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This paper is concerned with a generalization of the concept of 
value of a (zero-sum) matrix game. Given a finite dimensional 
real inner product space V with a self-dual cone K, an element 
e in the interior of K, and a linear transformation L, we define 
the value of L by

v(L) := max
x∈Δ

min
y∈Δ

〈
L(x), y

〉
= min

y∈Δ
max
x∈Δ

〈
L(x), y

〉
,

where Δ = {x ∈ K : 〈x, e〉 = 1}. This reduces to the classical 
value of a square matrix when V = Rn, K = Rn

+, and e is 
the vector of ones. In this paper, we extend some classical 
results of Kaplansky and Raghavan to this general setting. In 
addition, for a Z-transformation (which is a generalization of 
a Z-matrix), we relate the value with various properties such 
as the positive stable property, the S-property, etc. We apply 
these results to find the values of the Lyapunov transformation 
LA and the Stein transformation SA on the cone of n ×n real 
symmetric positive semidefinite matrices.
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1. Introduction

This paper is concerned with a generalization of the concept of value of a (zero-sum) 
matrix game. To explain, we consider an n × n real matrix A and the strategy set 
X := {x ∈ Rn

+ :
∑n

1 xi = 1}, where Rn
+ denotes the nonnegative orthant in Rn. Then 

the value of A is given by

v(A) := max
x∈X

min
y∈X

〈Ax, y〉 = min
y∈X

max
x∈X

〈Ax, y〉,

where 〈Ax, y〉 denotes the (usual) inner product between vectors Ax and y. Correspond-
ing to this, there exist optimal strategies x̄, ȳ ∈ X such that

〈Ax, ȳ〉 ≤ v(A) = 〈Ax̄, ȳ〉 ≤ 〈Ax̄, y〉 ∀x, y ∈ X.

The concept of value of a matrix and its applications are classical and have been well 
studied and documented in the game theory literature; see, for example, [12,13]. Our 
motivation for the generalization comes from results of Kaplansky and Raghavan. In [11], 
Kaplansky defines a completely mixed (matrix) game as one in which x̄ > 0 and ȳ > 0 for 
every pair of optimal strategies (x̄, ȳ). For such a game, Kaplansky proves the uniqueness 
of the optimal strategy pair. In [14], Raghavan shows that for a Z-matrix (which is a 
square matrix whose off-diagonal entries are all non-positive) the game is completely 
mixed when the value is positive, and relates the property of value being positive to a 
number of equivalent properties of the matrix such as the positive stable property, the
P-property, etc. His result, in particular, says that for a Z-matrix A, the value is positive 
if and only if there exists an x̄ ∈ Rn such that

x̄ > 0 and Ax̄ > 0.

Inequalities of the above type also appear in the study of linear continuous and discrete 
dynamical systems: Given an n × n real matrix A, the continuous dynamical system 
dx
dt +Ax(t) = 0 is asymptotically stable on Rn (which means that any trajectory starting 
from an arbitrary point in Rn converges to the origin) if and only if there exists a real 
symmetric matrix X such that

X > 0 and LA(X) > 0,

where X > 0 means that X is positive definite, etc., and LA denotes the so-called 
Lyapunov transformation defined on the space Sn of all n × n real symmetric matrices:

LA(X) := AX + XAT
(
X ∈ Sn

)
.

Similarly, the discrete dynamical system x(k+1) = Ax(k), k = 0, 1, . . . , is asymptotically 
stable on Rn if and only if there exists a real symmetric matrix X such that
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X > 0 and SA(X) > 0,

where SA denotes the so-called Stein transformation on Sn:

SA(X) := X −AXAT
(
X ∈ Sn

)
.

Motivated by the similarity between these inequalities/results, we ask if the concept of 
value and the related results could be extended to linear transformations such as LA

and SA on Sn and, in particular, get the above dynamical system results from the value 
results. In this paper, we achieve this and much more: We extend the concept of value 
to a linear transformation relative to a self-dual cone in a finite dimensional real inner 
product space (of which Rn

+ and Sn
+ are particular instances) and see its relevance in 

the study of so-called Z-transformations. To elaborate, consider a finite dimensional real 
inner product space (V, 〈·,·〉) and a self-dual cone K in V . We fix an element e in the 
interior of K and let

Δ :=
{
x ∈ K : 〈x, e〉 = 1

}
, (1)

the elements of which will be called ‘strategies’. Given a linear transformation L from V
to V , the zero-sum game is played by two players I and II in the following way: If player I 
chooses strategy x ∈ Δ and player II chooses strategy y ∈ Δ, then the pay-off for player I 
is 〈L(x), y〉 and the pay-off for player II is −〈L(x), y〉. Since Δ is a compact convex set 
and L is linear, by the min–max theorem of von Neumann (see [12, Theorems 1.5.1 
and 1.3.1]), there exist optimal strategies x̄ for player I and ȳ for player II such that

〈
L(x), ȳ

〉
≤

〈
L(x̄), ȳ

〉
≤

〈
L(x̄), y

〉
∀x, y ∈ Δ. (2)

This means that players I and II do not gain by unilaterally changing their strategies 
from the optimal strategies x̄ and ȳ. We will call the number

v(L) :=
〈
L(x̄), ȳ

〉
the value of the game, or simply, the value of L. The pair (x̄, ȳ) will be called an optimal 
strategy pair for L. We note that v(L) is also given by [12, Theorems 1.5.1 and 1.3.1]

v(L) = max
x∈Δ

min
y∈Δ

〈
L(x), y

〉
= min

y∈Δ
max
x∈Δ

〈
L(x), y

〉
. (3)

Following Kaplansky [11], we say that a linear transformation L on V (or the corre-
sponding game) is completely mixed if for every optimal strategy pair (x̄, ȳ) of L, x̄ and 
ȳ belong to the interior of K. As in the classical case, we show the uniqueness of the 
optimal strategy pair when the game is completely mixed (see Theorem 5). By extend-
ing the concept of a Z-matrix, but specializing a concept that is defined on any proper 
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cone [9], we say that a linear transformation L is a Z-transformation on K if the following 
implication holds:

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇒
〈
L(x), y

〉
≤ 0.

We show that for a Z-transformation, the game is completely mixed when the value is 
positive (see Theorem 6). Easy examples (even in the classical case) show that the result 
fails when the value is negative. However, in this paper, we identify the following two 
important types of Z-transformations for which the game is completely mixed even when 
the value is negative: Lyapunov-like transformations defined by the condition

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇒
〈
L(x), y

〉
= 0

and Stein-like transformations which are of the form

L = I − Λ for some Λ ∈ Aut(K),

where I denotes the identity transformation, Aut(K) denotes the set of all automor-
phisms of K (which are invertible linear transformations on V mapping K onto itself), 
and Aut(K) denotes the topological closure of Aut(K).

