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Abstract
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1 Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the (standard) linear complementarity problem

LCP(M, q) [5] is to find a vector x ∈ Rn such that

0 ≤ x ⊥Mx+ q ≥ 0,

where x ≥ 0 means that x belongs to the nonnegative orthant in Rn. In the complementarity

literature, numerous classes such as Q,GUS,R, etc., have been introduced specifically to study

the existence, uniqueness, stability, and computational issues. When M is written in the block

form

M =

[
A B

C D

]
with A invertible, the Schur complement of A in M is given by

M/A = D − CA−1B.

The Schur complement enjoys numerous properties and appears in various applications, see [4],

[13], [18] and the references therein. In particular, it is well known that if M is positive definite,

then so are A and M/A. In the setting of linear complementarity problems, it is known, see [5],

that if M is a P-matrix (which means that all principal minors of M are positive, or equivalently,

LCP(M, q) has a unique solution for all q), then A and M/A are also P-matrices. Recently, Chua

et al. [3] introduced the concept of uniform nonsingularity property (UNS-property for short) of a

(linear) transformation on a Euclidean Jordan algebra as a generalization of this P-matrix property.

The motivation for our paper comes from the question whether the UNS-property is inherited by

subtransformations and Schur complements. To elaborate, consider two finite dimensional real

Hilbert spaces V1 and V2 with corresponding proper cones K1 and K2; in particular, these could

be Euclidean Jordan algebras with their symmetric cones. Given a linear transformation L on the

product space V1×V2, we write L in the block form similar to the matrix case (given above), where

the blocks are now linear transformations. With A invertible, we define the Schur complement L/A

as in the matrix case. The question raised in this paper is the following: What complementarity

properties of L are inherited by A and L/A? In particular, is the UNS-property one such property

when both V1 and V2 are Euclidean Jordan algebras? We answer these by proving the inheritance of

various generalizations of the P-property, namely, the Cartesian P-property [6], [1], GUS-property

[10], and the UNS-property [3]. Some of these results are proved via the so-called principal pivotal

transform of L defined as in the matrix case.

The framework of the product spaces appears in various instances particularly in connection

with complementarity problems on product symmetric cones [1], [12], [17]. Here is an example from

conic optimization. Assume K1 ⊆ Rn and K2 ⊆ Rm are proper cones and consider the quadratic

problem
minimize 1

2x
TQx+ 〈c, x〉

subject to Ax ≥
K2

b

x ≥
K1

0
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where Q ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Here, z ≥
K

0 means that

z ∈ K. Under certain constraint qualifications, if x is a solution of the above problem, then there

exists y ∈ K2 (see [5], [6]) such that[
Q −AT

A 0

][
x

y

]
+

[
c

−b

]
=

[
u

v

]
with [

x

y

]
∈ K1 ×K2,

[
u

v

]
∈ K∗1 ×K∗2 , and

[
x

y

]
⊥

[
u

v

]
.

The linear transformation L =

[
Q −AT

A 0

]
acts on the cone K1×K2. In case of invertible matrix

Q, L/Q = AQ−1AT .

The organization of the paper is as follows. In the next section, we cover some basic material

including the definitions of Schur complement, principal pivotal transform, and all LCP concepts.

In Section 3, we consider some complementarity properties that are invariant under principal pivotal

transforms. Section 4 deals with the subtransformation inheritance properties, and finally in Section

5, we deal with those complementarity properties that are inherited by Schur complements.

2 Preliminaries

Let (V, 〈·, ·〉) be a finite dimensional real Hilbert space and K denote a proper convex cone, i.e., K

is a closed convex pointed cone with a nonempty interior. We use the notation x ≥ 0 (x > 0) when

x ∈ K (respectively, x ∈ K◦, the interior of K). Also, K∗ denotes the dual cone of K given by

K∗ := {x ∈ V : 〈x, y〉 ≥ 0 for all y ∈ K}.
Specializing, we (also) let (V, ◦, 〈·, ·〉) denote a Euclidean Jordan algebra of rank r and K :=

{x2 : x ∈ V } be its symmetric cone of squares [7], [10]. It is well known that any Euclidean Jordan

algebra is a product of simple Euclidean Jordan algebras and every simple algebra is isomorphic

to the Jordan spin algebra Ln or to the algebra of all n × n real/complex/quaternion Hermitian

matrices, or to the algebra of all 3 × 3 octonion Hermitian matrices. Given any a ∈ V , we let La

denote the corresponding Lyapunov transformation on V :

La(x) := a ◦ x.

