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Given a finite dimensional real inner product space V with a 
self-dual cone K, an element e in K◦ (the interior of K), and 
a linear transformation L on V , the value of the linear game 
(L, e) is defined by

v(L, e) := max
x∈Δ(e)

min
y∈Δ(e)

〈L(x), y〉 = min
y∈Δ(e)

max
x∈Δ(e)

〈L(x), y〉,

where Δ(e) = {x ∈ K : 〈x, e〉 = 1}. In [5], various properties 
of a linear game and its value were studied and some classical 
results of Kaplansky [6] and Raghavan [8] were extended to 
this general setting. In the present paper, we study how the 
value and properties change as e varies in K◦. In particular, we 
study the structure of the set Ω(L) of all e in K◦ for which the 
game (L, e) is completely mixed and identify certain classes of 
transformations for which Ω(L) equals K◦. We also describe 
necessary and sufficient conditions for a game (L, e) to be 
completely mixed when v(L, e) = 0, thereby generalizing a 
result of Kaplansky [6].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a continuation of [5], where the concept of value of a (zero-sum) matrix 
game is generalized to a linear transformation defined on a self-dual cone in a real finite 
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dimensional Hilbert space. To elaborate, consider a finite dimensional real inner product 
space (V, 〈· , ·〉) and a self-dual cone K in V . We fix an element e in K◦ (the interior 
of K) and let

Δ(e) := {x ∈ K : 〈x, e〉 = 1}, (1)

the elements of which are called ‘strategies’. Given a linear transformation L from V
to V , the zero-sum linear game — denoted by (L, e) — is played by two players I and 
II in the following way: If player I chooses strategy x ∈ Δ(e) and player II chooses 
strategy y ∈ Δ(e), then the pay-off for player I is 〈L(x), y〉 and the pay-off for player II 
is −〈L(x), y〉. Both players try to maximize their pay-offs. Since Δ(e) is a compact convex 
set and L is linear, by the min–max Theorem of von Neumann (see [7, Theorems 1.5.1 
and 1.3.1]), there exist optimal strategies x̄ for player I and ȳ for player II which satisfy

〈L(x), ȳ〉 ≤ 〈L(x̄), ȳ〉 ≤ 〈L(x̄), y〉 ∀x, y ∈ Δ(e). (2)

This means that players I and II do not gain by unilaterally changing their strategies 
from the optimal strategies x̄ and ȳ. The number

v(L, e) := 〈L(x̄), ȳ〉

is the value of the game, or simply, the value of (L, e). The pair (x̄, ȳ) is called an optimal 
strategy pair for (L, e). We note that v(L, e) is also given by [7, Theorems 1.5.1 and 1.3.1]

v(L, e) = max
x∈Δ(e)

min
y∈Δ(e)

〈L(x), y〉 = min
y∈Δ(e)

max
x∈Δ(e)

〈L(x), y〉. (3)

We say that the game (L, e) is completely mixed if for every optimal strategy pair 
(x̄, ȳ) of (L, e), x̄ and ȳ belong to K◦. The above concepts and definitions reduce to the 
classical ones when V = Rn (with the usual inner product), K = Rn

+ (the nonnegative 
orthant), L ∈ Rn×n and e is the (column) vector of ones. In [5], several classical results 
of Kaplansky [6] and Raghavan [8] were extended to this general setting and their con-
nections to dynamical systems were explored. As in the classical case, the uniqueness of 
the optimal strategy pair prevails when the game is completely mixed (see Theorem 4 
in [5]). The completely mixed property was investigated for Z, Lyapunov-like and Stein-
like transformations (see Section 2 for definitions). In particular, it was shown in [5] that 
the game (L, e) is completely mixed when L is a Z-transformation with v(L, e) > 0 or L
is a Lyapunov/Stein-like transformation with v(L, e) �= 0.

In the present paper, we address three issues: (i) How the value and the optimal 
strategies change as L and e are changed, (ii) how the value changes under cone auto-
morphisms, and (iii) how, for a given transformation L, the completely mixed property 
changes as e varies over the interior of K.

