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A linear transformation L defined on afinite dimensional real Hilbert

space is said to be a Z-transformation on a proper cone K if

x ∈ K, y ∈ K∗, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0,

where K∗ is the dual of K . Examples of such transformations include

Z-matrices on Rn+, Lyapunov and Stein transformations on the semi-

definite cone. For a Z-transformation L,

τ(L) := min{Re(λ) : λ ∈ σ(L)}

is an eigenvalue of L with a corresponding eigenvector in K . In this

article, when K is a product cone, we relate the Z-property/positive

stable property/minimum real eigenvalue of L with those of a sub-

transformation of L and its Schur complement.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider a finite dimensional real inner product space H, a proper cone K in H, and a linear trans-

formation L on H. We say that L has the Z-property on K , or that it is a Z-transformation on K , and

write L ∈ Z(K) if

x ∈ K, y ∈ K∗, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0,
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where K∗ denotes the dual of K . If both L and −L are in Z(K), we say that L is a Lyapunov-like trans-

formation. Z-transformations – the negatives of which are called cross-positive matrices in [18] and

exponentially K-nonnegativematrices in [2] – are generalizations of Z-matrices. Such transformations

have appeared in numerous studies, particularly in connection with dynamical systems [21,22,2,13],

complementarity problems [7,10], optimization [8], and Lie algebras of cone automorphism groups

[11]. They also have properties similar to those of Z-matrices [21,7,1]. Here are some equivalent prop-

erties:

Theorem 1. Suppose L is a Z-transformation on K. Then the following are equivalent:

(1) There exists a d ∈ K◦ such that L(d) ∈ K◦, where K◦ denotes the interior of K.

(2) L is invertible with L−1(K) ⊆ K.

(3) L is positive stable, that is, the real part of any eigenvalue of L is positive.

(4) The dynamical system dx
dt

+ L(x) = 0 is asymptotically stable, that is, every trajectory of the system

from any starting point converges to the origin as t → ∞.

(5) L + tI is invertible for all t ∈ [0, ∞).
(6) All real eigenvalues of L are positive.

(7) There is an e ∈ (K∗)◦ such that LT (e) ∈ (K∗)◦.
(8) The implication [x ∈ K, −L(x) ∈ K] ⇒ x = 0 holds.

(9) For any q ∈ H, the (cone) linear complementarity problem LCP(L, K, q) has a solution.

Moreover, when H = Rn and K = Rn+, the above properties (for a Z-matrix) are further equivalent to

(10) L is a P-matrix, that is, x ∗ L(x) � 0 ⇒ x = 0, where x ∗ y refers to the componentwise product

of two vectors.

(11) All principal minors of L are positive.

(12) L is a nonsingular M-matrix, that is, L is of the form L = rI − B, where B is a nonnegative matrix

whose spectral radius is less than r.

(13) For any q ∈ Rn, the linear complementarity problem LCP(L, Rn+, q) has a unique solution.

Given L ∈ Z(K), we let

τ(L) := min{Re(λ) : λ ∈ σ(L)},
where σ(L) denotes the spectrum of L. Schneider and Vidyasagar [18] have shown that τ(L) is an

eigenvalue of L with a corresponding eigenvector in K . As in matrix theory ([12], page 129), we call

τ(L), the ‘minimum eigenvalue of L’.

In thecontextofnonsingularM-matrices, various inequalitieshavebeendescribed for theminimum

eigenvalue [15,16,20,25]. Many of these inequalities are derived by exploiting properties (10)–(13)

given in the above theorem. Unlike Z-matrices which are always of the form

A = rI − B with r ∈ R and B(Rn+) ⊆ Rn+,

it turns out that on a general cone, not every Z-transformation (even if it satisfies any of the properties

(1) − (9)) can be written in the form L = rI − S, with S(K) ⊆ K and r ∈ R. Also, the concept of P-

property of a linear transformation is so far limited to symmetric cones in Euclidean Jordan algebras,

and even in that setting, the equivalence ofP-propertywith properties (1)−(9) is yet to be established
[10]. Thus, it becomes interesting and useful to derive inequalities for the minimum eigenvalue in the

general (proper cone) setting, and for symmetric cones in particular. We remark that symmetric cones

in Euclidean Jordan algebras form an important class of proper cones, and, in the last decade such

cones have become highly relevant in (conic) optimization [14] and complementarity problems [6,10].

To motivate and demonstrate the importance of Z and Lyapunov-like transformations that go beyond

Z-matrices and M-matrices, we cite two examples (more can be found in [7]).
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Example 1. In the Hilbert space Sn of all real symmetric n× nmatrices with the trace inner product,

let, for any A ∈ Rn×n,

LA(X) := AX + XAT (X ∈ Sn). (1)

LA is the Lyapunov transformation corresponding to A and its importance is well-known in the study

of linear continuous dynamical systems. LA is a Lypaunov-like transformation on the symmetric cone

Sn+ of all positive semidefinite matrices within Sn [7]. Its complementarity properties have been well

documented in the literature, see e.g., [5]. It turns out that unless A is a multiple of the Identity matrix,

LA can never be written in the form L = rI − S, where S(Sn+) ⊆ Sn+ and r ∈ R (see Section 3).

