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Abstract. We consider the semidefinite cone Kn consisting of all n×n real symmetric positive

semidefinite matrices. A set I in Kn is said to be a Schur ideal if it is closed under addition,

multiplication by nonnegative scalars, and Schur multiplication by any element of Kn. A Schur

homomorphism of Kn is a mapping of Kn to itself that preserves addition, (nonnegative) scalar

multiplication and Schur products. This paper is concerned with Schur ideals and homomorphisms

of Kn. We show that in the topology induced by the trace inner product, Schur ideals in Kn need not

be closed, all finitely generated Schur ideals are closed, and in K2, a Schur ideal is closed if and only

if it is a principal ideal. We also characterize Schur homomorphisms of Kn and, in particular, show

that any Schur automorphism of Kn is of the form Φ(X) = PXPT for some permutation matrix P .
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1. Introduction. Consider the Euclidean space Rn whose elements are regarded

as column vectors. Let Sn denote the set of all real n × n symmetric matrices. It is

known that Sn is a finite dimensional real Hilbert space under the trace inner product

defined by

〈X,Y 〉 = trace(XY ) =
∑
i,j

xijyij ,

where X = [xij ] and Y = [yij ]. The space Sn also carries the Schur product (some-

times called Hadamard product) defined by

X ◦ Y := [xijyij ].

With respect to the usual addition, (real) scalar multiplication, and the Schur product,

Sn becomes a commutative algebra. In this algebra, a nonempty set is an ideal if it

is closed under addition, scalar multiplication, and (Schur) multiplication by any

element of Sn. Also, a (Schur) homomorphism of Sn is a linear transformation on Sn
that preserves Schur products. We note that every ideal in this algebra, being a finite
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dimensional linear subspace of Sn, is topologically closed (in the topology induced by

the trace inner product) and finitely generated. Also, it is easy to describe ideals and

homomorphisms of this algebra, see Sections 3 and 6.

The aim of this paper is to study Schur ideals and homomorphisms of the semidef-

inite cone. A matrix A ∈ Sn is said to be positive semidefinite if xTAx ≥ 0 for all

x ∈ Rn. The set of all positive semidefinite matrices in Sn is the semidefinite cone

and is denoted by Kn.

It is known that Kn is a closed convex cone in Sn; this means that Kn is topo-

logically closed and X,Y ∈ Kn, 0 ≤ λ ∈ R ⇒ X + Y ∈ Kn, λX ∈ Kn. A famous

theorem of Schur (see [5], Theorem 7.5.3) says that

X,Y ∈ Kn ⇒ X ◦ Y ∈ Kn.

So Kn is closed under addition, multiplication by nonnegative scalars, and the Schur

product. Thus, following [2], we say that Kn is a semi-algebra (under these opera-

tions). We call nonempty subsets of Kn that share these properties sub-semi-algebras

of Kn, and note the following examples:

Example 1. Let DNNn denote the set of all n × n doubly nonnegative matrices –

these are matrices in Sn that are both nonnegative and positive semidefinite. This

set is a sub-semi-algebra of Kn.

Example 2. Let CPn denote the set of all completely positive matrices in Sn. These

are matrices of the form

N∑
1

uuT ,

where u ∈ Rn+ (the nonnegative orthant of Rn) and N is a natural number. Alterna-

tively, these are matrices of the form BBT , where B is a nonnegative (rectangular)

matrix. Since

uuT ◦ vvT = (u ◦ v) (u ◦ v)T ,

where u ◦ v is the componentwise product of two vectors u and v, it follows that the

Schur product of two completely positive matrices is once again a completely positive

matrix. Thus, CPn is a sub-semi-algebra of Kn.