Addressing (i), we show that the value varies continuously and the optimal strategy 
set is upper semicontinuous in L and e. We also specify (upper) bounds for v(L, e). 
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Addressing (ii), we show that v(ALAT , Ae) = v(L, e) for any automorphism A of K. 
In addition, we show that the sign of v(ALAT , e′) is independent of A ∈ Aut(K) and 
e′ ∈ K◦. To address (iii), for a given transformation L, we define the set

Ω(L) := {e ∈ K◦ : (L, e) is completely mixed}. (4)

We show that Ω(L) is an open convex cone (which could be empty) and Ω(L) = K◦ for 
Lyapunov/Stein-like transformations and automorphisms of K.

The above issues do not seem to have been addressed in the classical literature, per-
haps because of homogeneity of the nonnegative orthant (which means that any positive 
vector can be mapped onto any other by an automorphism of the nonnegative orthant) 
thus reducing the importance of working with an arbitrary positive vector. Such a ho-
mogeneity property does not hold for a general self-dual cone unless it is a symmetric 
cone (which is the cone of squares in a Euclidean Jordan algebra [4]).

2. Preliminaries

We recall some notation, concepts, and results from [5]. (V, 〈· , ·〉) denotes a finite 
dimensional real inner product space. For c, d ∈ V , we define the linear transformation 
c d T by (c d T )(x) = 〈x, d〉 c.

For a set S in V , the interior, closure, and boundary are denoted, respectively, by S◦, 
S, and ∂S.

Let K be a self-dual cone in V which means that K = K∗, where

K∗ := {x ∈ V : 〈x, y〉 ≥ 0 ∀ y ∈ K}.

We note that K is a closed convex cone with K ∩ −K = {0} and K◦ �= ∅. Given K, we 
write

x ≥ y (or y ≤ x) when x− y ∈ K and x > y (or y < x) when x− y ∈ K◦.

We note that for 0 �= x ≥ 0, y ≥ 0 (> 0), we have 〈x, y〉 ≥ 0 (respectively, > 0). The 
set of all automorphisms of K (these are linear transformations which map K onto K) 
is denoted by Aut(K). Clearly, A ∈ Aut(K) ⇔ A−1 ∈ Aut(K) and (as K is self-dual), 
A ∈ Aut(K) ⇔ AT ∈ Aut(K), where AT denotes the transpose of A.

If K (in addition to being self-dual) is also homogeneous (which means that for any 
two elements x, y > 0, there exists A ∈ Aut(K) such that A(x) = y), then K is said 
to be a symmetric cone. Such a cone appears as cone of squares in a Euclidean Jordan 
algebra [4]. Examples of symmetric cones include Rn

+ (the nonnegative orthant) in Rn

and Sn
+ (the cone of positive semidefinite matrices) in Sn (the space of all real n × n

symmetric matrices).



222 M.S. Gowda / Linear Algebra and its Applications 498 (2016) 219–230
Throughout this paper, we use the following notation: V denotes a finite dimensional 
real inner product space, K is a (fixed) self-dual cone in V , e is an arbitrary element 
in K◦ (i.e., e > 0) and L denotes an arbitrary linear transformation on V .

Corresponding to e > 0, we define Δ(e) by (1). Given a linear transformation L on V
and e > 0, we follow the definitions and concepts given in the Introduction. The game 
(L, e) is said to be completely mixed if for every optimal strategy pair (x̄, ȳ), we have 
x̄ > 0 and ȳ > 0.

Given a linear transformation L on V , we say that

(a) L is a Z-transformation (on K) if x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0,
(b) L is Lyapunov-like (on K) if x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0, and
(c) L is Stein-like (on K) if L = I − Λ for some Λ ∈ Aut(K).