While all our main results are stated for self-dual cones, illuminating examples and 
results are obtained for symmetric cones in Euclidean Jordan algebras. A Euclidean 
Jordan algebra (V, 〈·,·〉, ◦) is a finite dimensional real inner product space (V, 〈·,·〉) which 
admits a Jordan product ‘◦’ that is compatible with the inner product, see [4,8] for details. 
In this algebra, we let the self-dual cone K be the cone of squares {x ◦x : x ∈ V }. For e, 
we choose the unit element of the algebra. Under the assumption that 〈x, y〉 = tr(x ◦ y), 
where the trace of an object is the sum of all its eigenvalues, we see that 〈x, e〉 = tr(x)
and so Δ = {x ∈ K : tr(x) = 1}. Under these canonical settings, using (3), we define 
the value of a linear transformation on V . Two important Euclidean Jordan algebras and 
their symmetric cones are given below:

	 We get the classical concepts and results when

V = Rn, 〈x, y〉 =
n∑

i=1
xiyi, x ◦ y = x ∗ y, K = Rn

+, and

tr(x) =
n∑

i=1
xi,

where ‘∗’ denotes the componentwise product. In this algebra, e is the vector of 
ones. (Note that in the classical situation, in the definition of value of a matrix A, 
the expression xTAy, which is 〈x, Ay〉, is used instead of 〈Ax, y〉. Our choice of the 
expression 〈L(x), y〉 leads to the preferred S-property of L instead of that of LT , see 
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Theorem 2 and Proposition 1 in Section 3 below.) In this setting, Z-transformations 
reduce to Z-matrices and Lyapunov-like transformations become diagonal matrices.

	 Consider the algebra of all n × n real symmetric matrices:

V = Sn, 〈X,Y 〉 := tr(XY ), X ◦ Y := 1
2(XY + Y X), K = Sn

+,

tr(X) =
n∑

i=1
λi(X),

where the trace of a real/complex matrix is the sum of its diagonal elements (or 
the sum of its eigenvalues). In this algebra, e is the identity matrix and K is the 
cone of all positive semidefinite matrices in Sn. Also, Lyapunov-like and Stein-like 
transformations reduce, respectively, to Lyapunov and Stein transformations:

LA(X) := AX + XAT and SA(X) := X −AXAT , (4)

where A is an n × n real matrix.

Here is a summary of our main results:

• When the game corresponding to a linear transformation is completely mixed, (a) the 
game has a unique optimal strategy pair and (b) the values of the transformation 
and its transpose are equal.

• For a Z-transformation, the value is positive if and only if it is positive stable (that 
is, all its eigenvalues have positive real parts). When the value is positive, (i) the 
game is completely mixed and (ii) in the case of a product cone, the value of the 
transformation is bounded above by the value of any principal subtransformation or 
the Schur complement of any principal subtransformation.

• For a Lyapunov-like transformation, the value is positive (negative) if and only if 
it is positive stable (respectively, negative stable); when the value is nonzero, the 
game is completely mixed. These results are valid, in particular, for a Lyapunov 
transformation LA on Sn.

• For a Stein-like transformation L = I−Λ, the value is positive (negative) if and only 
if Λ is Schur stable (respectively, inverse Schur stable); when the value is nonzero, 
the game is completely mixed. These results are valid, in particular, for a Stein 
transformation SA on Sn.

The paper is organized as follows. In Section 2, we recall basic concepts, definitions, 
and preliminary results. We will also recall some special linear transformations and state 
many equivalent properties of Z-transformations. Section 3 deals with some basic results 
on the value. In Section 4, we study completely mixed games. Section 5 deals with the 
value of a Z-transformation. In this section we show that for a Z-transformation, the 
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value being positive is equivalent to positive stability. We also establish value results for 
Lyapunov-like and Stein-like transformations. Value inequalities on a product space (in 
terms of principal subtransformations and Schur complements) are covered in Section 6. 
In Section 7, we compute the values of LA and SA. In the concluding remarks, we indicate 
possible topics for further study and state a conjecture on P-transformations.

2. Preliminaries

2.1. Self-dual cones

In this paper, (V, 〈·,·〉) denotes a finite dimensional real inner product space. For a set 
S in V , we denote the interior, closure, and boundary by S◦, S, and ∂S, respectively. 
Let K be a self-dual cone in V so that

K∗ :=
{
x ∈ V : 〈x, y〉 ≥ 0 ∀y ∈ K

}
= K.

We note the following consequences of the equality K∗ = K (see [1]):

(i) K is a closed convex cone.
(ii) K ∩ −K = {0} and K −K = V .
(iii) K◦ is nonempty.
(iv) x ∈ K ⇔ 〈x, y〉 ≥ 0 ∀y ∈ K.
(v) 0 �= x ∈ K, y ∈ K◦ ⇒ 〈x, y〉 > 0.

Henceforth, in V , we fix a self-dual cone K and an element e ∈ K◦.

In V , we use the notation x ⊥ y to mean 〈x, y〉 = 0 and let e⊥ := {x ∈ V : x ⊥ e}. 
We will use the notation

x ≥ y (or y ≤ x) when x− y ∈ K and x > y when x− y ∈ K◦.

In V , we define the ‘strategy set’ Δ by (1). It is easy to see that Δ is a compact 
convex set.

We denote the space of all (continuous) linear transformations on V by L(V ). Then 
the automorphism group on K is

Aut(K) :=
{
L ∈ L(V ) : L(K) = K

}
.

Note that each L ∈ Aut(K) is invertible, as K has nonempty interior. By Aut(K), we 
denote the closure of Aut(K) in L(V ).

For a linear transformation L on V , we denote the transpose by LT . Recalling the 
equality 〈LT (x), y〉 = 〈x, L(y)〉 for all x, y ∈ V , we note (by the self-duality of K) that

L(K) ⊆ K ⇒ LT (K) ⊆ K and L ∈ Aut(K) ⇔ LT ∈ Aut(K).
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2.2. Euclidean Jordan algebras

While [4] is our primary source on Euclidean Jordan algebras, a short summary can 
be found in [8]. In a Euclidean Jordan algebra, the cone of squares (called a symmetric 
cone) is a self-dual homogeneous cone. Examples of Euclidean Jordan algebras include 
Rn, Sn (see Section 1), the Jordan spin algebra Ln (whose symmetric cone is called the 
second order cone or Lorentz cone), the algebra Hn of n ×n complex Hermitian matrices, 
the algebra Qn of n × n quaternion Hermitian matrices, and the algebra O3 of 3 × 3
octonion Hermitian matrices. It is known that any nonzero Euclidean Jordan algebra is 
a product of those given above [4].

2.3. Some special linear transformations

Many of the linear transformations we study here have their roots in either the dy-
namical systems theory or complementarity theory [2]. Below, we make a list of such 
transformations and provide some examples. Recall that V is a finite dimensional real 
inner product space and K is a fixed self-dual cone in V .

For a linear transformation L on V , we say that

(1) L is an S-transformation on K (and write L ∈ S(K)) if there exists a d > 0 such 
that L(d) > 0.

(2) L is a Z-transformation on K (and write L ∈ Z(K)) if the following implication 
holds:

x ≥ 0, y ≥ 0, 〈x, y〉 = 0 ⇒
〈
L(x), y

〉
≤ 0.

(3) L is Lyapunov-like on K if L and −L are Z-transformations on K.
(4) L is Stein-like on K if it is of the form L = I − Λ for some Λ ∈ Aut(K).
(5) L is a P-transformation on a Euclidean Jordan algebra if the following implication 

holds:
[
x and L(x) operator commute, x ◦ L(x) ≤ 0

]
⇒ x = 0.

(6) L ∈ Π(K) if L(K) ⊆ K.
(7) L is positive (negative) stable if the real part of any eigenvalue of L is positive 

(respectively, negative).
(8) L is Schur stable if all eigenvalues of L lie in the open unit disk of R2; L is inverse 

Schur stable if L−1 exists and is Schur stable.

Note: When the context is clear, we suppress mentioning the cone K in various 
definitions/properties or even write V in place of K; for example, we may write 
‘S-transformation on V ’ or just ‘S-transformation’ in place of ‘S-transformation on K’.