These two cones, along with Kn, have become very important in optimization,

particularly in conic linear programming (where one minimizes a linear function sub-

ject to linear constraints over a cone); see [1] and [4]. Thus, the problem of find-

ing/characterizing such sub-semi-algebras of Kn and studying their properties be-

comes interesting and useful. Motivated by this, we consider special sub-semi-algebras
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of Kn called Schur ideals. These are nonempty subsets of Kn that are closed under ad-

dition, multiplication by nonnegative scalars, and Schur multiplication by any element

of Kn. A nonempty set I ⊆ Kn is a Schur ideal in Kn if

X,Y ∈ I, Z ∈ Kn, 0 ≤ λ ∈ R⇒ X + Y, λX,X ◦ Z ∈ I.

We also consider related Schur homomorphisms of Kn, which are mappings from Kn
to Kn that preserve addition, (nonnegative) scalar multiplication, and Schur products.

Now, motivated by the problem of describing Schur ideals and homomorphisms

of the semidefinite cone, we raise the following questions (using the term ‘closed’ to

mean ‘topologically closed’): (a) Is every Schur ideal in Kn closed? How about finitely

generated ones? (b) Is every closed Schur ideal of Kn finitely generated? (c) What

are the Schur homomorphisms/automorphisms of Kn?

We show that:

(1) Schur ideals in Kn need not be closed,

(2) Finitely generated Schur ideals are always closed,

(3) In K2, a Schur ideal is closed if and only if it is a principal ideal, and

(4) Any Schur homomorphism of Kn is, up to permutation, conjugation by a

0/1-matrix with each row containing at most one 1 followed by pinching.

In particular, a Schur automorphism of Kn (this is a bijection of Kn that

preserves the three operations on Kn) is of the form

Φ(X) = PXPT ,

where P is a permutation matrix.

Section 2 covers some background material. Section 3 deals with two elementary

results characterizing Schur ideals in Sn and Kn. In Section 4, we give an example

of a non-closed Schur ideal in any Kn, n ≥ 2. In Section 5, we show that all finitely

generated Schur ideals in Kn are closed. Finally, in Section 6, we describe Schur

homomorphisms/automorphisms on Kn.

2. Preliminaries. In the Euclidean space Rn, we let e1, e2, . . . , en denote the

standard unit vectors (so that ei has one in the ith slot and zeros elsewhere). We let

e = e1 + e2 + · · ·+ en and E := eeT .

We also let Eij be a symmetric matrix with ones in the (i, j) and (j, i) slots and zeros

elsewhere; in particular, Eii has a 1 in the (i, i) slot and zeros elsewhere. A matrix is

a 0/1-matrix if each entry is either 0 or 1.

We let Sn denote the space of all n × n real symmetric matrices. Sn becomes

a Hilbert space under the trace product 〈X,Y 〉 = trace(XY ) =
∑
i,j xijyij , where
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X = [xij ] and Y = [yij ]. The corresponding norm (called the Frobenius norm) is

given by ||X|| =
√∑

ij x
2
ij . Thus, convergence in this space is entrywise. From now

on, we say that a set in Sn is closed if it is topologically closed under the Frobenius

norm. We note the following property of the inner product:

〈X ◦ Y, Z〉 = 〈X,Y ◦ Z〉

for all X,Y and Z in Sn. We let

Kn := {A ∈ Sn : xTAx ≥ 0 ∀x ∈ Rn}.

It is known that Kn is a closed convex cone in Sn. In particular, as convergence in

Sn is entrywise, every bounded sequence in Kn has a subsequence that converges to

an element of Kn.

In Kn, we have the Löwner ordering:

Y � X or X � Y when Y −X ∈ Kn.

It is known (see [5], Corollary 7.5.4) that

U, V � 0⇒ 〈U, V 〉 ≥ 0.(2.1)

Thus,

0 � X � Y ⇒ 〈X,X〉 ≤ 〈X,Y 〉 ≤ 〈Y, Y 〉 ⇒ ||X|| ≤ ||Y ||.(2.2)

It is known that a real symmetric matrix is positive semidefinite if and only if all

its principal minors are nonnegative. In particular, for X = [xij ] ∈ Kn,

xii ≥ 0 and xii xjj ≥ x2ij ,(2.3)

for all i and j. Thus, if a diagonal entry of X (belonging to Kn) is zero, then all

elements in the row/column containing this entry are zero. Also, if some off-diagonal

entry is nonzero, then the corresponding diagonal entry is nonzero.