The negative of a Z-transformation is the so-called cross-positive matrix/transforma-
tion introduced in [10]. Lyapunov/Stein-like transformations are particular instances 
of Z-transformations. On Rn

+, Z-transformations are just Z-matrices (those with off-
diagonal entries nonpositive) and Lyapunov-like transformations are nothing but diago-
nal matrices. On Sn

+, Lyapunov-like transformations reduce to Lyapunov transformations 
which are of the form LA, where A ∈ Rn×n and LA(X) := AX + XAT (X ∈ Sn) [3]; 
since every automorphism of Sn

+ is given by Λ(X) = BXBT (X ∈ Sn) for some real 
n ×n invertible matrix B [9], Stein transformations are of the form SA, where A ∈ Rn×n

and SA(X) := X−AXAT . (We remark that these transformations appear in continuous 
and discrete dynamical systems.)

For any real number α, sgn α is α
|α| if α �= 0 or zero otherwise.

For ease of reference, we recall the following results from [5]. These refer to the 
game (L, e).

Theorem 1.

(1) Suppose there exist vectors x, y ∈ Δ(e) and a number v such that LT (y) ≤ v e ≤ L(x). 
Then v = v(L, e) and (x, y) is an optimal strategy pair for (L, e). Furthermore, if 
there exists an optimal strategy pair (x̄, ȳ) with x̄ > 0 and ȳ > 0, then L(x) =
v(L, e) e and LT (y) = v(L, e) e.

(2) v(L, e) > 0 if and only if there exists d > 0 such that L(d) > 0.
(3) If (L, e) is completely mixed, then the optimal strategy pair (x̄, ȳ) is unique; also, 

L(x̄) = v(L, e) e and LT (ȳ) = v(L, e) e.
(4) When (L, e) is completely mixed, v(L, e) �= 0 if and only if L is invertible.
(5) If L is a Z-transformation and v(L, e) > 0, then (L, e) is completely mixed.
(6) If L is Lyapunov/Stein-like and v(L, e) �= 0, then (L, e) is completely mixed.

From item (1) of the above theorem, we see that

v(−LT , e) = −v(L, e)
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and (x, y) is an optimal strategy pair of (L, e) if and only if (y, x) is an optimal pair of 
(−LT , e). The following is also an easy consequence of item (1).

Theorem 2. Suppose that L is invertible, and for some e > 0, we have L−1(e) > 0 and 
(LT )−1(e) > 0. Then (L, e) is completely mixed with (x̄, ȳ) as the unique optimal pair, 
where

x̄ := L−1(e)
〈L−1(e), e〉 and ȳ := (LT )−1(e)

〈L−1(e), e〉 .

3. Some basic results

Let B(V, V ) denote the set of all (bounded) linear transformations from V to V . We 
consider two mappings on B(V, V ) ×K◦: (L, e) → v(L, e) and (L, e) → Φ(L, e), where

Φ(L, e) := {x : (x, y) is an optimal strategy pair for (L, e)}.

Theorem 3. On B(V, V ) ×K◦, v(L, e) is continuous and Φ(L, e) is upper semicontinuous. 
Consequently, if some game (L, e) is completely mixed, then so is any (L′, e′) near (L, e).

Proof. Assuming v(L, e) is not continuous, let (Ln, en) → (L, e) and ε > 0 such that

|v(Ln, en) − v(L, e)| ≥ ε ∀ n. (5)

Let (xn, yn) be an optimal strategy pair for (Ln, en). As V is finite dimensional, the 
conditions xn, yn ∈ K, 〈xn, en〉 = 1 = 〈yn, en〉 for all n, and en → e ∈ K◦ imply that xn

and yn are bounded. We may assume, by considering subsequences, that xnk
→ x ∈ K

and ynk
→ y ∈ K. Taking limits in

(Lnk
)T (ynk

) ≤ v(Lnk
, enk

) enk
= 〈Lnk

(xnk
), ynk

〉 enk
≤ Lnk

(xnk
)

we see that LT (y) ≤ v e ≤ L(x), where v = 〈L(x), y〉 = lim v(Lnk
, enk

). Since x, y ∈ K

and 〈x, e〉 = 1 = 〈y, e〉, it follows (see Theorem 1) that v = v(L, e); hence v(Lnk
, enk

) →
v(L, e). This clearly contradicts (5). Hence we have the continuity of the value.