Example 2. In the Hilbert space Sn, let, for any A ∈ Rn×n,

SA(X) := X − AXAT (X ∈ Sn). (2)

SA is the Stein transformation corresponding to A and it appears in the study of linear discrete dynam-

ical systems. It is a Z-transformation on the symmetric cone Sn+. For some of its complementarity

properties, see [4]. Note that SA = I − S, where S(Sn+) ⊆ Sn+.

Our main contributions are the following: Assuming the block form

L =
⎡
⎣ A B

C D

⎤
⎦

on a product space/cone, we show that under certain conditions, the Z and positive stability properties

of L are inherited by A and the Schur complement D − CA−1B and, additionally, relate the minimum

eigenvalues of these three transformations. We then specialize these results to Euclidean Jordan alge-

bras. Motivation for our work comes, partly, from the results in [24], where the inheritance of various

P-properties are discussed.

Here is a brief outline of thepaper. In Section2,we collect necessary backgroundmaterial. In Section

3, we prove the existence of (positive stable) Z-transformations that are not of the form L = rI − S

with S(K) ⊆ K and r ∈ R. Section 4 shows that under certain conditions, the Z and Z ∩ S properties

are inherited by subtransformations and Schur complements. Section 5 deals with the computation

of the minimum eigenvalue in some specific instances. In Section 6, we prove minimum eigenvalue

inequalities. Finally, in Section 7, we specialize the previous results to Euclidean Jordan algebras.

2. Preliminaries

Throughout, we assume that H denotes a finite dimensional real Hilbert space and K denotes a

proper cone, that is, K is a closed convex pointed cone with nonempty interior. The interior of K is

denoted by K◦ and the dual of K is given by

K∗ := {y ∈ H : 〈y, x〉 � 0 ∀ x ∈ K}.
We use the notation x � 0 (x > 0) to mean x ∈ K (respectively, x ∈ K◦). Furthermore, we write x ⊥ y

when 〈x, y〉 = 0.
For a linear transformation L defined on H, we say that L has the S-property on K or that

L is an S − transformation on Kif there exists d > 0 such that L(d) > 0.

Similar to Z(K), the notation S(K) has an obvious meaning; we simply use the symbols Z and Swhen

the context is clear. In view of Theorem 1, for an L ∈ Z(K),
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L is positive stable if and only if L ∈ S(K).

We use the notation L � 0 if L(K) ⊆ K , and for two transformations L1 and L2, L1 � L2 or L2 � L1
if L1 − L2 � 0. The following is immediate:

L1 � L2 and L2 ∈ S ⇒ L1 ∈ S. (3)

Now, let H1 and H2 be two finite dimensional real inner product spaces with proper cones Ki ⊂ Hi,

i = 1, 2. On the product space H1 × H2, we assume that the inner product is the sum of the inner

products of the components. Then, K1 × K2 is proper in H1 × H2 and (K1 × K2)
∗ = K∗

1 × K∗
2 . Given a

linear transformation L on H1 × H2, we decompose L in the block form by writing

L =
⎡
⎣ A B

C D

⎤
⎦ , (4)

where any element in H1 × H2 is regarded as a column pair, A : W1 → W1, B : W2 → W1,

C : W1 → W2, and D : W2 → W2 are linear transformations. For i = 1, 2, we denote the Identity

transformation on Hi by Ii.

If A is invertible, we define the Schur complement of L with respect to A by

L/A := D − CA−1B

and the principal pivotal transform of L with respect to A by

L� :=
⎡
⎣ A−1 −A−1B

CA−1 D − CA−1B

⎤
⎦ .

It is easy to see that

L

⎡
⎣ x

y

⎤
⎦ =

⎡
⎣ u

v

⎤
⎦ ⇔ L�

⎡
⎣ u

y

⎤
⎦ =

⎡
⎣ x

v

⎤
⎦ .

We note that on K1 × K2, L has the S-property if and only if L� has the S-property.

All of our results are applicable to symmetric cones in Euclidean Jordan algebras. While [3] is our

main source, brief introductions to Euclidean Jordan algebras and symmetric cones can be found in [6]

and [19].

3. Transformations that are not of the form αI − S with S(K) ⊆ K

In [18], it is shown that L ∈ Z(K) if and only if

e−tL(K) ⊆ K ∀ t � 0 in R.

Thus, L = limt↓0
I−e−tL

t
= limk→∞(αk I − Sk), where αk > 0 and Sk is linear with Sk(K) ⊆ K for all

k = 1, 2, . . .. Example 6 given in [7] shows that a Lyapunov transformation LA on Sn+ need not be of

the form αI − S with α ∈ R and S(Sn+) ⊆ Sn+. (See Exercise 4.6, page 20 in [2] for a similar example

on the Jordan spin algebra). The following result explains why it is possible to construct examples of

this type.
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Proposition 1 ([8], Theorem4). Suppose thatH is a simple Euclidean Jordan algebra. If L is a Lyapunov-like

transformation on the symmetric cone K with L(K) ⊆ K, then L is a (nonnegative) multiple of the Identity

transformation.