Let diag(Kn) denote the set of all diagonal matrices in Kn. The interior of Kn is

denoted by K◦n. Note that this interior consists of all positive definite matrices of Sn
— these are matrices A in Sn satisfying xTAx > 0 for all 0 6= x ∈ Rn.

The pinching operation/transformation on Sn is defined as follows: By choosing

a partition of ∆ := {1, 2, . . . , n}, we write any matrix X ∈ Sn in the block form X =

[Xαβ ]. Then the pinching operation/transformation (corresponding to this partition)
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takes X to Y = [Yαβ ], where Yαβ = Xαβ when α = β and 0 otherwise. (This means

that Y is obtained from X by setting all the off-diagonal blocks to zero.). We write

Y = Xpinch.

For any finite set {C1, C2, . . . , CN} in Kn, we let

I{C1,C2,...,CN} :=
{∑

Ci ◦Xi : Xi ∈ Kn, i = 1, 2, . . . , N
}

denote the Schur ideal generated by {C1, C2, . . . , CN}. We say that a Schur ideal of

Kn is a principal ideal if it is generated by a single matrix in Kn.

3. Two elementary results on Schur ideals. We start with a description of

Schur ideals in Sn. Let

∆ := {1, 2, 3 . . . , n}.

We say that a subset I of ∆×∆ is symmetric if (i, j) ∈ I ⇒ (j, i) ∈ I.

Proposition 3.1. Given any symmetric subset I of ∆×∆, the set

I = {X = [xij ] ∈ Sn : xkl = 0 for all (k, l) ∈ I}

is a Schur ideal of Sn. Conversely, every Schur ideal of Sn arises this way.

Proof. The first part of the proposition is easy to verify. We prove the converse part.

Let I be any Schur ideal of Sn. If I = {0}, we take I = ∆×∆. If I = Sn, we take

I = ∅. Now assume that {0} 6= I 6= Sn. Define

I := {(k, l) : xkl = 0 for all X = [xij ] ∈ I}

and let J be the complement of I in ∆×∆. Let

Ĩ = {X = [xij ] ∈ Sn : xkl = 0 ∀ (k, l) ∈ I}.

Then, I ⊆ Ĩ. Now for any (k, l) ∈ J , there is a Y ∈ I with ykl 6= 0. For this (k, l),

Ekl = 1
ykl
Y ◦ Ekl ∈ I. Therefore, for any X ∈ Ĩ, X = [xij ] =

∑
1≤i≤j≤n xijEij =∑

1≤k≤l≤n,(k,l)∈J xklEkl ∈
∑
J REij ∈ I. It follows that I = Ĩ.

The following proposition gives a necessary and sufficient condition for a set to

be a Schur ideal in Kn.

Proposition 3.2. Let I be a set in Kn containing zero. Then I is a Schur ideal

in Kn if and only if

(i) I is a convex cone, and

(ii) DXD ∈ I for every diagonal matrix D ∈ Sn and X ∈ I.
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Proof. Suppose I is a Schur ideal in Kn. Then for any λ ≥ 0 and X ∈ I, we have

λX ∈ I. From this, it follows that I is a convex cone. Now take any diagonal matrix

D = diag(r1, r2, . . . , rn) in Sn. Then, for r = [r1, r2, . . . , rn]T , rrT ∈ Kn and hence

DXD = X ◦ rrT ∈ I. This proves (ii). The converse is proved by using the fact that

any matrix in Kn is a finite sum of matrices of the form rrT .

4. A non-closed Schur ideal of Kn. In this section, we show that in any Kn,

n ≥ 2, there is a Schur ideal that is not closed. First, we construct such an ideal in

the cone K2 of all 2× 2 real symmetric positive semidefinite matrices.

Example 3. The set

E = diag(K2) ∪ K◦2

is a non-closed ideal in K2.

