,
that is, it preserves the Jordan product on V. Since V; is simple, the kernel of A (which
is an ideal of V) must be either {0} or V;. However, this cannot happen as L(c1) = ¢;
implies A(e1) = e; and L(cg) = d; implies A(ez) = 0. Thus we have the ‘if’ part. O
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