Now, ifH is a simple Euclidean Jordan algebra (the algebra Sn is one such) and L is Lyapunov-like on

its symmetric conewith L = αI−S and S(K) ⊆ K , then applying the above result to the Lyapunov-like

transformation S = αI− L, we see that S, and hence, Lmust be amultiple of the Identity. In particular,

on a simple Euclidean Jordan algebra, Lyapunov-like transformationswhich are notmultiples of the Identity

can never be written in the form L = αI − S with S(K) ⊆ K. This is the case when H = Sn and L = LA
(see Example 1), where A ∈ Rn×n (n > 2) is not a multiple of the Identity matrix.

4. Inheritance of the Z-property by subtransformations and Schur complements

From now on, we assume that H = H1 × H2 and K = K1 × K2 as given in Section 2. We assume

that L is given by (4) and consider its Schur complement/pivotal transform when A is invertible.

Proposition 2. Suppose L is a Z-transformation on K1 × K2. Then the following hold:

(i) −B(K2) ⊆ K1 and −C(K1) ⊆ K2.

(ii) A is a Z-transformation on K1 and D is a Z-transformation on K2.

(iii) L/A has the Z-property on K2 when A has the S-property.

Proof. (i) Consider any x ∈ K2 and y ∈ K∗
1 . Then

x̄ =
⎡
⎣ 0

x

⎤
⎦ ∈ K1 × K2 and ȳ =

⎡
⎣ y

0

⎤
⎦ ∈ (K1 × K2)

∗.

Moreover, 〈x̄, ȳ〉 = 0. As L has the Z-property, 〈L(x̄), ȳ〉 � 0, which, upon simplification gives

〈Bx, y〉 � 0. As x is arbitrary in K2 and y is arbitrary in K∗
1 , we see that −B(K2) ⊆ K1. Similarly,

we have −C(K1) ⊆ K2.

(ii) Take u ∈ K1 and v ∈ K∗
1 with u ⊥ v. Then considering ū =

⎡
⎣ u

0

⎤
⎦ and v̄ =

⎡
⎣ v

0

⎤
⎦ in H1 × H2

and applying the Z-property of L, we get 〈L(ū), v̄〉 � 0. This leads to 〈Au, v〉 � 0, proving the

Z-property of A. The proof that D is a Z-transformation on K2 is similar.

(iii) Here we assume that A has the S-property. Since A has the Z-property by (ii), A is invertible and

A−1(K1) ⊆ K1 (see Theorem 1). From (i), CA−1B(K2) ⊆ K2. Now take u ∈ K2, v ∈ K∗
2 with

u ⊥ v. Then, by (ii), 〈Du, v〉 � 0 and, using (i), 〈CA−1Bu, v〉 � 0. Thus,

〈(L/A)u, v〉 = 〈(D − CA−1B)u, v〉 = 〈Du, v〉 − 〈CA−1Bu, v〉 � 0.

Hence, L/A has the Z-property on K2. �

Remarks. Consider the situationwhere L is assumed to be Lyapunov-like on the product cone K1×K2.

In this case, in the proof of Item (i) above, 〈Bx, y〉 = 0 for all x ∈ K1 and y ∈ K2. As the cones involved

are generating cones, this leads to B = 0. Similarly, C = 0. Thus, when L is Lyapunov-like on K1 × K2,

L will have only diagonal blocks which are Lyapunov-like on their respective cones.

Theorem 2. Suppose that L ∈ Z. Then L ∈ S if and only if A ∈ Z ∩ S and L/A ∈ Z ∩ S.
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Proof. Suppose that L ∈ S. Then there exist 0 < u ∈ H1 and 0 < v ∈ H2 such that L

⎡
⎣ u

v

⎤
⎦ > 0. This

implies that Au + Bv > 0 in H1. As −Bv ∈ K1 (from Item (i) in the previous result), we have Au >
−Bv � 0 in H1. This shows that A has the S-property and (along with the Z-property) A−1(K1) ⊆ K1.

Now, from Item (iii) of the previous result, L/Ahas the Z-property. To show that L/Ahas the S-property,

we proceed as follows. The S-property of L implies the S-property of the principal pivotal transform

L�. Thus, there exist 0 < u ∈ H1 and 0 < v ∈ H2 such that L�
⎡
⎣ u

v

⎤
⎦ > 0. This implies that

CA−1u+ (L/A)v > 0, which further implies, (L/A)v > −CA−1u � 0 as A−1(K1) ⊆ K1 and−C(K1) ⊆
K2. Thus, L/A has the S-property.

Now, for the ‘if’ part. Assume that A, L/A ∈ Z ∩ S. Then there exist 0 < u ∈ H1 and 0 < v ∈ H2 such

that Au > 0 and (L/A)v > 0. As A−1(K1) ⊆ K1, we must have A−1(K◦
1 ) ⊆ K◦

1 and so A−1u > 0. Now,

pick a large positive number λ such that CA−1u + λ(L/A)v > 0. As −B(v) ∈ K1 and A−1(K1) ⊆ K1,

we have A−1u − λA−1Bv > 0. Then

L�
⎡
⎣ u

λv

⎤
⎦ =

⎡
⎣ A−1u − λA−1Bv

CA−1u + λ(L/A)v

⎤
⎦ > 0.