To see this, let λ ≥ 0, A ∈ diag(K2), B ∈ K◦2 and X ∈ K2. Then, A+A ∈ diag(K2),

K2 + B ∈ K◦2, λ(A+ B) ∈ E , and A ◦X ∈ diag(K2). If X is diagonal, then B ◦X ∈
diag(K2). Suppose X is not diagonal so that

X =

[
x y

y z

]
,

with x > 0, z > 0 and xz − y2 ≥ 0. Now write

B =

[
a b

b c

]
,

where a > 0, c > 0 and ac−b2 > 0; we see that ax > 0, cz > 0 and (ax)(cz) > (b2)(y2).

This means that B ◦X ∈ K◦2. Hence in all cases, (A+B)◦X ∈ E . Thus, E is an ideal

of K2.

To see that E is not closed, we produce a sequence in E whose limit is not in E :[
1 1− 1

k

1− 1
k 1

]
→
[

1 1

1 1

]
.

Now, in any Kn, n ≥ 3, we define the set of block matrices

F =

{[
X 0

0 0

]
: X ∈ E

}
.

This is a Schur ideal in Kn that is not closed.

5. Finitely generated ideals in Kn. Example 3 raises the question of which

Schur ideals are closed in Kn. The following result partially answers this question.
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Theorem 5.1. Every finitely generated Schur ideal in Kn is closed.

The proof is based on the following two lemmas.

Lemma 5.2. Let A ∈ Kn with diag(A) > 0. If Xk is a sequence in Kn with

A ◦Xk convergent, then Xk is a bounded sequence.

Proof. Let Xk =
[
x
(k)
ij

]
, A = [aij ] and A ◦ Xk → Y . Then, by componentwise

convergence, for all i, 1 ≤ i ≤ n, aiix
(k)
ii → yii and so x

(k)
ii →

yii
aii

. Now, each Xk is

positive semidefinite and so by (2.3),

x
(k)
ii x

(k)
jj ≥ (x

(k)
ij )2

for all i, j = 1, 2, 3, . . . , n. As x
(k)
ii and x

(k)
jj are bounded sequences, it follows that x

(k)
ij

is also bounded for all i, j. Hence Xk is a bounded sequence.

Lemma 5.3. Let Xk be a sequence in Kn and A ∈ Kn with A ◦Xk → Z ∈ Kn.

Then there is an X ∈ Kn such that A ◦X = Z.

Proof. If A = 0, we can take X = 0. So, assume A 6= 0 and without loss of

generality write A =

[
A1 0

0 0

]
, where A1 is positive semidefinite and diag(A1) > 0.

If we partition each Xk and Z conformally to A, we get

[
A1 0

0 0

]
◦

[
X

(k)
1 X

(k)
2

(X
(k)
2 )T X

(k)
3

]
→
[
Z1 Z2

ZT2 Z3

]
.

Thus, A1 ◦X(k)
1 → Z1, Z2 = 0, and Z3 = 0. Now, from Lemma 5.2, X

(k)
1 is a bounded

sequence; we may assume that it converges to X1. Then[
A1 ◦X(k)

1 0

0 0

]
→
[
A1 ◦X1 0

0 0

]
=

[
Z1 0

0 0

]
.

Hence

A ◦
[
X1 0

0 0

]
= Z.

Since

[
X1 0

0 0

]
∈ Kn, the result follows.

Proof of Theorem 5.1. Let E be an ideal in Kn generated by a finite number of

matrices. For simplicity, we assume that E is generated by two, say, A and B, so that

any element of E is of the form A ◦X +B ◦ Y for some X,Y ∈ Kn.
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To show that E is closed, let Xk and Yk be sequence of matrices in Kn such that

A ◦Xk + B ◦ Yk → Z. We show that Z = A ◦X + B ◦ Y for some X,Y ∈ Kn. Now,

with respect to the Löwner ordering, 0 � A ◦Xk � A ◦Xk + B ◦ Yk. From (2.2), we

get ||A ◦Xk ‖≤‖ A ◦Xk + B ◦ Yk ‖. Thus, the sequence A ◦Xk is bounded. We may

assume (by going through a subsequence, if necessary) that A ◦Xk → U . By Lemma

5.3, we may write U = A ◦ X for some X ∈ Kn. Similarly, we may assume that

B ◦ Yk → V , where V = B ◦ Y for some Y ∈ Kn. It follows that Z = A ◦X +B ◦ Y
with X,Y ∈ Kn. Thus, E is closed.