Note that the above definitions/concepts also apply for matrices on Rn.
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We first state some equivalent properties of Z-transformations and then provide some 
examples.

Theorem 1. (See [9, Theorems 6 and 7].) Suppose L is a Z-transformation on K. Then 
the following are equivalent:

(1) L is an S-transformation on K.
(2) L is invertible with L−1(K) ⊆ K, or equivalently, L−1(K◦) ⊆ K◦.
(3) L is positive stable.
(5) All real eigenvalues of L are positive.
(6) LT is an S-transformation on K.
(7) LT is invertible with (LT )−1(K) ⊆ K.
(8) For every q ∈ V , the linear complementarity problem LCP(L, K, q) has a solution, 

that is, there exists x such that

x ≥ 0, L(x) + q ≥ 0, and
〈
x, L(x) + q

〉
= 0.

Equivalent properties of Lyapunov-like transformations: For a linear transformation L
on V , the following are equivalent [10, Theorem 4]:

(i) L is Lyapunov-like on K.
(ii) etL(K) ⊆ K for all t ∈ R.
(iii) L ∈ Lie(Aut(K)), that is, L is an element of the Lie algebra of the automorphism 

group of K.

Equivalent properties of LA [6]: Let V = Sn. For any real n × n matrix A, consider the 
Lyapunov transformation LA defined in (4). It is known (see [3]) that on Sn, a linear 
transformation is Lyapunov-like if and only if it is of the form LA for some A. The 
following are equivalent for LA:

(i) The dynamical system dxdt + Ax = 0 is asymptotically stable in Rn;
(ii) There exists a positive definite matrix D in Sn such that AD + DAT is positive 

definite;
(iii) LA is an S-transformation on Sn

+;
(iv) LA is positive stable;
(v) A is positive stable;
(vi) LA is a P-transformation.

Equivalent properties of SA [5]: Let V = Sn. For any real n × n matrix A, consider the 
Stein transformation SA defined in (4). Then SA is a Z-transformation on Sn

+. Moreover, 
since every automorphism of Sn

+ is given by Λ(X) = BXBT (X ∈ Sn) for some real 
n ×n invertible matrix B [15], it follows that on Sn, a linear transformation is Stein-like 
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if and only if it is of the form SA for some real n × n matrix A. For SA, the following 
are equivalent:

(i) The discrete dynamical system x(k + 1) = Ax(k), k = 0, 1, 2, . . . , is asymptotically 
stable in Rn;

(ii) There is a positive definite matrix D in Sn such that D−ADAT is positive definite;
(iii) SA is an S-transformation;
(iv) SA is positive stable;
(v) A is Schur stable;
(vi) SA is a P-transformation.

Here are some more examples of Z-transformations.

• Every Lyapunov-like transformation is a Z-transformation.
• For any r ∈ R and Λ ∈ Π(K), L = rI−Λ is a Z-transformation. In particular, every 

Stein-like transformation is a Z-transformation.
• If c, d > 0, then (it is easy to see that) rI−cdT and (I+cdT )−1 are Z-transformations 

on K, where r ∈ R and (cdT )(x) := 〈d, x〉 c.
• Let V be a Euclidean Jordan algebra with corresponding symmetric cone K. For 

a ∈ V , let La be defined by La(x) = a ◦ x; let D be a derivation on V , that is, 
D(x ◦ y) = D(x) ◦ y + x ◦D(y) for all x, y ∈ V . Then L := La + D is Lyapunov-like 
on K. In fact (see [17]), every Lyapunov-like transformation on K arises this way.

• Let V be a Euclidean Jordan algebra with corresponding symmetric cone K. For 
a ∈ V , let Pa be defined by Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x; let Γ be an algebra 
automorphism on V , that is, Γ (x ◦ y) = Γ (x) ◦ Γ (y) for all x, y ∈ V . Then, L :=
I − PaΓ is a Stein-like transformation on K. In fact, on a simple Euclidean Jordan 
algebra (see [4, Theorem III.5.1]), every Stein-like transformation on K arises this 
way.

3. The value of a linear transformation; some general results

Let L be a linear transformation on V . Corresponding to this (and the fixed self-dual 
cone K and e ∈ K◦), we define the value v(L) by (3) and consider an optimal strategy 
pair (x̄, ȳ) satisfying (2).

Theorem 2. The saddle point inequalities (2) imply

LT (ȳ) ≤ v e ≤ L(x̄), (5)

where v is the value of L. Conversely, if (5) holds for some v ∈ R and x̄, ȳ ∈ Δ, then v
is the value of L and (x̄, ȳ) is an optimal strategy pair for L.
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Proof. From the definition of value, we have the saddle-point inequalities (2). We see that 
〈L(x̄) −v(L) e, y〉 ≥ 0 holds for all y ∈ Δ and (by scaling) for all y ∈ K. As K is self-dual, 
L(x̄) − v(L) e ≥ 0, from which we get v(L) e ≤ L(x̄). Similarly, LT (ȳ) ≤ v(L) e. Now 
suppose v is a real number that satisfies the inequalities (5). Then 〈x, LT (ȳ)〉 ≤ v〈x, e〉
and v〈e, y〉 ≤ 〈L(x̄), y〉 for all x, y ∈ Δ. These yield

〈
L(x), ȳ

〉
≤ v ≤

〈
L(x̄), y

〉
∀x, y ∈ Δ.

Upon putting x = x̄ and y = ȳ, we see that v = v(L) and (x̄, ȳ) is an optimal strategy 
pair for L. �
Remarks. Based on the above theorem, the following are easy to prove:

(a) v(λ L) = λ v(L) for λ ≥ 0.
(b) If (x̄, ȳ) is an optimal strategy pair for L, then (ȳ, ̄x) is an optimal strategy pair for 

−LT . Moreover, v(−LT ) = −v(L).
(c) If (x̄, ȳ) is an optimal strategy pair for L, then for any real number λ, (x̄, ȳ) is an 

optimal strategy pair for L +λeeT , where eeT (x) := 〈x, e〉 e. Moreover, v(L +λ eeT ) =
v(L) + λ.

(d) Suppose A ∈ Aut(K) and let (x̄, ȳ) be an optimal strategy pair for L relative to the 
chosen interior point e. Define L̃ = ALAT , ẽ = Ae, x̃ = (A−1)T x̄, and ỹ = (A−1)T ȳ. 
Then (x̃, ̃y ) is an optimal strategy pair for L̃ relative to the interior point ẽ. Moreover, 
the value of L̃ relative to ẽ is the same as the value of L relative to e.

Theorem 3. If (x̄, ȳ) is an optimal strategy pair for L and v denotes the value of L, then

0 ≤ x̄ ⊥ v e− LT (ȳ) ≥ 0 and 0 ≤ ȳ ⊥ L(x̄) − v e ≥ 0.

In addition,

L(x̄) = v e when ȳ > 0 and LT (ȳ) = v e when x̄ > 0. (6)

When V is a Euclidean Jordan algebra, x̄ and LT (ȳ) operator commute, and ȳ and L(x̄)
operator commute.

Proof. The nonnegativity and orthogonality relations follow easily. Now suppose ȳ > 0, 
that is, ȳ ∈ K◦. As L(x̄) − v e ≥ 0, it follows from the above orthogonality relations that 
L(x̄) − v e = 0, i.e., L(x̄) = v e. Similarly, when x̄ > 0, we have LT (ȳ) = v e. Finally, 
when V is a Euclidean Jordan algebra, the operator commutativity relations follow from 
[8, Proposition 6], where it is shown that when 0 ≤ x ⊥ y ≥ 0, the elements x and y
operator commute. (Recall that now, e is the unit element in V .) �
Remarks. In the classical case (for the algebra V = Rn), optimal strategies (operator) 
commute. This may fail in the general case, see the numerical example given in Section 7.