We say that objects a and b in V operator commute if LaLb = LbLa. It is known that a and b

operator commute if and only if they have their spectral decompositions with respect to a common

Jordan frame. One sufficient condition for operator commutativity is: 0 ≤ a ⊥ b ≥ 0, see [10],

Proposition 6.

2.1 Linear transformations on product spaces

In what follows, we will focus on linear transformations defined on a product of two finite dimen-

sional real Hilbert spaces, and in particular, on the product of two Euclidean Jordan algebras. Let
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V = V1 × V2 be the product of two such spaces and consider a linear transformation L : V → V .

Then, L can be uniquely presented in a block form as

L =

[
A B

C D

]
, (1)

where entries of this “matrix” are linear operators acting in the following way:

A : V1 → V1, B : V2 → V1, C : V1 → V2, and D : V2 → V2. (2)

When A is invertible, we define the Schur complement of A in L by

L/A := D − CA−1B (3)

and the principal pivotal transform of L with respect to A by

L3 =

[
A−1 −A−1B
CA−1 L/A

]
. (4)

Note that [
y1
y2

]
= L3

[
x1
x2

]
+

[
q1
q2

]
⇐⇒

[
x1
y2

]
= L

[
y1
x2

]
+

[
−Aq1

q2 − Cq1

]
. (5)

In case when L and L/A are invertible, we obtain the known formula ([13]):

L−1 =

[
A−1 +A−1B(L/A)−1CA−1 −A−1B(L/A)−1

−(L/A)−1CA−1 (L/A)−1

]
. (6)

More information on principal pivotal transformations and a historical account can be found in

[16].

We assume that each of the spaces Vi (i = 1, 2) is equipped with a proper cone Ki. This way, we

have a natural proper (product) cone K = K1 ×K2 in V . Thus, the ordering in V by the cone K

is determined by the ordering of factor spaces Vi by the cones Ki, in the sense that[
x

y

]
≥
K

[
0

0

]
if and only if x ≥

K1

0 and y ≥
K2

0 .

When the context is clear, we will drop the explicit mentioning of the cone.

2.2 LCP Concepts

For a linear transformation L : V → V and a vector q ∈ V , the linear complementarity problem

LCP(L,K, q) is to find a vector x ∈ K such that y := L(x) + q ∈ K∗ and 〈x, y〉 = 0.

Given the space V = V1 × V2 and the cone K = K1 × K2, for a linear transformation L :

V → V of the form (1) and a vector [q1, q2]
T (which is the column vector with components q1 ∈ V1
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and q2 ∈ V2), the linear complementarity problem LCP(L,K1 × K2, [q1, q2]
T ) is to find a vector

[x1, x2]
T ∈ V such that

0 ≤
K1×K2

[
x1
x2

]
⊥

[
y1
y2

]
≥

K∗
1×K∗

2

0 , (7)

where [
y1
y2

]
= L

[
x1
x2

]
+

[
q1
q2

]
.

The solution set of LCP(L,K, q) is denoted by SOL(L,K, q), or (when L and K are fixed and the

context is clear) by SOL(q).

We remark that the complementarity problems of L and L3 are defined on different cones,

namely L on K1 × K2 and L3 on K∗1 × K2. While dealing with L and the corresponding cone

K1×K2, we abbreviate SOL(L,K1×K2, q) by SOL(L, q). Correspondingly, while dealing with L3

and the related cone K∗1 ×K2, we abbreviate SOL(L3,K∗1 ×K2, p) by SOL(L3, p).