Remarks. By modifying the above proof, one can show the following: If I and J
are two closed ideals in Kn, then so is I + J . In particular, if I is a closed ideal in

Kn and

I⊥ := {Y ∈ Kn : 〈Y,X〉 = 0 ∀ X ∈ I},

then I + I⊥ is a closed ideal in Kn. We note, however, that I⊥ may be just {0}, as

in the case of the ideal consisting of all diagonal matrices in Kn.

Remarks. Every finitely generated ideal in Kn is closed, but we do not know if the

converse holds. In the following theorem, we show that the converse does hold for K2.

Theorem 5.4. Every closed ideal in K2 is a principal ideal. Conversely, every

principal ideal in K2 is closed.

We begin with a lemma.

Lemma 5.5. Let E be a closed ideal in K2 that contains a matrix with an off-

diagonal entry nonzero. Let

u := sup

{
β
√
αγ

:

[
α β

β γ

]
∈ E and α, β, γ > 0

}
.(5.1)

Then,

[
1 u

u 1

]
∈ E. Moreover,

[
a b

b c

]
∈ E ⇒

[
a b

u
b
u c

]
∈ K2.

Proof. Let

[
α β

β γ

]
∈ E with β 6= 0; we may, if necessary, consider the Schur

product of this matrix with the positive semidefinite matrix

[
1 −1

−1 1

]
and assume

that β > 0. Then α, β, and γ are positive. Since αγ ≥ β2, it follows that u in (5.1)
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is well defined. Now consider a sequence

[
αk βk
βk γk

]
∈ E such that αk, βk, γk > 0

and βk√
αkγk

→ u as k →∞. Since

[
1
αk

1√
αkγk

1√
αkγk

1
γk

]
is positive semidefinite (as it is

symmetric and all its principal minors are nonnegative) and E is an ideal, it follows

that [
αk βk
βk γk

]
◦

[
1
αk

1√
αkγk

1√
αkγk

1
γk

]
=

[
1 βk√

αkγk
βk√
αkγk

1

]
∈ E .

Since E is closed, letting k →∞, we have[
1 u

u 1

]
∈ E .

Now for the second part of the lemma. The implication is obvious if b = 0. If

b 6= 0, then a, c > 0 and

[
a |b|
|b| c

]
∈ E and so (by definition of u), u ≥ |b|√

ac
. This

shows that the symmetric matrix

[
a b

u
b
u c

]
belongs to K2 as its principal minors are

nonnegative.

Proof of Theorem 5.4. If E is a principal ideal, then it is closed by Theorem 5.1.

For the converse, let E be a closed ideal in K2. Suppose first that E contains a matrix

with a nonzero off-diagonal entry. Then from the preceding lemma there exists a

nonzero number u with U :=

[
1 u

u 1

]
∈ E . Now, the principal ideal generated by U

is contained in E . The identity[
a b

b c

]
=

[
1 u

u 1

]
◦
[
a b

u
b
u c

]
shows that every element of E is in this principal ideal. Hence, E is a principal ideal

generated by U .

Now suppose that every off-diagonal entry of every matrix in E is zero. Then E
consists of diagonal matrices. In this case, E is generated by one of the following:[

0 0

0 0

]
,

[
1 0

0 0

]
,

[
0 0

0 1

]
,

[
1 0

0 1

]
.

Thus, we have shown that E is a principal ideal.

6. Schur homomorphisms of Kn. In this section, we characterize Schur homo-

morphisms of Kn. A map f : Kn → Kn is a Schur homomorphism if for all X,Y ∈ Kn
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and λ ≥ 0 in R, we have

f(X + Y ) = f(X) + f(Y ), f(λX) = λf(X), and f(X ◦ Y ) = f(X) ◦ f(Y ).