450 M.S. Gowda, G. Ravindran / Linear Algebra and its Applications 469 (2015) 440–463
Proposition 1. The following statements hold:

(1) If L is copositive, that is, 〈L(x), x〉 ≥ 0 for all x ≥ 0, then v(L) ≥ 0.
(2) If L ∈ Π(K), then v(L) ≥ 0.
(3) If L is monotone, that is, 〈L(x), x〉 ≥ 0 for all x ∈ V , then v(L) ≥ 0.
(4) If L is skew-symmetric, that is, 〈L(x), x〉 = 0 for all x, then v(L) = 0.
(5) v(L) > 0 if and only if L is an S-transformation on K.
(6) If V is a Euclidean Jordan algebra and L is a P-transformation on V , then v(L) > 0.
(7) The value v(L), as a function of L, is continuous.
(8) Suppose L is invertible and L−1(K) ⊆ K. Then

v(L) = 1
〈L−1(e), e〉 = v

(
LT

)

and (x̄, ȳ) is an optimal strategy pair, where x̄ = v(L)L−1(e) and ȳ = v(L)(LT )−1(e).

Proof. We use Theorem 2.
(1) From LT (ȳ) ≤ v(L) e, we get 0 ≤ 〈L(ȳ), ȳ〉 ≤ v(L)〈e, ȳ〉 = v(L).
Items (2)–(4) follow from item (1).
(5) Suppose v(L) > 0. Then, using Theorem 2, L(x̄) ≥ v(L)e > 0. As x̄ ≥ 0, we can 

perturb x̄ to get an element d > 0 such that L(d) > 0. Thus L is an S-transformation. 
Conversely, suppose L is an S-transformation so that there is a d > 0 with L(d) > 0. 
From LT (ȳ) ≤ v(L) e, we see that 0 < 〈ȳ, L(d)〉 = 〈LT (ȳ), d〉 ≤ v(L)〈e, d〉. As 〈e, d〉 > 0, 
we get v(L) > 0.

(6) Suppose that V is a Euclidean Jordan algebra and L is a P-transformation on V . 
Then it follows from [8, Theorem 12], that for every q ∈ V , the linear complemen-
tarity problem LCP(L, K, q) (as defined in Theorem 1) has a solution; in particular, 
LCP(L, K, −e) has a solution so that for some x ≥ 0, L(x) − e ≥ 0. Perturbing x we get 
a d > 0 such that L(d) > 0. Thus, L is an S-transformation. By item (5), v(L) > 0.

The statement (7) follows easily from the continuity of L and compactness of Δ.
(8) As K is self-dual, the inclusion L−1(K) ⊆ K implies (LT )−1(K) ⊆ K. We also 

have L−1(K◦) ⊆ K◦ and (LT )−1(K◦) ⊆ K◦. Since e ∈ K◦, we have u := L−1 e > 0
and w := (LT )−1e > 0. As 〈u, e〉 = 〈w, e〉, putting α := 1

〈u,e〉 = 1
〈w,e〉 , we see that 

x̄ := αu = 1
〈u,e〉 u ∈ Δ and ȳ = αw = 1

〈w,e〉 w ∈ Δ. That these are optimal strategies 
and α is the value of L follows from Theorem 2. �
4. Completely mixed games

In what follows, we extend some results of Kaplansky [11] by modifying his argu-
ments.

First, we state a simple lemma.
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Lemma 1. Let 0 < ȳ ∈ Δ and u ∈ V .

(a) If u �= ȳ and 〈u, e〉 = 1, then there exist t > 0 and s < 0 in R such that (1 +t)ȳ−tu ∈
∂K and (1 + s)ȳ − su ∈ ∂K.

(b) If u �= 0 and 〈u, e〉 = 0, then there exist t > 0 and s < 0 in R such that ȳ− tu ∈ ∂K

and ȳ − su ∈ ∂K.

Proof. Suppose that u �= ȳ and 〈u, e〉 = 1. We consider the ray (1 +t)ȳ−tu as t varies over 
[0, ∞). If (1 + t)ȳ− tu ∈ K for all t ∈ [0, ∞), then ȳ− u = limt→∞

1
t ((1 + t)ȳ− tu) ∈ K. 

But then 0 ≤ 〈ȳ − u, e〉 = 1 − 1 = 0 implies that ȳ = u. As this cannot happen, the 
ray (1 + t)ȳ − tu, which starts in K◦ (for t = 0) must eventually go out of K. By 
considering the supremum of all t > 0 for which (1 + t)ȳ − tu ∈ K, we get a t > 0 for 
which (1 + t)ȳ − tu ∈ ∂K. Similarly, the existence of s is proved by considering the ray 
(1 + s)ȳ − su over (−∞, 0]. Statements in (b) are proved in a similar way. �
Theorem 4. Consider a linear transformation L on V with v(L) = 0. Suppose for every 
optimal strategy pair (x̄, ȳ) of L, we have ȳ > 0. Then the following statements hold:

(i) Ker(LT ) ∩ e⊥ = {0}.
(ii) dim(Ker(LT )) = 1 and dim(Ker(L)) = 1.
(iii) For every optimal strategy pair (x̄, ȳ), we have L(x̄) = 0 and LT (ȳ) = 0.
(iv) There is only one optimal strategy pair (x̄, ȳ); moreover, x̄ > 0 and ȳ > 0.

Proof. Take any optimal strategy pair (x̄, ȳ) of L. As v(L) = 0 and ȳ > 0, we have 
L(x̄) = 0 from the complementarity relations in Theorem 3. As x̄ �= 0, Ker(L) �= {0}. 
Since V is finite dimensional, Ker(LT ) �= {0}.

(i) Suppose LT (u) = 0 and 〈u, e〉 = 0. If u �= 0, by the above lemma, we can find a 
t ∈ R such that y := ȳ − tu ∈ ∂K. Since LT (y) = LT (ȳ) ≤ 0 and 〈y, e〉 = 1, we see that 
(x̄, y) is an optimal strategy pair with y ≯ 0. Hence u = 0 proving (i).

(ii) As Ker(LT ) �= {0} and Ker(LT ) ∩ e⊥ = {0}, we see that dim(Ker(LT )) = 1. This 
also yields dim(Ker(L)) = 1.

(iii) We already know that LT (ȳ) ≤ 0 = L(x̄). We now show that LT (ȳ) = 0. Let 
LT (u) = 0, where u �= 0. As 〈u, e〉 �= 0 (from (i)), we may assume that 〈u, e〉 = 1. We 
claim that u = ȳ and conclude LT (ȳ) = 0. Suppose u �= ȳ. Then from the above lemma, 
there exists t > 0 such that y = (1 + t)ȳ − tu ∈ ∂K. Clearly, for this y, LT (y) ≤ 0
and 〈y, e〉 = 1. Thus, (x̄, y) is an optimal strategy pair with y ≯ 0, contradicting our 
assumption. Hence, u = ȳ and LT (ȳ) = 0.