Thus, L� has the S-property, and consequently, L has the S-property. �

Remarks. When H = Rn and K = Rn+, for a Z-matrix, S and P properties are equivalent (see Theorem

1). In this setting, the above result reads: A Z-matrix L is a P-matrix if and only if A and L/A are P-

matrices. Easy examples can be constructed to show that this is false without the Z-property. On a

Euclidean Jordan algebra, one defines the P-property via the following implication [6]:

x and L(x) operator commute, x ◦ L(x) � 0 ⇒ x = 0.

While the P-property always implies the S-property, the following two problems remain open:

• For a Z-transformation, does S imply the P-property?
• Suppose L (given in the block form) has the Z-property on a product Euclidean Jordan algebra. If

both A and L/A have the P-property, can we conclude that L has the P-property?

These questions have positive answers when L is Lyapunov-like, see [10] and the previous remark.

An interpretation. Consider the setting of the previous theorem. When L, given by (4), has the Z-

property on K = K1 × K2, all trajectories of the dynamical system

dz

dt
+ L(z) = 0, z(0) = z0 ∈ K

whichoriginate inK stay inK . (This isbecause, theZ-property isequivalent to the inclusione−tL(K) ⊆ K

for all t � 0.) If A is invertible, we get two related systems

dx

dt
+ Ax = 0 and

dy

dt
+ (L/A)(y) = 0.

Now, the above theorem says that all the trajectories of the system dz
dt

+ L(z) = 0, z(0) = z0 ∈ K

whichoriginate inK1×K2 stay inK1×K2 andconverge tozero if andonly if all trajectoriesof
dx
dt

+Ax = 0
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which originate in K1 stay in K1 and converge to zero and all trajectories of
dy

dt
+ (D − CA−1B)y = 0

which originate in K2 stay in K2 and converge to zero. Putting it in a different way:

When L ∈ Z, the system dz
dt

+ L(z) = 0 is asymptotically stable if and only if the systems dx
dt

+ Ax = 0

and
dy

dt
+ (D − CA−1B)y = 0 are asymptotically stable.

5. Minimum eigenvalue computations

Aswenotedearlier, onRn+, everyZ-transformation is of the form L = rI−B,whereB is anonnegative

matrix. In this case, τ(L) = r − ρ(B). We depart from this classical case, and provide the following

examples.

Example 3. Let H = Hn denote the set of all n × n complex Hermitian matrices with inner product

given by 〈X, Y〉 = trace(XY), where the trace of a matrix is the sum of all its diagonal elements (or

equivalently, the sum of all its eigenvalues). Let K = Hn+ denote the set of all positive semidefinite

matrices in Hn. For any A ∈ Cn×n, consider the Lyapunov transformation LA defined by

LA(X) := AX + XA∗,

where A∗ denotes the conjugate transpose of A. It is well known that LA is Lyapunov-like onHn+ and LA
is positive stable if and only if A is positive stable. (In view of the equivalence (1) ⇔ (3) in Theorem

1, this is Lyapunov’s Theorem.) Writing τ(A) := min Re σ(A), we see that for any real number r,

τ(A) > r ⇔ τ(A − rI) > 0 ⇔ τ(LA−rI) > 0 ⇔ τ(LA) > 2r.

Thus,

τ(LA) = 2 τ(A). (5)

A similar statement holds for LA defined on Sn, with A ∈ Rn×n.

Example 4. Let K be a proper cone in any finite dimensional real Hilbert space. For any real number r

and a linear transformation S on H with S(K) ⊆ K , consider L = rI − S. Then L is a Z-transformation

onH. By Krein–Rutman theorem, there is nonzero u ∈ K such that S(u) = ρ(S) u, see [1], page 6. Thus
ρ(S) = max Re σ(S) and consequently,

τ(L) = r − ρ(S).

Example 5. Let H = Hn and K = Hn+ as in Example 3. For any A ∈ Cn×n, consider the Stein

transformation defined by SA(X) := X − AXA∗. Since the eigenvalues of the transformation S : X �→
AXA∗, are of the form λμ, where λ, μ ∈ σ(A) ([17], page 14), we see that ρ(S) = ρ(A)2. Thus,

τ(SA) = 1 − ρ(A)2.

A similar statement holds for SA defined on Sn, with A ∈ Rn×n.

Example 6. Let (H, ◦, 〈·, ·〉) be a Euclidean Jordan algebra with x ◦ y and 〈x, y〉 denoting, respectively,
the Jordan product and the inner product in H. Let K denote the corresponding symmetric cone in

H. It is known, see [10], that every Lyapunov-like transformation L on K is of the form L = La + D,

where a ∈ H and La is defined by La(x) := a ◦ x and D is a derivation, i.e., it satisfies the condition
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D(x ◦ y) = D(x) ◦ y + x ◦ D(y). As D is skew-symmetric, that is, 〈D(x), x〉 = 0 for all x, we see that La
is the symmetric (=self-adjoint) part of L and D is the skew-symmetric part of L.

Since σ(La) ⊆
{

λ+μ
2

: λ, μ ∈ σ(a)
}
(with equality when H is simple, see [9]), we see that

τ(La) = min σ(a),

where σ(a) is the spectrum of awithin the algebra H.

Since D is Lyapunov-like, we have from ([18], Theorem 6), D(u) = τ(D) u for some nonzero u ∈ K .

Then 〈D(u), u〉 = 0 implies that

τ(D) = 0.