Given a proper cone K in V , we say that a linear transformation L on V has the

(i) Q-property if for all q ∈ V , LCP(L,K, q) has a solution;

(ii) GUS-property if for all q ∈ V , LCP(L,K, q) has a unique solution;

(iii) Lipschitzian property if for all p, q ∈ V , such that SOL(p) 6= ∅ and SOL(q) 6= ∅, it holds that

SOL(p) ⊆ SOL(q) + c‖p− q‖B,

where B is the unit ball in V and c > 0 is a constant independent of p and q;

(iv) strict monotonicity property if 〈L(x), x〉 > 0 for all x 6= 0;

(v) Cartesian P-property if V = E1 × E2 × · · · × El and

max
1≤i≤l

〈Li(x), xi〉 > 0 ∀x 6= 0,

where Li(x) := (L(x))i for all i.

Now suppose that V is a Euclidean Jordan algebra and K denotes its symmetric cone. We say that

a linear transformation L defined on V has the

(a) cross-commutative property if for any q ∈ V and any two solutions x1 and x2 of LCP(L,K, q),

x1 operator commutes with y2 and x2 operator commutes with y1, where yi = L(xi) + q

(i = 1, 2).

(b) P-property if x and L(x) operator commute and x ◦ L(x) ≤ 0⇒ x = 0;
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(c) Uniform nonsingularity property (UNS) if there exists ∆ > 0 such that for any Jordan frame

{e1, e2, . . . , er} in V , any x ∈ V with its Peirce decomposition x =
∑

i≤j xij (with respect to

the given Jordan frame), and any r × r nonnegative, symmetric matrix D = [dij ],

‖L(x) +
∑
i≤j

dijxij‖ ≥ ∆‖x‖. (8)

The UNS-property was introduced in [2], see also [6], [1], and [3], where the following implications

were proved:

strict monotonicity ⇒ Cartesian P⇒ UNS⇒ GUS.

We use the notation L ∈ T(K) or L ∈ T to say that L has the T-property with respect to K.

Proposition 1 ([10], [11]) We have:

(a) strict monotonicity⇒ Lipschitz ∩GUS⇒ GUS⇒ Q,

(b) In the context of a Euclidean Jordan algebra, GUS⇔ cross-commutative ∩P, P⇒ Q.

3 Invariance under principal pivotal transformations

It is easy to see from classical matrix theory results that (strict) monotonicity is inherited by

principal pivotal transforms, principal subtransformations, and Schur complements. In this section,

we show that many of the complementarity properties are similarly inherited by principal pivotal

transforms.

Theorem 1 When T∈{Q, GUS, Cartesian P, Lipschitzian, P, cross-commutative} and A is

invertible, L has the T-property if and only if L3 has the T-property.

Proof. Since (L3)3 = L, it is enough to show that L ∈ T⇒ L3 ∈ T.

(1) Let T ∈ {Q,GUS}. Given [q1, q2]
T ∈ V , we have from (5),[

x1
x2

]
∈ SOL

(
L3,K∗1 ×K2,

[
q1
q2

])
⇐⇒

[
y1
x2

]
∈ SOL

(
L,K1 ×K2,

[
−Aq1

q2 − Cq1

])
, (9)

where [
y1
y2

]
= L3

[
x1
x2

]
+

[
q1
q2

]
.

We easily verify that if T has either the Q or GUS property, then L3 will also have the same

property.

(2) Let T = Cartesian P. For 1 ≤ m < l, we write V = E1 × · · · × El, with V1 = E1 × · · · × Em

and V2 = Em+1 × · · · × El. Let

0 6=

[
x

y

]
∈ V1 × V2 and L

[
x

y

]
=

[
u

v

]
.
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We know that max
1≤i≤m

〈ui, xi〉 > 0 or max
m+1≤j≤l

〈vj , yj〉 > 0. Since L3[u, y]T = [x, v]T , L3 has the

Cartesian P-property on V = E1 × · · · × Em × Em+1 × · · · × El.

(3) Let T = Lipschitzian. Fix p = [p1, p2]
T and q = [q1, q2]

T with SOL(L3, p) and SOL(L3, q)

nonempty. Let [
u1
u2

]
∈ SOL(L3, p) and L3

[
u1
u2

]
+

[
p1
p2

]
=

[
x1
x2

]
.