(iv) Suppose (z̄, w̄) is another optimal strategy pair. By item (iii), L(x̄) = L(z̄) = 0. 
Since dim(Ker(L)) = 1, z̄ must be a multiple of x̄. As 〈z̄, e〉 = 1 = 〈x̄, e〉, we see that 
this multiple is one and so z̄ = x̄. In a similar way, we can show that w̄ = ȳ. Thus, we 
have proved the uniqueness of the optimal pair.
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By assumption, ȳ > 0. We now show that x̄ > 0. Suppose, if possible, x̄ ∈ ∂K. As K
is self-dual, by the supporting hyperplane theorem [2, Theorem 2.7.5], we can find a unit 
vector c ∈ K such that 〈x̄, c〉 = 0. With c1 = c, let {c1, c2, . . . , cn} be an orthonormal 
basis in V , where n = dim(V ). Let A = [aij ] be the matrix representation of L with 
respect to this basis and adj(A) be the adjoint matrix of A. (Recall that adj(A) is the 
transpose of the cofactor matrix of A.) From the equation A adj(A) = det(A) I and the 
fact that det(A) = det(L) = 0, we see that A adj(A) = 0. This means that Ap = 0 for 
every column p of adj(A). Letting a = [a1, a2, . . . , an]T be the coordinate vector of x̄ with 
respect to the chosen basis, we have a1 = 〈x̄, c1〉 = 〈x̄, c〉 = 0. As L(x̄) = 0 implies Aa = 0
and dim(Ker A) = 1, we see that each column p of adj(A) is a multiple of a. Thus, the 
first coordinate of any such p is zero, which implies that the first row of adj(A), namely, 
[A11, A21, . . . , An1] is zero. This shows that the matrix obtained by deleting the first row 
of AT has rank less than n − 1. Consequently, this (n − 1) × n matrix will have at least 
two independent coordinate vectors in its kernel. As one of these vectors can be taken to 
be the coordinate vector of ȳ, we let b be the other coordinate vector so that AT b has all 
coordinates except the first one zero. (Note that the first coordinate of AT b is nonzero, 
else, AT b = 0 would imply that b is a multiple of the coordinate vector of ȳ with respect 
to the chosen basis.) Letting y =

∑n
1 bici, we see that 0 �= y �= ȳ and 〈LT (y), cj〉 =

(AT b)j = 0 for j = 2, 3, . . . , n. Hence, LT (y) = α c1 for some nonzero α ∈ R. Now, by 
the above lemma, depending on whether 〈y, e〉 is nonzero (in which case, we may assume 
〈y, e〉 = 1) or zero, we form w = (1 + t)ȳ− ty or w = ȳ− ty for an appropriate t (positive 
or negative to make t α > 0) with w ∈ ∂K, 〈w, e〉 = 1, and LT (w) = −tαc1 ≤ 0. This 
means that we have a new optimal strategy pair (x̄, w) for L contradicting the uniqueness 
of the optimal pair. Thus, x̄ > 0. This completes the proof. �

Recall that L is said to be completely mixed if for every optimal strategy pair (x̄, ȳ)
of L, we have x̄ > 0 and ȳ > 0.

Theorem 5. For a linear transformation L on V , the following are equivalent:

(a) For every optimal strategy pair (x̄, ȳ) of L, ȳ > 0.
(b) L is completely mixed.

Moreover, when L is completely mixed, the following statements hold:

(i) v(LT ) = v(L).
(ii) LT is also completely mixed.
(iii) Ker(L) ∩ e⊥ = {0}.
(iv) v(L) = 0 if and only if L is not invertible. When v(L) = 0, dim Ker(L) = 1.
(v) v(L) �= 0 if and only if L is invertible. When L is invertible, v(L) = 1

〈L−1(e),e〉 .
(vi) L has a unique optimal strategy pair; If v(L) �= 0, it is given by (x̄, ȳ), where 

x̄ = v(L) L−1(e) and ȳ = v(L) (LT )−1(e).
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Proof. When v(L) = 0, the equivalence of (a) and (b) comes from the previous result. 
For v(L) �= 0, we work with L̃ := L −v(L)eeT . Then v(L̃) = 0 and as observed in remarks 
following Theorem 2, any optimal strategy pair (x̄, ȳ) of L is an optimal strategy pair of 
L̃ and conversely. Thus, in this case also, (a) and (b) are equivalent. Now assume that 
L is completely mixed and fix an optimal strategy pair (x̄, ȳ) of L.

(i) Since x̄ > 0 and ȳ > 0, from (6),

L(x̄) = v(L) e and LT (ȳ) = v(L) e.

Rewriting these as (LT )T (x̄) = v(L) e and (LT )(ȳ) = v(L) e, and using Theorem 2, we 
see that v(LT ) = v(L). This proves (i).

(ii) Let v := v(L) = v(LT ). Suppose (z̄, w̄) is an optimal pair for LT so that L(w̄) ≤
v e ≤ LT (z̄). Then, LT (z̄) − v e ≥ 0, and

0 ≤
〈
LT (z̄) − v e, x̄

〉
=

〈
z̄, L(x̄)

〉
− v = 〈z̄, v e〉 − v = 0.

(Note that x̄, ̄z ∈ Δ.) Since x̄ > 0, we must have LT (z̄) − v e = 0, that is, LT (z̄) = v e. 
Similarly, L(w̄) = v e. But this means that (w̄, ̄z) is an optimal pair for L; Since L is 
completely mixed, we must have w̄ > 0 and z̄ > 0. Thus, LT is completely mixed.

(iii) Suppose there is a nonzero u such that L(u) = 0 = 〈e, u〉. By the above lemma, 
we can find some real number t such that ū := x̄ − tu ∈ ∂K. Since 〈x̄ − tu, e〉 = 1 and 
L(ū) = v(L) e, it follows that (ū, ȳ) is also an optimal strategy pair, with ū ≯ 0. This 
cannot happen as L is completely mixed. Thus, Ker(L) ∩ e⊥ = {0}.

(iv) Suppose v(L) = 0. Then from the previous result, L is not invertible and 
dim(Ker(L)) = 1. Now suppose L is not invertible; let L(u) = 0 for some nonzero u. 
From item (iii), we may assume that 〈u, e〉 = 1. Then

LT (ȳ) = v e ⇒ v = v 〈e, u〉 =
〈
LT (ȳ), u

〉
=

〈
ȳ, L(u)

〉
= 0.

(v) From (iv) it follows that v(L) �= 0 if and only if L is invertible. Suppose that L is 
invertible. From L(x̄) = v e and LT (ȳ) = v e, we have

x̄ = L−1(v e) and ȳ =
(
LT

)−1(v e).

Taking the inner product of these expressions with e, we see that v = 1
〈L−1(e),e〉 �= 0.

(vi) When v(L) = 0, the uniqueness of the optimal strategy pair comes from the 
previous result. When v(L) �= 0, L is invertible and (as in the proof of item (v)), x̄ =
v(L) L−1(e) and ȳ = v(L) (LT )−1(e). �
Remark. We recall that (x̄, ȳ) is an optimal strategy pair for L if and only if (ȳ, ̄x) is an 
optimal strategy pair for −LT . Thus, in item (a) of the above theorem, one could replace 
the condition ȳ > 0 by the condition x̄ > 0 and get the completely mixed property of L.
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5. The value of a Z-transformation

The following extends the results of [11] and [14].

Theorem 6. Suppose L is a Z-transformation on K. Then v(L) > 0 if and only if L is 
positive stable (equivalently, an S-transformation). When v(L) > 0,

(i) L is completely mixed,
(ii) v(L) = 1

〈L−1(e),e〉 = v(LT ), and
(iii) (x̄, ȳ) is the unique optimal strategy pair, where x̄ := v(L) L−1(e) and ȳ :=

v(L) (LT )−1(e).