These are special cases of Schur multiplicative maps (which preserve the Schur prod-

ucts) studied in [3].

To motivate our results, we consider an n × n 0/1-matrix Q with each row con-

taining at most one 1. Then, the mapping X 7→ QXQT is a Schur homomorphism

of Kn. The process of pinching (corresponding to a partition of ∆) followed by a

permutation continues to retain the Schur homomorphism property, that is, the map-

ping X 7→ P (QXQT )pinchP
T is a Schur homomorphism of Kn, where P denotes a

permutation matrix. We now show that every Schur homomorphism arises this way.

Let f be a Schur homomorphism on Kn. Then f can be extended to Sn in the

following way. As Sn = Kn−Kn, any element X of Sn can be written as X = A−B
with A,B ∈ Kn. Then we define

F (X) := f(A)− f(B).(6.1)

Note that F (X) is well defined: If X = A− B = C −D with A,B,C,D ∈ Kn, then

A+D = B +C and so f(A) + f(D) = f(B) + f(C) yielding F (X) = f(A)− f(B) =

f(C)−f(D). Then, F : Sn → Sn is a Schur homomorphism of Sn, that is, F is linear

and for all X,Y ∈ Sn, F (X ◦ Y ) = F (X) ◦ F (Y ).

We now characterize Schur homomorphisms of Sn, such as F . First, a definition.

We say that a mapping φ : ∆ × ∆ → ∆ × ∆ is symmetric if φ(i, j) = φ(j, i) for

all (i, j); for notational convenience, we sometimes write φ(ij) in place of φ(i, j).

Corresponding to such a mapping, we define Φ : Sn → Sn by

Φ(X) = Y where yij = xφ(ij).(6.2)

Theorem 6.1. Given any symmetric mapping φ on ∆ × ∆ and a symmetric

0/1-matrix Z, the mapping F : Sn → Sn defined by

F (X) = Z ◦ Φ(X) (X ∈ Sn)

is a Schur homomorphism on Sn. Conversely, every Schur homomorphism of Sn
arises in this way.

Proof. The first part in the theorem is easily verified. We prove the converse.

Consider a Schur homomorphism F on Sn. In order to simplify the proof and make

it more transparent, we think of matrices X and Y as vectors x and y in Rd, where

d = n2+n
2 . Then F (X) can be regarded as a linear transformation f(x) = Ax on Rd
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(for some square matrix A) satisfying A(x ◦ y) = A(x) ◦ A(y). This equation splits

into d independent equations of the form aT (x ◦ y) = (aTx)(aT y), where a is any row

vector of A. From this we see that a is a 0/1-vector with at most one 1. Thus, A is a

0/1-matrix with at most one 1 in each row. Reverting back to F , we get the stated

result.

Remarks. The preceding theorem is analogous to Theorem 1.1 in [3], proved for

Schur multiplicative maps on Rm×n under a ‘nonsingularity’ assumption, but without

any linearity assumptions.

Before we present our general result on the Schur homomorphisms of Kn, we

introduce some notation and prove a lemma. For 1 ≤ m ≤ n, let α := {1, 2, . . . ,m}.
Corresponding to a symmetric mapping ψ : α× α→ ∆×∆, we define Ψ : Sn → Sm
by

Ψ(X) = Y, where yij = xψ(ij).(6.3)

Lemma 6.2. Consider ψ and Ψ defined in (6.3). Then Ψ(Kn) ⊆ Km if and only

if there exists an m× n 0/1-matrix Q such that each row of Q contains exactly one 1

and Ψ(X) = QXQT for all X ∈ Kn.

Proof. Since the ‘if’ part is obvious, we prove the ‘only if’ part. Suppose Ψ(Kn) ⊆
Km. We prove the following statements:

(a) If ψ(i, i) = (k, l), then k = l.

(b) If i 6= j, ψ(i, i) = (k, k) and ψ(j, j) = (l, l), then ψ(i, j) ∈ {(k, l), (l, k)}. (This

implies that yij = xψ(ij) = xkl.)