Then by (9), [
x1
u2

]
∈ SOL

(
L,

[
−Ap1

p2 − Cp1

])
.

From the Lipschitzian property of L, there exists a constant c and[
x̄1
ū2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])

such that ∥∥∥∥∥
[
x1
u2

]
−

[
x̄1
ū2

]∥∥∥∥∥ ≤ c
∥∥∥∥∥
[
−Ap1

p2 − Cp1

]
−

[
−Aq1

q2 − Cq1

]∥∥∥∥∥ ≤ c̄‖p− q‖,
where c depends on c and L.

Hence, ‖x1 − x̄1‖ ≤ c̄‖p− q‖ and ‖u2 − ū2‖ ≤ c̄‖p− q‖. By letting[
ū1
x̄2

]
= L

[
x̄1
ū2

]
+

[
−Aq1

q2 − Cq1

]
,

and using (5) and (9), we have

L3

[
ū1
ū2

]
+

[
q1
q2

]
=

[
x̄1
x̄2

]
, and

[
ū1
ū2

]
∈ SOL(L3, q).

Now, ∥∥∥∥∥
[
u1
u2

]
−

[
ū1
ū2

]∥∥∥∥∥ =

∥∥∥∥∥
[
A(x1 − x̄1) +B(u2 − ū2) +A(q1 − p1)

u2 − ū2

]∥∥∥∥∥ ≤ c′ ‖q − p‖,
where c′ is a positive constant, that depends on c and the blocks of L.

In the rest of the proof, we deal with Euclidean Jordan algebras.

(4) Let T = P. Let x = [x1, x2]
T and L3(x) = y = [y1, y2]

T operator commute and x ◦ y ≤ 0.

Then xi and yi operator commute for i = 1, 2. Thus, using (5) with q = 0, [x1, y2]
T = L[y1, x2]

T

operator commutes with [y1, x2]
T . Since L ∈ P, it follows that x = 0, proving the P-property of

L3.

(5) Let T = cross-commutative. Fix any [q1, q2]
T ∈ V .
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Suppose that [x1, x2]
T and [u1, u2]

T are two solutions to LCP
(
L3, [q1, q2]

T
)
, and let[

y1
y2

]
= L3

[
x1
x2

]
+

[
q1
q2

]
and

[
v1
v2

]
= L3

[
u1
u2

]
+

[
q1
q2

]
.

Now, using (9), we obtain[
y1
x2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])
and

[
v1
u2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])
,

which together with (5) and the cross-commutative property of L imply that

〈u1, y1〉 = 0, 〈v2, x2〉 = 0, 〈x1, v1〉 = 0, 〈y2, u2〉 = 0.

From [10], Proposition 6, these give the operator commutativity of various vectors and leads to the

verification of the cross-commutative property of L3. 2

4 Inheritance of complementarity properties by principal sub-

transformations

A property T is called a principal subtransformation inheritance property, if for any linear trans-

formation L given by (1), we have L ∈ T⇒ A ∈ T and D ∈ T.

Theorem 2 On a proper cone K1 ×K2, GUS and Cartesian P are principal subtransformation

inheritance properties.

Proof. (1) Let T = GUS. For any q ∈ V1, suppose that LCP(A, q) has two solutions x1 and x2.

Now, since K2 is proper, we can choose p ∈ V2 such that p+ Cx1 ≥ 0 and p+ Cx2 ≥ 0. Then

L

[
xi
0

]
+

[
q

p

]
=

[
Axi + q

Cxi + p

]
≥ 0

for i = 1, 2. Hence, [x1, 0]T and [x2, 0]T are solutions of LCP
(
L, [q, p]T

)
. Since L ∈ GUS, x1 = x2.

Thus, A ∈ GUS.

(2) Let T = Cartesian P. We assume that V = E1 × · · · ×El and max1≤i≤l〈Li(x), xi〉 > 0 ∀x 6= 0.

For 1 ≤ m < l, let V1 = E1 × · · · ×Em and V2 = Em+1 × · · · ×El. We will show that A defined on

V1 has the Cartesian P-property.