Proof. We have already observed in Proposition 1 that v(L) > 0 if and only if L is an
S-transformation. But, by Theorem 1, L is an S-transformation if and only if it is positive 
stable.

Thus, v(L) > 0 if and only if L is positive stable.
To see items (i)–(iii), assume that v = v(L) > 0. Then L is positive stable. By

Theorem 1, L−1 exists and L−1(K) ⊆ K. By continuity, L−1(K◦) ⊆ K◦. In particular, 
L−1(e) > 0. Now, let (x̄, ȳ) be any optimal strategy pair so that LT (ȳ) ≤ ve ≤ L(x̄). Then 
x̄ ≥ v L−1(e) > 0 as v > 0 and L−1(e) > 0. We now claim that ȳ > 0. (This comes from 
the previous Remark/Theorem, but we provide an alternative, perhaps, simpler proof.) 
Suppose, if possible, ȳ ∈ ∂K. As K is self-dual, by the supporting hyperplane theorem 
[2, Theorem 2.7.5], we can find 0 �= z ∈ K such that 〈z, ȳ〉 = 0. By the Z-property of L, 
we have 〈z, LT (ȳ)〉 = 〈L(z), ȳ〉 ≤ 0. However, as x̄ > 0, by (6), LT (ȳ) = v e. Hence 
〈z, v e〉 ≤ 0. But this cannot happen as v > 0 and 0 ≤ z �= 0. Thus, ȳ > 0. This proves 
that L is completely mixed. Items (ii) and (iii) follow from Theorem 5. �
Remarks. The above theorem may not hold if v(L) < 0. For example, consider the
Z-matrix

A =

⎡
⎣ 1 −5 −15

−1 2 −3
−12 −15 1

⎤
⎦ .

Using Matlab and Theorem 2, we can verify the following: For A, v(A) = −6.1724
with optimal strategies x̄ = (0.55172, 0, 0.44828) and ȳ = (0.44828, 0, 0.55172). However, 
for AT , v(AT ) = −2.4666 with optimal strategies x̄ = (0, 0.86667, 0.13333) and ȳ =
(0.26667, 0, 0.73333).

Theorem 7. Suppose L is Lyapunov-like on V . Then

(a) v(L) > 0 if and only if L is positive stable.
(b) v(L) < 0 if and only if L is negative stable.
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(c) When v(L) �= 0, L is completely mixed.
(d) v(L) = v(LT ).

Proof. Recall that when L is Lyapunov-like, the transformations L, −L, and −LT

are Z-transformations. Thus, item (a) follows from the previous theorem. Also, when 
v(L) > 0, items (i)–(iii) of Theorem 6 hold. We now come to item (b). As −v(L) =
v(−LT ), v(L) < 0 if and only if v(−LT ) > 0. Since −LT is a Z-transformation, by the 
above theorem, v(L) < 0 if and only if −LT is positive stable, or equivalently (as L is a 
real linear transformation), L is negative stable.

(c) When v(L) �= 0, we can apply the above theorem to L or to −LT to see that L
or −LT is completely mixed. Now, from the remarks made after Theorem 2 we conclude 
that L is completely mixed in both cases.

(d) When v(L) �= 0, by item (c), L is completely mixed and hence v(L) = v(LT ). 
Since the case v(L) = 0 and v(LT ) �= 0 cannot arise (else, v(L) = v((LT )T ) �= 0), we see 
that v(L) = v(LT ) in all cases. �
Remark. Item (b) of the above corollary does not extend to Z-transformations. For 
example, consider V = R2 and the Z-matrix

A =
[

1 −2
−2 1

]
.

Since a Z-matrix has positive value if and only if it is a P-matrix, and A is not a P-matrix, 
we see that v(A) ≤ 0. The value cannot be zero, as there is no nonzero nonnegative vector 
x̄ satisfying 0 ≤ Ax̄. We conclude that v(A) < 0. Yet, A is not negative stable since the 
eigenvalues of A are 3 and −1.

We now consider Stein-like transformations. Schneider [15, Lemma 1] has shown that 
for L = I − Λ with Λ(K) ⊆ K,

L−1(K) ⊆ K if and only if ρ(Λ) < 1.

In view of Theorem 1 this means that:

For a Stein-like transformation L = I − Λ, L is positive stable if and only if Λ is 
Schur stable.

We will use this result to prove the following.

Theorem 8. For a Stein-like transformation L = I − Λ, the following hold:

(i) v(L) > 0 if and only if Λ is Schur stable.
(ii) v(L) < 0 if and only if Λ is inverse Schur stable (and Λ ∈ Aut(K)).



456 M.S. Gowda, G. Ravindran / Linear Algebra and its Applications 469 (2015) 440–463
(iii) When v(L) �= 0, L is completely mixed.
(iv) v(L) = v(LT ).

Proof. (i) As L is a Z-transformation, Theorem 6 shows that v(L) > 0 if and only if L
is positive stable, or equivalently, v(L) > 0 if and only if Λ is Schur stable.

(ii) Suppose v(L) < 0. Then v(−LT ) = −v(L) > 0. This means, by Proposition 1, 
that −LT is an S-transformation on K. Thus, there exists a d > 0 in V such that 
−LT (d) > 0. This, upon simplification, leads to ΛT (d) − d > 0 and to ΛT (d) > 0. As 
Λ ∈ Aut(K) and K is self-dual, we easily see that ΛT ∈ Aut(K). Since we also have 
ΛT (d) > 0, where d > 0, from Lemma 2.7 in [7], ΛT ∈ Aut(K). By the self-duality of K, 
Λ ∈ Aut(K). Now, (ΛT )−1(K◦) ⊆ K◦ and so ΛT (d) −d > 0 ⇒ d −(ΛT )−1(d) > 0. Putting 
L̃ := I−(ΛT )−1, we see that L̃ (which is a Z-transformation) is also an S-transformation. 
Thus, L̃ is positive stable, or equivalently, (ΛT )−1 is Schur stable. This means that Λ
is inverse Schur stable. To see the converse, assume that Λ is inverse Schur stable. By 
reversing some of the arguments above, we see that d −(ΛT )−1(d) > 0 for some d > 0. As 
Λ ∈ Aut(K), Λ(K) ⊆ K and, by the self-duality of K, ΛT (K) ⊆ K. In addition, by the 
invertibility of ΛT , we have ΛT (K◦) ⊆ K◦. Thus, d − (ΛT )−1(d) > 0 ⇒ ΛT (d) − d > 0. 
This means that −LT is an S-transformation. By Proposition 1, v(−LT ) > 0 and so 
v(L) = −v(−LT ) < 0. Thus we have (ii).

(iii) Now suppose that v(L) �= 0. When v(L) > 0, by Theorem 6, L is completely 
mixed; so suppose v(L) < 0, in which case, Λ is inverse Schur stable and Λ ∈ Aut(K). 
Let (x, y) be an optimal strategy pair for L so that LT (ȳ) ≤ v(L) e ≤ L(x̄). Now 
(ΛT )−1 ∈ Aut(K) and so

ȳ − ΛT (ȳ) ≤ v(L) e ⇒
(
ΛT

)−1(ȳ) − ȳ ≤ v(L)
(
ΛT

)−1(e).