Now to see the upper semicontinuity property of Φ(L, e), suppose U is an open set 
containing Φ(L, e) and for some sequence (Ln, en) → (L, e), Φ(Ln, en) � U . Then, for 
each n, there exists an optimal strategy pair (xn, yn) of (Ln, en) with xn ∈ U c. Then, as 
in the above proof, by working with appropriate subsequences, we produce an optimal 
strategy pair (x, y) of (L, e) with x ∈ U c (note that U c is closed). This contradicts the 
assumption that Φ(L, e) ⊆ U . Hence we have the upper semicontinuity of Φ.

Now suppose (L, e) is completely mixed. Then Φ(L, e) ⊆ K◦. By the upper semi-
continuity of Φ, for all (L′, e′) near (L, e), Φ(L′, e′) ⊆ K◦. This means that x′ > 0 for 
every optimal strategy pair (x′, y′) of (L′, e′). By Theorem 5 in [5], we see that (L′, e′)
is completely mixed. �
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We remark that as a consequence of the above result, the multivalued mapping which 
takes (L, e) to its set of all optimal strategy pairs is also upper semicontinuous.

The following result shows how the value and optimal strategies change under auto-
morphisms of K.

Theorem 4. For any A ∈ Aut(K) and e > 0, v(L, e) = v(ALAT , Ae). Furthermore, (L, e)
is completely mixed if and only if (ALAT , Ae) is completely mixed.

Proof. Let (x, y) be an optimal strategy pair for (L, e). Let A ∈ Aut(K) and define 
p := (A−1)Tx and q := (A−1)T y. Now, Ae > 0 and

〈x, e〉 = 1 = 〈y, e〉 ⇒ 〈p,Ae〉 = 1 = 〈q, Ae〉.

Also, as u > v (u ≥ v) if and only if Au > Av (respectively, Au ≥ Av), we have

LT (y) ≤ v(L, e) e ≤ L(x) ⇒ ALT (y) ≤ v(L, e)Ae ≤ AL(x)

⇒ ALTAT (q) ≤ v(L, e)Ae ≤ ALAT (p).

From Theorem 1, item (1), we see that (p, q) is an optimal strategy pair for (ALAT , Ae)
and v(L, e) = v(ALAT , Ae). Since A and A−1 are automorphisms, we see that x > 0
(y > 0) if and only if p > 0 (respectively, q > 0). From this, we get the invariance of the 
completely mixed property. �

Suppose K is a symmetric cone and e, e′ > 0. Then, there exists A ∈ Aut(K) such 
that Ae′ = e. It follows from the previous result that the games (ALAT , e) and (L, e′) are 
equivalent in the sense they have the same value and the there is a linear correspondence 
between the optimal strategy pairs. Thus, one can fix a particular e ∈ K◦ to analyze a 
linear game over a symmetric cone. However, in a general self-dual cone this may not be 
possible. In spite of this, we have the following result.

Theorem 5. Let L be a linear transformation on V . Then for any A ∈ Aut(K) and 
e, e′ > 0, we have

sgn v(ALAT , e′) = sgn v(L, e).

In particular, sgn v(L, e) is a constant on K◦.

Proof. Suppose v(L, e) > 0. From Theorem 1, item (2), this is equivalent to the existence 
of a d > 0 such that L(d) > 0. As the latter condition is independent of e, we see that 
v(L, e′) > 0 for all e′ > 0. Furthermore, for any A ∈ Aut(K), we have ALAT (d) > 0; thus, 
v(ALAT , e′) > 0 for all e′. When v(L, e) < 0, we work with −LT (so that v(−LT , e) > 0) 
and conclude that for all A ∈ Aut(K) and e′ > 0, v(ALAT , e′) < 0. Finally, when 
v(L, e) = 0 for some e, by what has been proved, v(ALAT , e′) cannot be positive or 
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negative for any A ∈ Aut(K) and e′ > 0; hence v(ALAT , e′) must be zero. Thus in all 
cases, sgn v(ALAT , e′) = sgn v(L, e). �
4. A generalization of Kaplansky’s result

In the classical setting (i.e., V = Rn, K = Rn
+, L = A ∈ Rn×n, and e is the column 

vector of ones), Kaplansky [6] shows that when v(A, e) = 0, the game (A, e) is completely 
mixed if and only if the rank of A is n − 1 and all cofactors of A are nonzero and have 
the same sign. In what follows, we generalize this result.