Let u 6= 0 in V1 and x := [u, 0]T 6= 0 in V . Since L ∈ Cartesian P, there is an index i ∈
{1, 2, . . . , l} such that

〈Li(x), xi〉 > 0.

As this index must be in {1, 2, . . . ,m}, we see that 〈Ai(u), ui〉 > 0. This completes the proof.
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Similarly, we can show that D ∈ T. 2

In the above result we showed that L ∈ GUS implies A,D ∈ GUS. While the converse is not

true in general, see the example given in the next section, the converse does hold when C = 0.

To see this, let L =

[
A B

0 D

]
with A,D ∈ GUS. We verify the GUS-property for L. Let

[p, q]T ∈ V1 × V2 be any element and, for i = 1, 2, [xi, yi]
T ∈ SOL

(
L,K1 ×K2, [p, q]

T
)
. Thus, we

get [
xi
yi

]
∈ K1 ×K2,

[
ui
vi

]
:= L

[
xi
yi

]
+

[
p

q

]
∈ K∗1 ×K∗2 , and

[
xi
yi

]
⊥

[
ui
vi

]
. (10)

From the second item in (10), we get

Axi +Byi + p = ui
Dyi + q = vi.

As yi ∈ K2, vi = Dyi + q ∈ K∗2 , and yi ⊥ vi, we see that y1, y2 ∈ SOL(D,K2, q). Hence, y1 = y2, as

D ∈ GUS. Now, we put ȳ := y1 = y2. Then for i = 1, 2,

Axi + (Bȳ + p) = ui ∈ K∗1 , and xi ⊥ ui,

so x1, x2 ∈ SOL(A,K1, Bȳ + p). As A ∈ GUS, x1 = x2. Finally, [x1, y1]
T = [x2, y2]

T ; hence

L ∈ GUS.

Theorem 3 On a symmetric cone of the form K1×K2, P, cross-commutative, and UNS properties

are inherited by principal subtransformations.

Proof. (a) Let T = P: Suppose that Ax1 and x1 operator commute and x1 ◦Ax1 ≤ 0. Then

L

[
x1
0

]
◦

[
x1
0

]
=

[
x1 ◦Ax1

0

]
≤ 0.

Since L ∈ P, and [Ax1, Cx1]
T and [x1, 0]T operator commute, we must have x1 = 0.

(b) Let T = Cross-commutative: For any q ∈ V1, suppose that LCP(A, q) has two solutions x1
and x2. Put y1 := Ax1 + q and y2 := Ax2 + q. Now choose p ∈ V2 such that Cx1 + p ≥ 0 and

Cx2 + p ≥ 0, so that for i = 1, 2,

L

[
xi
0

]
+

[
q

p

]
=

[
Axi + q

Cxi + p

]
=

[
yi

Cxi + p

]
≥ 0.

Thus, [x1, 0]T and [x2, 0]T are solutions of LCP
(
[q, p]T

)
. Since L has the cross-commutative prop-

erty, for i = 1, 2, [xi, 0]T operator commutes with [y3−i, Cx3−i + p]T , which implies the operator

commutativity of x1 and y2, and of x2 and y1. This shows the cross-commutative property for A.
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(c) Let T = UNS. It follows from Theorem 3.1 in [14] that every principal subtransformation of L

has the UNS-property. Since A can be treated as a principal subtransformation of L (see [14] for

definition and details on principal subtransformations) we get our claim. See the proof of Theorem

4 below for an alternate proof. 2

Remarks. The following example shows that the Lipschitzian property is not inherited by principal

subtransformations. Let M =

[
0 −1

−1 −1

]
, K1 = R+, K2 = R+. Then the set of all q’s, for which

LCP(M,R2
+, q) is solvable, is R2

+. Moreover, for q =

[
α

β

]
,

SOL(q) =



[
0

0

]
if β = 0,

{[
0

0

]
,

[
0

β

]}
if α > β > 0,

{[
0

0

]
,

[
β − α
α

]}
if β ≥ α > 0,

{[
x

0

]
, 0 ≤ x ≤ β

}
if α = 0 .