This implies

ȳ ≥
(
ΛT

)−1(ȳ) − v(L)
(
ΛT

)−1(e) > 0

as v(L) < 0 and (ΛT )−1(e) > 0. By Theorem 3, L(x̄) = v(L) e. This gives x̄ − Λ(x̄) =
v(L) e and since Λ−1(K) ⊆ K, we have x̄ = Λ−1(x̄) − v(L) Λ−1(e) > 0. Thus, we have 
shown that x̄ > 0 and ȳ > 0. Hence L is completely mixed.

(iv) When v(L) �= 0, L is completely mixed and so v(L) = v(LT ). When v(L) = 0, we 
must have v(LT ) = 0; else, v(L) = v((LT )T ) �= 0. Thus, v(L) = v(LT ) in all cases. �
6. Value inequalities on product spaces

Our next set of results deals with the value of a Z-transformation defined on a 
product inner product space. Consider finite dimensional real inner product spaces Vi, 
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i = 1, 2, . . . , l. We let V = V1 ×V2 ×· · ·×Vl and define an inner product on V as follows: 
For any two elements x = (x1, x2, . . . , xl) and y = (y1, y2, . . . , yl) in V ,

〈x, y〉 =
l∑
1
〈xi, yi〉.

For each i, let Ki denote a self-dual cone in Vi and ei ∈ K◦
i . We let K = K1×K2×· · ·×Kl

and e = (e1, e2, . . . , el). Clearly, K is self-dual in V and e ∈ K◦. Let Pi : V → Vi, 
which takes x = (x1, x2, . . . , xl) to xi, denote the projection map on the ith coordinate 
space. Given a linear transformation L : V → V and indices i, j ∈ {1, 2, . . . , l}, we 
define subtransformations Lij : Vj → Vi by Lij(xj) = (Pi L)(0, 0, . . . , xj , 0, 0, . . . , 0). The 
subtransformations Lii, i = 1, 2, . . . , l, will be called principal subtransformations of L. 
For example, if V = V1 × V2, then L takes the block form

L =
[
A B

C D

]
, (7)

where A = L11, B = L12, C = L21, and D = L22.

Theorem 9. Suppose V = V1 × V2 × · · · × Vl and L is a Z-transformation on K1 ×
K2 × · · · ×Kl. Then each Lii is a Z-transformation on Ki. Moreover, if v(L) > 0, then 
v(Lii) > 0 for all i = 1, 2, . . . , l, and

1
v(L) ≥

l∑
1

1
v(Lii)

.

Proof. For simplicity, we assume that V = V1×V2 and L has the block form given in (7). 
It is easy to show that A is a Z-transformation on K1 and D is a Z-transformation on K2. 
Now suppose that v(L) > 0. Then by Theorem 6, L is an S-transformation on K. We 
now quote Theorem 2 in [16] to conclude that A and D are also S-transformations; 
by Theorem 6, v(A) > 0 and v(D) > 0. Now we prove the stated inequality. Let x =
(x1, x2) = L−1(e) so that from Theorem 6,

1
v(L) =

〈
L−1(e), e

〉
= 〈x, e〉 = 〈x1, e1〉 + 〈x2, e2〉. (8)

From the block representation of L, we have

Ax1 + Bx2 = e1 and Cx1 + Dx2 = e2.

As A and D are invertible (being positive stable), we can write

x1 = A−1e1 −A−1Bx2 and x2 = D−1e2 −D−1Cx1.
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Now, since A and D are Z-transformations which are also positive stable, from Theo-
rem 1, A−1(K1) ⊆ K1 and D−1(K2) ⊆ K2. Also, as L−1(K) ⊆ K, we see that x ∈ K

and so xi ∈ Ki, i = 1, 2. Using Proposition 2 in [16], which says that −B(K2) ⊆ K1 and 
−C(K1) ⊆ K2, we conclude that −A−1Bx2 ≥ 0 in V1 and −D−1Cx1 ≥ 0 in V2. Thus, 
x1 ≥ A−1e1 in V1 and x2 ≥ D−1e2 in V2. From these, we get

〈x1, e1〉 ≥
〈
A−1e1, e1

〉
= 1

v(A) and 〈x2, e2〉 ≥
〈
D−1e2, e2

〉
= 1

v(D) .

Now, from (8), we get the inequality

1
v(L) ≥ 1

v(A) + 1
v(D) .

The general inequality stated in the theorem is proved by induction. �
Remark. The above proof reveals an important special case: If the off-diagonal blocks B
and C are zero, then

1
v(L) = 1

v(A) + 1
v(D) .

In the general case, if all the off-diagonal subtransformations Lij (i �= j) are zero, then

1
v(L) =

l∑
1

1
v(Lii)

.

An expression of this form appears in [11].

Corollary 1. Suppose V = V1×V2×· · ·×Vl and L is Lyapunov-like on K1×K2×· · ·×Kl. 
Then the off-diagonal subtransformations Lij (for i �= j) are zero and the principal 
subtransformations Lii, i = 1, 2, . . . , l, are Lyapunov-like. Moreover, the following state-
ments hold:

(i) v(L) > 0 if and only if v(Lii) > 0 for all i, in which case,

1
v(L) =

l∑
1

1
v(Lii)

. (9)

(ii) v(L) < 0 if and only if v(Lii) < 0 for all i. In this case, (9) holds.
(iii) v(L) = 0 if and only if there exist i and j such that v(Lii) ≤ 0 and v(Ljj) ≥ 0.
(iv) When l ≥ 2, L is completely mixed if and only if v(L) �= 0.
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Proof. We first show that all off-diagonal subtransformations Lij (for i �= j) are zero. 
For simplicity, we let i = 2 and j = 1 and show that L21 = 0. Consider any 0 ≤ x1 ∈ V1. 
Then for any 0 ≤ y2 ∈ V2, we have 0 ≤ (x1, 0, 0, . . . , 0) ⊥ (0, y2, 0, . . . , 0) ≥ 0 in V . By 
the Lyapunov-like property of L, 〈L(x1, 0, . . . , 0), (0, y2, 0, . . . , 0)〉 = 0. As this equality 
holds for all y2 ∈ K2 and K2 −K2 = V2, it also holds for all y2 ∈ V2. It follows that the 
second component of L(x1, 0, . . . , 0) is zero. This proves that L21(x1) = P2 L(x1, 0) = 0. 
Since x1 is an arbitrary element of K1 and K1 − K1 = V1, we see that L21 = 0. In a 
similar way, we show that all off-diagonal subtransformations of L are zero. This shows 
that for any x = (x1, x2, . . . , xl),

L(x) =
(
L11(x1), L22(x2), . . . , Lll(xl)

)
. (10)

Now, the verification that each Lii is Lyapunov-like on Vi is easy and will be omitted.
(i) Suppose that v(L) > 0. Then, by Theorem 6, L is an S-transformation: there 

exists d = (d1, d2, . . . , dl) > 0 such that L(d) > 0. This means that di > 0 and 
Lii(di) > 0 for i = 1, 2, . . . , l. We see that each (Lyapunov-like transformation) Lii is also 
an S-transformation. Thus, v(Lii) > 0 for all i by Theorem 6. Conversely, if v(Lii) > 0
for all i, we can find di > 0 in Vi such that Lii(di) > 0 for i = 1, 2, . . . , l. Then, 
d = (d1, d2, . . . , dl) > 0 and L(d) > 0. This means that L is an S-transformation and so 
by Theorem 6, v(L) > 0.