Example 7. Let K be a (general) proper cone and L ∈ Z ∩ S with respect to K . Then

τ(L) = (ρ(L−1))−1.

To see this, let ρ := ρ(L−1) and τ := τ(L). Since L ∈ Z ∩ S, L is positive stable (by Theorem 1). In this

case,

τ = min{Re(λ) : λ ∈ σ(L)} � min{|λ| : λ ∈ σ(L)} � τ,

where the last inequality comes from the fact that τ is a positive eigenvalue of L. Also,

ρ = max{|μ| : μ ∈ σ(L−1)} = max

{∣∣∣∣ 1
λ

∣∣∣∣ : λ ∈ σ(L)

}
.

Since this max is the reciprocal of min{|λ| : λ ∈ σ(L)}, we see that ρ = 1
τ
. This proves the required

equality.

6. Minimum eigenvalue inequalities

In this section, we present our minimum eigenvalue inequalities. We begin with a simple observa-

tion.

Proposition 3. If L ∈ Z and α = τ(L), then L − αI + εI ∈ Z ∩ S for all ε > 0.

Proof. With the given conditions on L, L − αI + εI has the Z-property and τ(L − αI + εI) = ε > 0.

Thus, L − αI + εI is positive stable, and by Theorem 1, has the S-property. �

Proposition 4. Suppose L given by (4) has the Z-property. Then τ(A) � τ(L).

Proof. Letα = τ(L). Then, by Proposition 3, L−αI+εI has the S-property for any ε > 0. By Theorem

2, A − αI1 + εI1 has the Z-property and the S-property; hence it is positive stable. This implies that

τ(A) − α + ε = τ(A − αI1 + εI1) > 0 for all ε > 0. Thus, τ(A) � α proving the result. �

Our next objective is to relate the minimum eigenvalues of L and its Schur complement. In prepa-

ration for this, we prove the following.

Proposition 5. Let L1, L2 ∈ Z such that L1 � L2. Then the following statements hold:

(a) τ(L1) � τ(L2).
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If, in addition, L2 ∈ S, then

(b) L
−1
2 � L

−1
1 .

Proof. (a) Let θ = τ(L2). Then by Proposition 3, L2−θ I+εI has the S-property. Since L1−θ I+εI �
L2 − θ I + εI, by (3), L1 − θ I + εI will have the S-property. Thus, L1 − θ I + εI is positive stable

and τ(L1) − θ + ε > 0. Since ε > 0 is arbitrary, it follows that τ(L1) � θ = τ(L2).

(b) Since L2 has the S-property and L1 � L2, L1 has the S-property by (3). Since L1 and L2 are in

Z∩ S, they are both invertible and, moreover, L
−1
1 (K) ⊆ K and L

−1
2 (K) ⊆ K . Thus, for any x ∈ K ,

L
−1
2 (x) − L

−1
1 (x) = L

−1
1 (L1 − L2)L

−1
2 (x) � 0. Hence, L

−1
2 � L

−1
1 . �

Corollary 1. Consider two linear transformations on H1 × H2 given in the block form:

L1 =
⎡
⎣ A1 B1

C1 D1

⎤
⎦ and L2 =

⎡
⎣ A2 B2

C2 D2

⎤
⎦ .

Suppose L1, L2 ∈ Z and Ł1 � L2. Then A1 � A2 and D1 � D2. If, in addition, A2 ∈ S, then L1/A1 � L2/A2.

Proof. From L1 � L2, it is easy to see that A1 � A2 and D1 � D2. Now assume that A2 is in S.

Then A1 ∈ S, A
−1
2 � A

−1
1 , and by Proposition 2, C2A

−1
2 B2 � C1A

−1
1 B1. Thus, L1/A1 − L2/A2 =

(D1 − D2) + (C2A
−1
2 B2 − C1A

−1
1 B1) � 0. �

We now compare the minimum eigenvalues of L and its Schur complement. Our proof is similar

to the one given by Smith [20] for matrices. We recall that I denotes the Identity transformation on

H1 × H2, while Ii denotes the Identity transformation on Hi for i = 1, 2.

Theorem 3. Suppose L given by (4) has the Z-property and A ∈ S. Then the following hold:

(i) If L ∈ S, then τ(L/A) � τ(L).
(ii) If τ(L/A) > τ(L), then L ∈ S.

Proof. By Proposition 2, L/A has the Z-property.

(i) Assume that L ∈ S and let α = τ(L). Then α > 0 and A, L/A ∈ Z ∩ S by Theorem 2. Since

τ(A) � τ(L) by Proposition 4, A − αI1 + εI1 is positive stable for ε > 0. Now, L − αI + εI is
positive stable (by Proposition 3) and has the Z-property; thus, (L − αI + εI)/(A − αI1 + εI1)
is positive stable and has the Z-property.

Since A − αI1 + εI1 � A for all small ε > 0, (A − αI1 + εI1)
−1 � A−1 by Proposition 5. Then

for all small ε > 0,

(L − αI + εI)/(A − αI1 + εI1) = D − αI2 + εI2 − C(A − αI1 + εI1)
−1B

� D − αI2 + εI2 − CA−1B

= (L/A) − αI2 + εI2.