One easily checks, using the 1-norm, that M is a Lipschitzian transformation with c = 2 (for the

Euclidean norm, we may put c = 2
√

2). Consider now N = [0], a linear subtransformation of M .

We have SOL(N,R+, 0) = R+, while SOL(N,R+, 1) = {0}. Observe that the set of all q’s for which

SOL(N,R+, q) 6= ∅ is R+. Clearly the inclusion SOL(N,R+, 0) ⊆ SOL(N,R+, 1)+c|1−0|B cannot

hold as the right-hand side set is bounded, while SOL(N,R+, 0) is unbounded. This contradiction

shows that N is not Lipschitzian.

5 Inheritance of complementarity properties by Schur comple-

ments

The Schur complement L/A of a block linear transformation L is intimately related to its principal

pivot transformation L3. In this section, we study the preservation of certain complementarity

properties by Schur complements.

Theorem 4 Let T∈{GUS, Cartesian P, cross-commutative, P, UNS}. If L has the T-property

and A is invertible, then L/A has the T-property.

Proof.

(1) Suppose that L ∈ GUS. Then L3 ∈ GUS by Theorem 1. Hence, L/A ∈ GUS follows from

Theorem 2.
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(2) Suppose that L ∈ Cartesian P on V = E1×· · ·×El. Again, for 1 ≤ m < l, let V1 = E1×· · ·×Em

and V2 = Em+1 × · · · × El. We claim that L/A has the Cartesian P-property on Em+1 × · · · × El.

Observe that the Cartesian P-property of L implies that L is invertible and L−1 ∈ Cartesian P.

By (6),

L−1 =

[
∗ ∗
∗ (L/A)−1

]
.

As L−1 ∈ Cartesian P, by Theorem 2, (L/A)−1 ∈ Cartesian P, hence L/A ∈ Cartesian P on

Em+1 × · · · × El. This implies that L/A has the Cartesian P-property.

In the rest of the proof, we deal with Euclidean Jordan algebras.

(3) If L has the cross-commutativity property, then by Theorem 1, L3 has the cross-commutativity

property. By Theorem 3, L/A has the cross-commutativity property.

(4) Suppose that L ∈ P. Then L3 ∈ P by Theorem 1. Hence, L/A ∈ P by Theorem 3.

(5) Let L have the UNS-property on V1 × V2. Let {e1, e2, . . . , er} be a Jordan frame in V1 and

{f1, f2, . . . , fs} be a Jordan frame in V2. Then{[
e1
0

]
,

[
e1
0

]
, . . . ,

[
er
0

]
,

[
0

f1

]
,

[
0

f2

]
, . . . ,

[
0

fs

]}

is a Jordan frame in V1 × V2. For u ∈ V1 and v ∈ V2, write their Peirce decompositions u =
∑
uij

and v =
∑
vij . Since L has the UNS-property,∥∥∥∥∥

[
Au+Bv +

∑
αijuij

Cu+Dv +
∑
βijvij

]∥∥∥∥∥ ≥ ∆

∥∥∥∥∥
[
u

v

]∥∥∥∥∥ ∀αij , βij ≥ 0. (11)

In (11), we let u = −A−1Bv and αij = 0 for all i, j. Then

||(D − CA−1B)v +
∑

βijvij || ≥ ∆

∥∥∥∥∥
[
u

v

]∥∥∥∥∥ ≥ ∆||v||.

So L/A has the UNS-property. 2

As a by-product of the proof given in part (5) above, we can show that the subtransformation

A of an UNS transformation L also has the UNS-property. Here is the argument:

In (11), we fix u =
∑
uij and let w := −Cu =

∑
wij , βij := k (natural number) for all i, j, and

v := 1
kw. Then (11) becomes∥∥∥∥∥

[
Au+ 1

kBw +
∑
αijuij

Cu+ 1
kDw + w

]∥∥∥∥∥ ≥ ∆

∥∥∥∥∥
[

u
1
kw

]∥∥∥∥∥ ∀ k = 1, 2, . . . .

Letting k → ∞ and using Cu + w = 0, we get ||Au +
∑
αijuij || ≥ ∆||u||. Thus, A has the

UNS-property.