Theorem 6. Suppose v(L, e) = 0. Then (L, e) is completely mixed if and only if the 
following conditions hold:

(i) dim ker(L) = 1.
(ii) There exist vectors x̄, ȳ > 0 such that for S := x̄ ȳT we have LS = SL = 0.

Moreover, when conditions (i) and (ii) hold, the above S is unique up to a scalar multiple: 
any linear transformation M on V with LM = ML = 0 is a scalar multiple of S.

Proof. We first suppose (L, e) is completely mixed. Under the (given) assumption that 
v(L, e) = 0, it has been proved in Theorem 4, [5] that dim ker(L) = 1. Now, let (x̄, ȳ) be 
the unique optimal pair with x̄ > 0 and ȳ > 0. As v(L, e) = 0, we have from Theorem 1, 
item (3), L(x̄) = 0 = LT (ȳ). Putting S := x̄ ȳT we see that LS = SL = 0. Thus, we have 
items (i) and (ii). Now suppose that these conditions hold for some x̄, ȳ > 0. From (ii)
we have (LS)(ȳ) = 0 and (LTST )(x̄) = 0. These imply that L(x̄) = 0 and LT (ȳ) = 0. 
Hence (x̄, ȳ) is an optimal strategy pair for (L, e). Now suppose (x, y) is another optimal 
strategy pair so that (from Theorem 1, item (1)) L(x) = 0 = LT (y) with x, y ∈ Δ(e). 
Since dim ker(L) = 1, x is a scalar multiple of x̄, and because these vectors are in 
Δ(e), x = x̄. Also, from dim ker(L) = 1 we see that dim ker(LT ) = 1 (as L is a linear 
transformation from V to V ). By noting that both y and ȳ are in ker(LT ) ∩ Δ(e), we 
deduce that y = ȳ. Hence, (x̄, ȳ) is the only optimal strategy pair for (L, e) with x̄ > 0
and ȳ > 0. We see that (L, e) is completely mixed. Now for the additional statement:
Suppose that conditions (i) and (ii) hold, and M is a linear transformation on V with 
LM = ML = 0. Then for any x ∈ V , L(M(x)) = 0. As dim ker(L) = 1, M(x) is a scalar 
multiple of x̄. We may write M(x) = λ(x) ̄x, where λ(x) is linear (functional) in x. By 
the Riesz representation theorem, we may write λ(x) = 〈x, a〉 for some a ∈ V . Thus, 
M(x) = 〈x, a〉 ̄x for all x ∈ V . Similarly, by considering LT (MT (x)) = 0, we may write 
MT (x) = 〈x, b〉 ȳ for some b ∈ V . As 〈MT (x), y〉 = 〈x, M(y)〉 for all x, y ∈ V , we see 
that

〈x, b〉〈ȳ, y〉 = 〈y, a〉 〈x, x̄〉.
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Upon putting x = x̄, we get

〈y, a〉 = 〈x̄, b〉 〈y, ȳ〉
||x̄||2 .

As this holds for all y ∈ V , we see that a = α ȳ for some real α. Then, M(x) = α 〈x, ȳ〉 ̄x
for all x ∈ V . Thus, M = α x̄ ȳT = αS. �

We specialize the above result by taking V = Rn and L = A ∈ Rn×n. We use the 
notation adj A for the adjoint of A (that is, the transpose of the cofactor matrix).

Corollary 1. Consider Rn with the usual inner product. Let K be a self-dual cone in Rn, 
A ∈ Rn×n, and e > 0 (that is, e ∈ K◦). Suppose v(A, e) = 0. Then (A, e) is completely 
mixed if and only if the following conditions hold:

(a) dim ker(A) = 1 (equivalently, rank of A is n − 1).
(b) adj (A) is a nonzero scalar multiple of a matrix of the form x̄ ȳT for some x̄, ȳ > 0.