This implies that (L/A)−αI2+εI2 has the S-property, and hence positive stable. Thus, τ(L/A) �
α − ε for all small ε > 0, and τ(L/A) � α.

(ii) Suppose, if possible, τ(L/A) > τ(L) and L does not have S-property. Since A ∈ Z ∩ S, we must

have τ(L/A) � 0. Else, τ(L/A) > 0 implies that L/A has the S-property, and by Theorem 2 L
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would have the S-property. Now, Let r = τ(L). To get a contradiction, we show that r is not an

eigenvalue of L. As r < τ(L/A) � 0, L/A − rI2 is positive stable, hence has the S-property. Now,

since A has the S-property and A − rI1 � A, A − rI1 has the S-property and (A − rI1)
−1 � A−1

by Proposition 5. Since L − rI has the Z-property, (L − rI)/(A − rI1) has the Z-property, and

(L − rI)/(A − rI1) = D − rI2 − C(A − rI1)
−1B � D − rI2 − CA−1B = L/A − rI2.

Note that Proposition 2 is used in proving the last inequality. Since L/A− rI2 has the S-property,

(L − rI)/(A − rI1) has the S-property, i.e., it is positive stable. So 0 < det(A − rI1) det((L −
rI)/(A−rI1)) = det(L−rI). This implies that r is not an eigenvalueof L leading to a contradiction.

Thus, the implication (ii) holds. �

Remarks. Suppose L, given by (4), has the Z-property and A ∈ S. When τ(L/A) = τ(L), Lmay or may

not belong to S. To see this, consider the following examples of 2× 2 Z-matrices (relative to R2+): First,

let L be the 2 × 2 Identity matrix. In this case, A = [1], L/A = [1], L ∈ S with τ(L) = τ(L/A).
Next, let

L =
⎡
⎣ 1 0

−1 0

⎤
⎦ .

Here A = [1], L/A = [0], and τ(L) = τ(L/A). Yet L �∈ S.

Remarks. In the above theorem, the condition that A has the S-property cannot be dropped. For

example, consider the Z-matrix L =
⎡
⎣ −1 −1

−1 0

⎤
⎦ . Then A = [−1] and L do not have the S-property

and τ(L) = −1−√
5

2
< 1 = τ(L/A).

7. Z-transformations on Euclidean Jordan algebras

In the previous sections, we dealt with the Z and S properties of linear transformations defined over

product spaces/cones. In this section,we specialize our results to Euclidean Jordan algebras/symmetric

cones.

Let V be any Euclidean Jordan algebra of rank r, K be the corresponding symmetric cone and e

denote the unit element in V . Given any nonzero idempotent c in V , we consider the subalgebras

V1 := V(c, 1) := {x ∈ V : x ◦ c = x} and V0 := V(c, 0) :== {x ∈ V : x ◦ c = 0}.

We also let

V 1
2

:= V

(
c,

1

2

)
:=

{
x ∈ V : x ◦ c = 1

2
x

}
.

Then the following (orthogonal) Peirce decomposition holds [3]:

V = V1 + V0 + V 1
2
.
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Now, given any linear transformation L on V , using the above decomposition, we write L in the block

form

L =

⎡
⎢⎢⎢⎣

A B C

D E F

G H J

⎤
⎥⎥⎥⎦ , (6)

where the blocks are linear transformations acting on appropriate spaces. (Note that when c = e, all

blocks except A will be vacuous.) Corresponding to the algebras V1 and V0, we let K1 and K0 denote

their respective symmetric cones. Let Pc denote the quadratic representation corresponding to c, that

is, Pc(x) := 2c ◦ (c ◦ x) − c2 ◦ x. Then, LV(c,1) := PcL : V(c, 1) → V(c, 1) is, by definition, a principal

subtransformation of L. We note that Pc is nothing but the (orthogonal) projection of V onto V(c, 1)
and LV(c,1) is the transformation A defined in the block form of L above.

Now suppose that L has the Z-property on the symmetric cone of V . By abuse of language, we say

that L has the Z-property on V . Since the symmetric cones of V1 and V0 are subsets of K (actually they

are faces of K), it follows that

If L has the Z-property on V , then LV(c,1) has the Z-property on V(c, 1).
A natural question is the following: Do principal subtransformations (defined above) inherit the

Z ∩ S-property? When V = Rn, the answer is affirmative as S and P properties are equivalent for a

Z-matrix [1] and these three properties are inherited by principal submatrices. However, this is not

true on a general Euclidean Jordan algebra as the following example shows. Let

A =
⎡
⎣ 0 −1

1 1

⎤
⎦ and E1 =

⎡
⎣ 1 0

0 0

⎤
⎦ .

For the above A, consider the Lyapunov transformation LA (defined by (1)) on V = S2. As A is positive

stable, LA is also positive stable; hence LA ∈ Z ∩ S on S2+. Now, the principal subtransformation T of

LA defined on V(E1, 1) = R E1 is the zero transformation as it takes λ E1 to (LA(λ E1))11 = 0. Hence,

this principal subtransformation T cannot have the S-property, proving that the S-property need not

be inherited by principal subtransformations. (Note that τ(T) = 0, while τ(L) > 0 in contrast to

Proposition 4 which deals with the Z-property on a product cone.) However, as we see below, some

principal subtransformation inherits the S-property.