11



The example given below shows that the converse relations in the above theorem need not hold.

Example Consider on R2,

L =

[
1 2

−2 −3

]
.

Here, A = [1] ∈ P and L/A ∈ P, but L /∈ P. For symmetric matrices, however, the conditions

A ∈ P and L/A ∈ P imply L ∈ P (see [9]).

Remarks. In this paper, we considered some complementarity properties that are generalizations

of the P-property of a matrix. Another such property is the so-called Jordan P-property, defined

on a Euclidean Jordan algebra by the implication x◦L(x) ≤ 0⇒ x = 0, see [10]. That this property

is inherited by principal pivotal transformations, principal subtransformations, and Schur comple-

ments can be easily seen by modifying the proofs given for the P-property. Below, we consider

several complementarity properties and investigate whether they remain the same under principal

pivotal transformations and are inherited by principal subtransformations and Schur complements.

We follow the notation of Section 2.2.

(1) We say that L has the R0-property onK if SOL(L,K, 0) = {0}. WhenK = K1×K2, it follows

from (9) that the R0-property is inherited by principal pivotal transforms. However, the R0-

property need not be inherited by principal subtransformations and Schur complements. To

see this, consider the following two examples in the setting of K = R+ ×R+:[
0 1

−1 1

]
and

[
1 1

1 1

]
.

Clearly, the first matrix has the R0-property on R2
+, but has a principal submatrix which is

not R0; the second matrix also has the R0-property on R2
+, but has zero Schur complement.

(2) We say that L has the R-property on K if it has the R0-property and there is a d ∈ (K∗)◦ such

that SOL(L,K, d) = {0}. The following example shows that this property need not be inher-

ited by principal pivotal transforms, principal subtransformations, and Schur complements.

Let

L =

[
−1 2

−2 2

]
and L� =

[
−1 2

2 −2

]
.

It can be easily shown that on R2
+, L has the R-property with respect to d = [1 1]T .

However, the principal submatrix [−1] and its Schur complement, namely, [−2] do not have

the R-property with respect to any p > 0 in R. In addition, for any d = [p q]T > 0 in

R2
+, [p 0]T is a nonzero solution of LCP(L�, R2

+, d) implying that L� does not have the R-

property. We remark that the construction of L� was inspired by Theorem 6.6.4, [5] on the

so-called N-matrices.

(3) We say that L has the S-property on K if there exists a d ∈ K◦ with L(d) ∈ K◦. Now

suppose that K = K1 × K2 with K∗1 = K1. (Note that this condition holds when K is a

12



symmetric cone, or, more generally, a self-dual cone.) In this setting, if L has the S-property

on K1 × K2, then also L� has the S-property on K1 × K2. This follows from (5) with

q1 = 0, q2 = 0, x1, y1 ∈ (K1)
◦ and x2, y2 ∈ (K2)

◦.

It is easy to see that even in the standard LCP case, the S-property is not inherited by

principal subtransformations and Schur complements. For example, consider the following

two S-matrices on R2
+: [

0 1

1 1

]
and

[
1 1

1 1

]
.

In the first matrix, the S-property is not inherited by the principal submatrix [0]. In the

second matrix, the Schur complement of [1], namely, [0], does not have the S-property.

(4) The transformation L is said to be copositive on K if 〈L(x), x〉 ≥ 0 for all x ∈ K. It is easy

to see that this property is inherited by principal subtransformations. However, the following

example shows that even in the standard LCP setting, principal pivotal transforms and Schur

complements do not inherit the copositivity property. Let

L =

[
1 1

1 0

]
and L� =

[
1 −1

1 −1

]
.

Clearly, L is copositive on R2
+, but L� and the Schur complement of [1] are not copositive.

6 Inheritance of the UNS-property in simple Euclidean Jordan

algebras

In the previous sections, we dealt with the inheritance of some complementarity properties of

linear transformations defined over product spaces/algebras. What happens in the case of a simple

Euclidean Jordan algebra? Since it is known that P and GUS properties are not inherited by

principal subtransformations in simple algebras, see [8], we consider only the UNS property. Let

V be any simple Euclidean Jordan algebra of rank r. Given any idempotent c in V with 0 6= c 6= e,

where e is the unit element in V , we consider the subalgebras

V1 := {x ∈ V : x ◦ c = x} and V0 = {x ∈ V : x ◦ c = 0}.