Proof. We first suppose (A, e) is completely mixed. By the above theorem, dim ker(A) =1
and AS = SA = 0 for some S := x̄ ȳT with x̄, ȳ > 0. Since A (adj A) = (adj A) A =
(detA) I = 0, we can let M = adj A in the above theorem to see that adj A is a scalar 
multiple of S. As rank of A is n − 1, adj A cannot be zero. Hence this scalar is also 
nonzero. Thus, we have (b). On the other hand, when conditions (a) and (b) hold, be-
cause A (adj A) = (adj A) A = (detA) I = 0, conditions (i) and (ii) of the above theorem 
hold; thus, (A, e) is completely mixed. �
Remarks. By letting K = Rn

+ in the above corollary, we can state condition (b) in an 
equivalent form: All entries of adj A are nonzero and have the same sign. In this way, we 
recover the above mentioned result of Kaplansky.

5. The structure of Ω(L)

In this section, we describe the structure of Ω(L) given by (4). First, we start with 
some examples that show that Ω(L) can be empty or a proper subset of K◦.

Example. Let V = R2, K = R2
+, and e be the vector of ones. Let

A =
[
−1 0

0 1

]
, B =

[
2 1
1 2

]
, and C =

[
−2 −1
−1 −2

]
.

With e1 and e2 denoting the standard basis vectors in R2, we see that AT e1 ≤ 0 e ≤
Ae2; hence by Theorem 1, item (1), (e2, e1) is an optimal strategy pair for (A, e) and 
v(A, e) = 0. By Theorem 5, v(A, d) = 0 for all d ∈ K◦. If (A, d) is completely mixed for 
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some d > 0, then for any optimal strategy pair (x̄, ȳ), we have AT ȳ = 0 = Ax̄. Since A is 
invertible, we must have x̄ = 0, leading to a contradiction. Thus, (A, d) is not completely 
mixed for any d > 0. Hence Ω(A) is empty. We note that A is a diagonal matrix, hence 
Lyapunov-like on R2

+.
Now B−1e > 0 and (BT )−1(e) > 0. Thus, by Theorem 2, (B, e) is completely mixed. 

Hence Ω(B) �= ∅. Let d = [1, 2]T and suppose that (B, d) is completely mixed. Then, 
v(B, d)B−1d > 0. However, this cannot hold as v(B, d) > 0 (since B is a matrix with 
positive entries) and B−1d has a zero component. Thus, Ω(B) is a nonempty proper 
subset of K◦.

Finally, we note that C (which is −BT ) is a Z-matrix and v(C, d) = −v(B, d) < 0. 
Thus, by Theorem 5, v(C, e′) < 0 for all e′ ∈ K◦. Yet ∅ �= Ω(C) = Ω(B) �= K◦.

Theorem 7. Suppose e∗ > 0 and (L, e∗) is completely mixed. Then the following hold:

(a) If v(L, e∗) = 0, then Ω(L) = K◦.
(b) If v(L, e∗) > 0, then Ω(L) = K◦ ∩ L(K◦) ∩ LT (K◦).
(c) If v(L, e∗) < 0, then Ω(L) = K◦ ∩ L(−K◦) ∩ LT (−K◦).

Thus, for any L, Ω(L) is either empty or an open convex cone in K◦.

Proof. (a) It is given that (L, e∗) is completely mixed with v(L, e∗) = 0. Then, by 
Theorem 5, v(L, e) = 0 for all e > 0. Now, conditions (i) and (ii) of Theorem 6, which 
hold for (L, e∗), also hold for (L, e). Thus, (L, e) is completely mixed for all e ∈ K◦. 
Hence, Ω(L) = K◦.