Theorem 4. Suppose L has the Z∩S-property on V. Then there exists a Jordan frame {e1, e2, . . . , er} such
that for any 1 � k � r with c = e1 + e2 + · · · + ek, the block decomposition of L given by (6) has the

following property: The transformation

M :=
⎡
⎣ A B

D E

⎤
⎦ : V1 × V0 → V1 × V0

has the Z ∩ S-property on K1 × K0. Consequently, A has the Z ∩ S-property on K1 and E − DA−1B has the

Z ∩ S-property on K0.

Proof. Let d ∈ V with d > 0 and L(d) > 0. Corresponding to d, there exists a Jordan frame

{e1, e2, . . . , er} such that

d = d1e1 + d2e2 + · · · + drer



J. Tao, M.S. Gowda / Linear Algebra and its Applications 438 (2013) 3476–3489 3487

is the spectral decomposition of d. Note that di > 0 for all i. Fix k such that 1 � k � r and let

c = e1 + e2 + · · · + ek . Corresponding to c, we define spaces V1, V0, and V 1
2
and the block form of L

given by (6). Clearly,

M :=
⎡
⎣ A B

D E

⎤
⎦ : V1 × V0 → V1 × V0.

We now proceed to show that M has the specified properties. When k = r, V1 = V and all blocks of

L except A become vacuous. In this case, A = M = L and the result is clearly true. We assume that

1 � k < r. Let 0 � x ⊥ z � 0 in V1 and 0 � y ⊥ w � 0 in V0. Then 0 � [x, 0, 0]T ⊥ [z, 0, 0]T � 0

in V . Using the Z-property of L, we get 〈Ax, z〉 � 0. Also, from 0 � [x, 0, 0]T ⊥ [0,w, 0]T � 0 in V ,

we get 〈Dx,w〉 � 0. Similarly, we get 〈By, z〉 � 0 and 〈Ey,w〉 � 0. Combining these, we see that

0 �

⎡
⎢⎢⎢⎣

x

y

0

⎤
⎥⎥⎥⎦ ⊥

⎡
⎢⎢⎢⎣

z

w

0

⎤
⎥⎥⎥⎦ � 0 ⇒

〈⎡
⎣ A B

D E

⎤
⎦

⎡
⎣ x

y

⎤
⎦ ,

⎡
⎣ z

w

⎤
⎦

〉
� 0.

Thus, M has the Z-property on K1 × K0. Now let u := d1e1 + d2e2 + · · · + dkek > 0 in K1 and

v := dk+1ek+1 + · · · + drer > 0 in K0. Then d = u + v + 0 in V = V1 + V0 + V 1
2
. This yields,

0 < L(d) = [Au + Bv,Du + Ev, Gu + Hv]T .
It follows that Au + Bv > 0 in K1 and Du + Ev > 0 in K0. Thus,

⎡
⎣ A B

D E

⎤
⎦

⎡
⎣ u

v

⎤
⎦ > 0

inK1×K0. This proves the S-property ofM onK1×K0. Nowwe can apply our earlier results to conclude

that A ∈ Z ∩ S on K1 and E − DA−1B has the Z ∩ S-property on K0. �

Given L ∈ Z(K) and a natural number k, 1 � k � r, we let

τk(L) := sup
{c∈V : c2=c, rank(c)=k}

τ(LV(c,1)).

Theorem 5. Let V be an Euclidean Jordan algebra of rank r and L ∈ Z(K). Then

τ(L) = τr(L) � τr−1(L) � · · · � τ2(L) � τ1(L) � ||L||.
Proof. Fix a natural number k with 1 � k � r. We first show that

τ(L) � τk(L). (7)

Let θ := τ(L) so that for any ε > 0, Lε := L − θ I + ε I ∈ Z ∩ S. Then, by the above theorem, there

exists an idempotent cε of rank k such that Aε := (Lε)V(cε,1) has the Z∩ S-property on V(cε, 1). Thus,

τ(Aε) > 0. Now, let A0
ε := LV(cε,1). Using the definition that LV(c,1) := PcL for any idempotent c,

we easily see that Aε = A0
ε − θ I1 + ε I1, where I1 is the Identity transformation on V(cε, 1). Since

τ(Aε) > 0, we have τ(A0
ε) − θ + ε > 0. This gives,
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τk(L) � τ(A0
ε) � θ − ε = τ(L) − ε

for all ε > 0. Since ε is arbitrary, we get (7).

We now proceed to prove the chain of inequalities.

(i) Let k = r. Then any idempotent c with rank r must be the unit element in V . In this case,

V(c, 1) = V and LV(c,1) = L. Hence τr(L) = τ(L).

(ii) Let k = 1. In this case, any idempotent of rank k must be primitive and V(c, 1) = R c and

LV(c,1)(x) = 〈L(c),c〉
||c||2 x for all x ∈ V(c, 1). Hence, by Cauchy–Schwarz inequality, τ(LV(c,1)) =

〈L(c),c〉
||c||2 � ||L||, where ||L|| denotes the operator norm of L on V . This gives, τ1(L) � ||L||.

(iii) Now let 1 � l � k � r. Consider an idempotent c of rank k in V . For simplicity, let

V1 := V(c, 1) and T := LV(c,1).