(a) If possible, let ψ(i, i) = (k, l) with k 6= l. Then there exists a matrix X ∈ Kn
such that xkl = −1. But then, for Y = Ψ(X), yii = xψ(ii) = xkl = −1. This cannot

happen as Y , being positive semidefinite, has all nonnegative diagonal entries. Hence

k = l.

(b) Let i 6= j, ψ(i, i) = (k, k) and ψ(j, j) = (l, l). We consider two cases.

Case 1: k = l. Without loss of generality, let k = l = 1. Suppose ψ(i, j) 6= (1, 1).

Consider u = [1, 2, 3, . . . , n]T and X = uuT ∈ Kn. Then every entry in X other than

the (1, 1) is bigger than one. Moreover, yii = yjj = x11 = 1 and yij = xψ(ij) > 1. As

Y = Ψ(X) ∈ Km, these values of Y violate (2.3). Hence, ψ(i, j) = (1, 1) = (k, l).

Case 2: k 6= l. Without loss of generality (using (a)), let ψ(i, i) = (1, 1) and ψ(j, j) =

(2, 2). We need to show that ψ(i, j) ∈ {(1, 2), (2, 1)}. Assuming this does not hold,

we consider the following 2× 2 principal submatrix of Y :[
yii yij
yij yjj

]
=

[
xψ(ii) xψ(ij)
xψ(ij) xψ(jj)

]
=

[
x11 xψ(ij)
xψ(ij) x22

]
.(6.4)
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Case 2.1: Suppose ψ(i, j) = (1, 1). Then, taking u = [2, 1, 0, . . . , 0]T , X = uuT , we see

that the principal submatrix (6.4) of Y violates (2.3). Hence this case cannot arise.

Case 2.2: Suppose ψ(i, j) = (2, 2). Then, taking u = [1, 2, 0, . . . , 0], X = uuT , we see

that the principal submatrix (6.4) of Y violates (2.3). Hence this case cannot arise.

Case 2.3: Suppose ψ(i, j) 6∈ {(1, 1), (2, 2), (1, 2), (2, 1)}. Then, taking X = uuT , where

u = [1, 1, 2, 2, . . . , 2]T , we see that even in this case, the principal submatrix (6.4) of

Y violates (2.3). We conclude that ψ(i, j) ∈ {(1, 2), (2, 1)}. Thus, we have (b).

Having proved Items (a) and (b), we now define the m × n 0/1-matrix Q = [qij ] as

follows: For any pair (i, k) with i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n},

qik = 1 when ψ(i, i) = (k, k) and qik = 0 otherwise.

Then each row of Q contains exactly one 1 and Ψ(X) = QXQT for all X ∈ Sn.

We now come to the description of Schur homomorphisms of Kn.

Theorem 6.3. Let Q be an n× n 0/1 matrix with each row containing at most

one 1 and P be an n× n permutation matrix. Given a (specific) pinching operation,

f(X) := P (QXQT )pinchP
T (X ∈ Sn)

defines a Schur homomorphism of Kn. Conversely, every Schur homomorphism of

Kn arises this way.

Proof. We have shown that f(X) := P (QXQT )pinchP
T (X ∈ Sn) defines a Schur

homomorphism. We prove the converse. Suppose f is a nonzero Schur homomorphism

of Kn. We extend f to F on Sn via (6.1). By Theorem 6.1, there exists a nonzero

0/1 symmetric matrix Z and a symmetric mapping φ such that

F (X) = Z ◦ Φ(X) ∀ X ∈ Sn,

where Φ is defined by (6.2). Since Φ(E) = E (for any mapping φ), we see that

Z = Z ◦ E = Z ◦ Φ(E) = F (E) = f(E) ∈ Kn. Thus, the 0/1 symmetric matrix

Z is also positive semidefinite. Now by Proposition 2 in [6], we see that up to a

permutation, Z is of the form

Z =



Z1 0 0 · · · 0

0 Z2 0 · · · 0

0
. . .