(b) Suppose v(L, e∗) > 0 and let e ∈ Ω(L). From Theorem 1, item (4), L is in-
vertible. If (x, y) is the unique optimal pair of (L, e), then v(L, e)L−1(e) > 0 and 
v(L, e)(LT )−1(e) > 0. Since v(L, e∗) > 0 ⇒ v(L, e) > 0 (by Theorem 5), we must 
have z := L−1(e) > 0 and w := (LT )−1(e) > 0. Thus, e = L(z), e = LT (w), 
where z, w ∈ K◦. Hence e ∈ K◦ ∩ L(K◦) ∩ LT (K◦). Since e is any element of Ω(L), 
we must have Ω(L) ⊆ K◦ ∩ L(K◦) ∩ LT (K◦). To prove the reverse inclusion, let 
e ∈ K◦ ∩ L(K◦) ∩ LT (K◦). Then, e > 0 with L−1(e) > 0 and (LT )−1(e) > 0. From 
Theorem 2, we see that e ∈ Ω(L). Thus, K◦ ∩ L(K◦) ∩ LT (K◦) ⊆ Ω(L) and the stated 
equality in (b) follows.

(c) When v(L, e∗) < 0, we have v(−LT , e∗) > 0. Since Ω(L) = Ω(−LT ), we can apply 
item (b) to −LT and get the stated equality of sets. �
Theorem 8. Suppose L is invertible. Then (L, e) is completely mixed for all e > 0 if and 
only if either L−1(K) ⊆ K or (−L)−1(K) ⊆ K.

Proof. Suppose (L, e) is completely mixed for all e > 0 so that Ω(L) = K◦. As L is 
invertible we have (see Theorem 1, item (4)) v(L, e) > 0 for all e or v(L, e) < 0 for 
all e. From items (b) and (c) of Theorem 7, either K◦ = K◦ ∩ L(K◦) ∩ LT (K◦) or 
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K◦ = K◦ ∩ L(−K◦) ∩ LT (−K◦). From these, we see that K◦ ⊆ L(K◦) ⊆ L(K) or 
K◦ ⊆ −L(K◦) ⊆ −L(K). By taking closures, we get K ⊆ L(K) or K ⊆ −L(K). Finally, 
we get L−1(K) ⊆ K or (−L)−1(K) ⊆ K. Now for the ‘if’ part: Suppose L−1(K) ⊆ K. As 
K is self-dual, we get (LT )−1(K) ⊆ K. As these inclusions hold with K◦ in place of K, for 
any e ∈ K◦, we have L−1(e) > 0 and (LT )−1(e) > 0. By Theorem 2, (L, e) is completely 
mixed. When (−L)−1(K) ⊆ K, we have (−LT )−1(K) ⊆ K and Ω(L) = Ω(−LT ) = K◦. 
Thus, even in this case, (L, e) is completely mixed for all e > 0. �
Corollary 2. Suppose L is invertible. Then the following are equivalent:

(i) ± L ∈ Aut(K).
(ii) (L, e) and (L−1, e) are completely mixed for all e > 0.

Proof. (i) ⇒ (ii): Let L ∈ Aut(K). Then, L(K) ⊆ K and L−1(K) ⊆ K. An application 
of the above theorem shows that (L, e) and (L−1, e) are completely mixed for all e > 0. 
Now suppose −L ∈ Aut(K). Then −LT ∈ Aut(K) (as K is self-dual). It follows that 
(−LT , e) and ((−LT )−1, e) are completely mixed for all e > 0. Equivalently, (L, e) and 
(L−1, e) are completely mixed for all e > 0.

(ii) ⇒ (i): From the above theorem, we see that L−1(K) ⊆ K or (−L)−1(K) ⊆ K

and L(K) ⊆ K or (−L)(K) ⊆ K. As K ∩ −K = {0}, we cannot have L−1(K) ⊆ K and 
(−L)(K) ⊆ K (likewise, we cannot have (−L)−1(K) ⊆ K and L(K) ⊆ K). Thus, we 
must have L−1(K) ⊆ K and L(K) ⊆ K or (−L)−1(K) ⊆ K and (−L)(K) ⊆ K. These 
show that ± L ∈ Aut(K). �
Theorem 9. Under each of the following conditions, (L, e) is completely mixed for all 
e > 0.