Applying (7) to T , we get

τ(T) � sup
{u∈V1:u2=u, rank(u)=l}

τ(TV1(u,1)).

We note that for u ∈ V1 with u2 = u, we have (see [23], Lemma 1 and the corresponding

Remark)

V1(u, 1) = V(u, 1).

Since c is the unit element in V(c, 1), c and u operator commute, and u ◦ c = u. Hence, on

V(u, 1), TV1(u,1) = PuT = PuPcL = Pu◦cL = PuL = LV(u,1), and so,

τ(T) � sup
{u∈V1:u2=u, rank(u)=l}

τ(TV1(u,1)) � sup
{u∈V :u2=u, rank(u)=l}

τ(LV(u,1)) = τl(L).

This gives τ(LV(c,1)) � τl(L). Now taking the supremum over all idempotents c in V of rank k,

we get τk(L) � τl(K), proving the final part of the chain of inequalities. �

Acknowledgments

It is our pleasure to thank Roman Sznajder, Bowie State University, Maryland, for stimulating dis-

cussions. Our Theorem 2 was inspired by results in [24].

References

[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Publications, Philadelphia, 1994.
[2] A. Berman, M. Neumann, R.J. Stern, Nonnegative Matrices in Dynamical Systems, Wiley-Interscience Publication, New York,

1989.
[3] J. Faraut, A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.

[4] M.S. Gowda, T. Parthasarathy, Complementarity forms of theorems of Lyapunov and Stein, and related results, Linear Algebra

Appl. 320 (2000) 131–144.
[5] M.S. Gowda, Y. Song, On semidefinite linear complementarity problems, Math. Program. A 88 (2000) 575–587.

[6] M.S. Gowda, R. Sznajder, J. Tao, SomeP-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl.
393 (2004) 203–232.



J. Tao, M.S. Gowda / Linear Algebra and its Applications 438 (2013) 3476–3489 3489

[7] M.S. Gowda, J. Tao, Z-transformations on proper and symmetric cones, Math. Program. B 117 (2009) 195–222.

[8] M.S. Gowda, J. Tao, On the bilinearity rank of a proper cone and Lyapunov-like transformations, Research Report TRGOW11-05,
Department of Mathematics and Statics, University of Maryland Baltimore Country, Baltimore, Maryland 21250, 2011.

[9] M.S. Gowda, J. Tao, M.M. Moldovan, Some inertia theorems in Euclidean Jordan algebras, Linear Algebra Appl. 430 (2009)
1992–2011.

[10] M.S. Gowda, J. Tao, G. Ravindran, On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras,

Linear Algebra Appl. 436 (2012) 2201–2209.
[11] J. Hilgert, K.H. Hoffman, J. Lawson, Lie Groups, Convex Cones, and Semigroups, Oxford Science Publications, Oxford, 1989.

[12] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[13] M. Moldovan, M.S. Gowda, On common linear/quadratic Lyapunov functions for switched linear systems, Nonlinear Analysis

and Variational Problems, Springer Optimization and its Applications, vol. 35, Springer, New York, 2010, pp. 415–429.
[14] Y. Nesterov, A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming, SIAM Publications, Philadelphia,

1994.
[15] J.M. Penã, Eigenvalue bounds for some classes of P-matrices, Numer. Linear Algebra Appl. 16 (2009) 871–882.

[16] G. Poole, T. Boullion, A Survey of M-matrices, SIAM Rev. 16 (1974) 419–427.

[17] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965) 11–17.
[18] H. Schneider, M. Vidyasagar, Cross-positive matrices, SIAM J. Numer. Anal. 7 (1970) 508–519.

[19] S.H. Schmieta, F. Alizadeh, Extension of primal–dual interior point algorithms to symmetric cones, Math. Program. A 96 (2003)
409–438.

[20] R.L. Smith, Some results on a partition of Z-matrices, Linear Algebra Appl. 223/224 (1995) 619–629.
[21] R.J. Stern, GeneralizedM-matrices, Linear Algebra Appl. 41 (1981) 201–208.

[22] R.J. Stern, M. Tsatsomeros, Extended M-matrices and subtangentiality, Linear Algebra Appl. 97 (1987) 1–11.

[23] R. Sznajder, M.S. Gowda, M.M. Moldovan, More results on Schur complements in Euclidean Jordan algebras, J. Global Optim.
53 (2012) 121–134.

[24] R. Sznajder,M.S. Gowda, J. Tao, On the inheritance of somecomplementarity properties by Schur complements, ResearchReport
TRGOW12-02, Department ofMathematics and Statics, University ofMaryland Baltimore Country, Baltimore,Maryland 21250,

2012.
[25] G.-X. Tian, T.-Z. Huang, Inequalities for the minimum eigenvalue of M-matrices, Electron. J. Linear Algebra 20 (2012) 291–302.


	Minimum eigenvalue inequalities forZ-transformations on proper and symmetric cones
	1 Introduction
	2 Preliminaries
	3 Transformations that are not of the form I-S with S(K)K
	4 Inheritance of the Z-property by subtransformations and Schur complements
	5 Minimum eigenvalue computations
	6 Minimum eigenvalue inequalities
	7 Z-transformations on Euclidean Jordan algebras
	Acknowledgments
	References