The second part of (i) comes from the previous Remark.
(ii) This can be handled by considering −LT (which is a Lyapunov-like transformation) 

and using v(−LT ) = −v(L).
Item (iii) follows immediately from items (i) and (ii).
(iv) If v(L) �= 0, then L is completely mixed by Theorem 7. Now suppose l ≥ 2 and 

L is completely mixed. If possible, let v(L) = 0. Then by Theorem 5, dim(Ker(L)) = 1
and there exists a pair (x̄, ȳ) such that x̄ > 0, ȳ > 0, and L(x̄) = 0 = LT (ȳ). Writing 
x̄ = (x̄1, ̄x2, . . . , ̄xl), where each x̄i > 0 in Ki, we see from (10) that Lii(x̄i) = 0 for 
all i. This implies that for each i = 1, 2, . . . , l, the (nonzero) vector (0, 0, . . . , ̄xi, 0, . . . , 0)
belongs to Ker(L). As these vectors are linearly independent, we see that dim(Ker(L)) ≥
l ≥ 2, contradicting the fact that dim(Ker(L)) = 1. Thus, v(L) �= 0 and the proof is 
complete. �

Our next result deals with the value of a Schur complement. To describe this, consider 
a linear transformation L defined on V = V1×V2 and let L be given in the block form (7). 
If A is invertible, we define the Schur complement of L with respect to A by:

L/A := D − CA−1B.

Theorem 10. Suppose L is a Z-transformation on V = K1 × K2. If v(L) > 0, then 
v(A) > 0 and v(L/A) > 0, and moreover,

1 ≥ 1 + 1
.

v(L) v(A) v(L/A)
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Proof. Suppose that v(L) > 0. Then by Theorem 6, L is an S-transformation. By Theo-
rem 2 in [16], A is a Z- and S-transformation on K1 and L/A is a Z- and S-transformation 
on K2. Thus, by Theorem 6, v(A) > 0 and v(L/A) > 0. Now to prove the stated in-
equality. Let x = (x1, x2) = L−1(e) so that L(x) = e. From the block form of L,

Ax1 + Bx2 = e1 and Cx1 + Dx2 = e2.

As A is invertible (being positive stable), x1 = A−1e1 − A−1Bx2. Putting this in the 
second equation above and simplifying, we get

x2 = (L/A)−1e2 − (L/A)−1CA−1e1.

Applying Theorem 1 to A and L/A, we get

A−1(K1) ⊆ K1 and (L/A)−1(K2) ⊆ K2.

From Proposition 2 in [16], we also have −B(K2) ⊆ K1 and −C(K1) ⊆ K2. Thus, 
−A−1Bx2 ≥ 0 in V1 and −(L/A)−1CA−1e1 ≥ 0 in V2. Hence

x1 ≥ A−1e1 and x2 ≥ (L/A)−1e2.

Using (8), we get 〈L−1e, e〉 = 〈x1, e1〉 + 〈x2, e2〉 ≥ 〈A−1e1, e1〉 + 〈(L/A)−1e2, e2〉, and

1
v(L) ≥ 1

v(A) + 1
v(L/A) .

This completes the proof. �
7. Value computations for LA and SA

In this section, we describe/compute the values of LA and SA on Sn. Recall that 
objects of Sn

+ are (symmetric and) positive semidefinite, while those in its interior are 
positive definite. We use capital letters for objects/matrices in Sn and continue to write 
X ≥ 0 (X > 0) for matrices in Sn

+ (respectively, (Sn
+)◦).

For any n ×n real matrix A, consider the Lyapunov transformation LA on Sn defined 
in (4). We have already observed that this is a Lyapunov-like transformation on Sn. In 
view of the properties of LA stated in Section 2.3 and Theorem 7, we have the following 
result.

Theorem 11. For LA, the following statements hold:

(i) v(LA) > 0 if and only if A is positive stable.
(ii) v(LA) < 0 if and only if A is negative stable.
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(iii) When v(LA) �= 0, LA is completely mixed.
(iv) v(LA) = v(LAT ).

Now we compute v(LA). Assume that A is either positive stable or negative stable. 
(In the other case, v(LA) = 0.) Then by Theorem 7,

v(LA) = 1
〈(LA)−1(I), I〉 .

Let X := (LA)−1(I) so that AX+XAT = I. Note that either X is positive definite (when 
A is positive stable) or negative definite (when A is negative stable). Let X = UDUT , 
where U is an orthogonal matrix and D is a diagonal matrix with all positive/negative 
entries. Then AX +XAT = I becomes BD+DBT = I, where B := UTAU . Comparing 
the diagonal entries in BD + DBT and I, we get 2dibii = 1 for all i = 1, 2, . . . , n. Now

〈X, I〉 = tr(X) = tr(D) =
n∑
1

di =
n∑
1

1
2bii

.

Thus,

v(LA) = 2∑n
1

1
bii

.

As a further illustration of positive stable case, let

A =
[

0 1
−1 1

]
.

Then, A is positive stable and LA(X) = I, (LA)T (Y ) = I have solutions

X =
[ 3

2
1
2

1
2 1

]
and Y =

[ 3
2 −1

2
−1

2 1

]
.

We see that v(LA) = 1
tr(X) = 2

5 and

X = v(LA)X and Y = v(LA)Y

are optimal strategies. Note that these two optimal strategies do not (operator) commute.
For any n × n real matrix A, consider the Stein transformation SA on Sn, SA(X) =

X − AXAT . The following result comes from Theorem 8 and the equivalent properties 
of SA stated in Section 2.3.

Theorem 12. For SA, the following statements hold:

(i) v(SA) > 0 if and only if A is Schur stable.
(ii) v(SA) < 0 if and only if A is inverse Schur stable.
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(iii) When v(SA) �= 0, SA is completely mixed.
(iv) v(SA) = v(SAT ).

We now compute v(SA) when A is Schur stable. Since 1
v(SA) = 〈X, I〉, where 

X = (SA)−1(I), we proceed as follows. We solve the equation X − AXAT = I for a 
positive definite X, write X = UDUT with a diagonal matrix D and an orthogonal 
matrix U , and define B := UTAU . Then D − BDBT = I and D is a diagonal matrix 
with diagonal (vector) d > 0. By considering the diagonals in D − BDBT and I, we 
see that (I −B ◦B)d = e, where B ◦ B is the Schur (or Hadamard) product of B with 
itself, and e is the vector of ones in Rn. Writing M = I − B ◦ B, we see that M is a
Z-matrix with Md > 0. Hence M is a positive stable matrix and 1

v(M) = 〈d, e〉 in Rn. 
But 〈d, e〉 = 〈D, I〉 = 〈X, I〉 = 1

v(SA) . Thus, v(SA) = v(M).

8. Concluding remarks

In this paper, we defined the concept of value of a linear transformation relative to 
a self-dual cone. While we have extended some classical results to this general setting, 
many interesting problems/issues arise for further study and exploration, such as the 
dependence of value on the chosen point e in K◦ and the concept of value of a linear 
transformation L from one inner product space (or one self-dual cone) to another. We 
end this paper with an open problem.

• We noted in Proposition 1, item (6), that the value of a P-transformation is posi-
tive. In the classical setting, the converse is known to hold for Z-matrices as every 
positive stable Z-matrix is a P-matrix, see [1]. Whether such a result holds in the 
general situation is an open problem. We state this as a Conjecture: If the value of 
a Z-transformation on a Euclidean Jordan algebra is positive (that is, the transfor-
mation is positive stable), then it is a P-transformation. We remark that the answer 
is ‘yes’ for a Lyapunov-like transformation, see [10].
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