(1) L is a Z-transformation and v(L, e∗) > 0 for some e∗ > 0.
(2) L is Lyapunov/Stein-like on K and (L, e∗) is completely mixed for some e∗ > 0.

Proof. Let e > 0.
(1) Suppose v(L, e∗) > 0. Then, from Theorem 5, v(L, e) > 0. When L is a
Z-transformation, by Theorem 1, item (5), (L, e) is completely mixed.

(2) Now suppose L is Lyapunov-like or Stein-like. If v(L, e∗) = 0, then by item (a) in 
Theorem 7, (L, e) is completely mixed. If v(L, e∗) �= 0, then v(L, e) �= 0 by Theorem 5. 
Now Theorem 1, item (6) shows that (L, e) is completely mixed. �
6. Some bounds on the value

In this section, we take up the issue of describing bounds for the value. This is moti-
vated by results in [2]. With σ(L) denoting the spectrum of L, let
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δ(e) := max{〈x, y〉 : x, y ∈ Δ(e)}, ρ(L) := max{|λ| : λ ∈ σ(L)}, and

τ(L) := min{Re(λ) : λ ∈ σ(L)}.

We note that (as K is self-dual) δ(e) ≥ 0.

Theorem 10. Suppose λ is a nonnegative real eigenvalue of LT with a corresponding 
eigenvector u ∈ Δ(e). Then

v(L, e) ≤ δ(e)λ. (6)

We also have the following statements:

(i) If L(K) ⊆ K, then 0 ≤ v(L, e)) ≤ δ(e) ρ(L).
(ii) If L−1(K) ⊆ K, then 0 < v(L, e) ≤ δ(e) 1

ρ(L−1) .
(iii) If L is a Z-transformation and τ(L) ≥ 0, then 0 ≤ v(L, e) ≤ δ(e) τ(L).

Proof. Let (x̄, ȳ) be an optimal strategy pair for (L, e). Then v(L, e) e ≤ L(x̄) implies

v(L, e) = v(L, e) 〈e, u〉 ≤ 〈L(x̄), u〉 = 〈x̄, LT (u)〉 = 〈x̄, λ u〉 ≤ δ(e)λ,

where the last inequality follows from the definition of δ(e).
(i) Suppose L(K) ⊆ K. Then, v(L, e) = 〈L(x̄), ȳ〉 ≥ 0. Now, as K is self-dual, 

LT (K) ⊆ K. So, from the Krein–Rutman theorem [1], there exists a nonzero u ∈ K (by 
scaling we can assume that u ∈ Δ(e)) such that LT (u) = ρ(L) u. From (6), we have 
v(L, e) ≤ δ(e) ρ(L).

(ii) Suppose L−1(K) ⊆ K so that L−1(K◦) ⊆ K◦ and K◦ ⊆ L(K◦). From the last 
inclusion, we see the existence of a d > 0 with L(d) > 0. Thus, by Theorem 1, item (2), 
v(L, e) > 0. Now, L−1(K) ⊆ K implies that (LT )−1(K) ⊆ K; by the Krein–Rutman 
Theorem [1], there exists a nonzero u in K (we can assume that u ∈ Δ(e)) such that 
(LT )−1(u) = ρ(L−1)u. Thus, LT (u) = 1

ρ(L−1)u. From (6), we get v(L, e) ≤ δ(e) 1
ρ(L−1) .

(iii) Now suppose that L is a Z-transformation on K. As K is self-dual, LT is a
Z-transformation on K. Then, by Theorem 6 in [10], there exist nonzero vectors u, w ∈ K

(without loss of generality, u, w ∈ Δ(e)) such that LT (u) = τ(LT )u and L(w) = τ(L)w. 
As τ(LT ) = τ(L), when τ(L) ≥ 0, we apply (6) to get v(L, e) ≤ δ(e) τ(L). Also, 0 ≤
〈L(w), ȳ〉 = 〈w, LT (ȳ)〉 ≤ v(L, e)〈w, e〉 = v(L, e). �
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