. . .
. . . 0

... 0 Zk 0

0 · · · 0 0 0 0


,(6.5)

where k ≤ n and each Zi is a matrix of ones. We assume without loss of generality

that Z is of the form (6.5) (this induces our permutation P ) and F (X) = Z ◦Φ(X) for
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all X. For each i = 1, 2, . . . , k, let αi be a subset of {1, 2, . . . , n} such that Zαiαi
= Zi.

We let mi := |αi| (the number of elements in αi). These sets are disjoint. Now

(F (X))αiαi
= Zi ◦ (Φ(X))αiαi

= (Φ(X))αiαi
.

We know that for each X ∈ Kn, F (X) = f(X) ∈ Kn. Thus, for each i = 1, 2, . . . , k,

(Φ(X))αiαi ∈ Kmi . Now we define ψi : αi × αi → ∆×∆ by

ψi(k, l) := φ(k, l).

Then, for the corresponding mapping Ψi we have Ψi(Kn) ⊆ Kmi
. By Lemma 6.2,

for each i = 1, 2, . . . , k, there exists an mi × n 0/1-matrix Qi (with exactly one 1

in each row) such that Ψi(X) = QiXQ
T
i . Now, let Qk+1 be the zero matrix and

define the n × n 0/1-matrix Q with blocks Q1, Q2, . . . , Qk+1. A computation shows

that QXQT has diagonal blocks QiXQ
T
i , i = 1, 2, . . . , k + 1. By setting the off-

diagonal blocks to zero (pinching), We see that F (X) = (QXQT )pinch. By taking

into consideration the permutation used to rearrange rows and columns of Z, we

finally arrive at f(X) = P (QXQT )pinchP
T .

The following result characterizes Schur automorphisms of Kn.

Corollary 6.4. Let f : Kn → Kn be a Schur homomorphism. Then the

following are equivalent:

(i) f is one-to-one (or onto) on Kn.

(ii) There exists a permutation matrix P such that f(X) = PXPT for all X ∈
Kn.

(iii) f is a Schur automorphism of Kn.

Proof. Let f : Kn → Kn be a Schur homomorphism. Then, Theorem 6.1 ensures that

its extension F to Sn can be written in the form F (X) = Z ◦ Φ(X) for all X ∈ Sn.

(i) ⇒ (ii): Suppose that f is one-to-one. Then, F is also one-to-one. (When f is

onto, that is, f(Kn) = Kn, its extension F satisfies F (Kn) = Kn. Since F is linear

and its range contains an open set, namely, the interior of Kn, F is also onto and

hence one-to-one.) We now show that Z = E (the matrix of all ones). Suppose

that Z has a zero entry, say zij = 0. Then, for any X, 〈F (X), Eij〉 = 0. Thus,

〈X,FT (Eij)〉 = 0 for all X ∈ Sn. This implies that FT (Eij) = 0. As F is one-to-one

(hence invertible), FT is also one-to-one. Thus, Eij = 0, which is a contradiction.

Hence, Z has no zero entries. As Z is a 0/1-matrix, we have Z = E. Now, this implies

that F (X) = E ◦Φ(X) = Φ(X) so that Φ(= F ) is a one-to-one Schur homomorphism

on Sn such that Φ(Kn) ⊆ Kn. By Lemma 6.2, there exists a (square) 0/1-matrix Q

with each row containing exactly one 1 such that F (X) = QXQT for all X ∈ Sn. As

F is one-to-one, it is necessarily invertible. This implies (for example, by looking at

F (X) = I) that Q is invertible. This means that Q cannot have a pair of identical
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rows. Thus, Q has exactly one 1 in each column/row. Hence, Q is a permutation

matrix.

The implications (ii)⇒ (iii)⇒ (i) are easy to verify or obvious.

Concluding Remarks. Schur homomorphisms of Kn are completely characterized,

but the problem of describing all closed Schur ideals of Kn remains open. In particular,

it is not known if every closed Schur ideal of Kn is finitely generated.
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