We also let

V 1
2

:= {x ∈ V : x ◦ c =
1

2
x}.

Then the following (orthogonal) Peirce decomposition holds [7]:

V = V1 + V0 + V 1
2
.

Now, given any linear transformation L on V , using the above decomposition, we write L in the

block form

L =

 A B C

D E F

G H J

 , (12)

13



where the blocks are linear transformations acting on appropriate spaces.

Theorem 5 Suppose that L has the UNS-property on V . Given any idempotent c with 0 6= c 6= e,

consider the block decomposition of L given by (12). Then the transformation[
A B

D E

]
: V1 × V0 → V1 × V0

also has the UNS-property. Consequently, A has the UNS-property on V1 and the E − DA−1B
has the UNS-property on V0.

Proof. Let {e1, e2, . . . , ek} be a Jordan frame in V1 and {fk+1, fk+2, . . . , fr} be a Jordan frame

in V0, so that {e1, e2, . . . , ek, fk+1, . . . , fr} is a Jordan frame in V , e1 + e2 + · · · + ek = c and

fk+1 + fk+2 + · · ·+ fr = e− c. From the UNS-property of L, we may write

||L(z) +
∑
i≤j

dijzij || ≥ ∆||z||,

for all z ∈ V and dij ≥ 0, where
∑

i≤j zij is the Peirce decomposition of z ∈ V with respect to

{e1, e2, . . . , ek, fk+1, . . . , fr}.
Now, we fix u ∈ V1 with its Peirce decomposition

∑
1≤i≤j≤k uij relative to {e1, e2, . . . , ek} and

v ∈ V0 with its Peirce decomposition
∑

k+1≤i≤j≤r vij relative to {fk+1, fk+2, . . . , fr}. Assume also

αij ≥ 0, βij ≥ 0 for all i, j. Let w := −Gu − Hv ∈ V 1
2

and γij = k, for all i, j with k an

arbitrary natural number. Note that we have w′ = 1
kw ∈ V 1

2
. Now,

∑
uij +

∑
vij +

∑
wij and∑

uij +
∑
vij +

∑ 1
kwij are, respectively, Peirce decompositions of u+ v + w and u+ v + w′ in V

with respect to {e1, e2, . . . , ek, fk+1, . . . , fr}. Now we have the inequality∥∥∥L(u+ v + w′) +
∑

αijuij +
∑

βijvij +
∑

k
wij

k

∥∥∥ ≥ ∆||u+ v +
1

k
w||,

for all αij ≥ 0, βij ≥ 0, i, j, and k = 1, 2, . . .. Rewriting this in the “matrix” form, we get∥∥∥∥∥∥∥
 Au+

∑
αijuij +Bv + 1

kCw

Du+ Ev +
∑
βijvij + 1

kFw

Gu+Hv + 1
kJw + w


∥∥∥∥∥∥∥ ≥ ∆

∥∥∥∥∥∥∥
 u

v
1
kw


∥∥∥∥∥∥∥ .

Letting k →∞ and using w = −Gu−Hv, we get∥∥∥∥∥
[
Au+

∑
αijuij +Bv

Du+ Ev +
∑
βijvij

]∥∥∥∥∥ ≥ ∆

∥∥∥∥∥
[
u

v

]∥∥∥∥∥ .
This gives the stated assertion about the specified principal subblock of L and, in particular, via

Theorem 4, gives the UNS-property of A and E −DA−1B. This completes the proof. 2

Remarks. Suppose that the conditions of the above theorem are in place and let

M =

[
A B

D E

]
.
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Then, as in the proof of Theorem 4, one can show that the Schur complement of M in L has the

following property:

||(L/M)w +
∑

γijwij || ≥ ∆||w|| ∀w =
∑

wij ∈ V 1
2
, γij ≥ 0,

so, L/M has some sort of the UNS-property on V 1
2
.

Concluding remarks and open problems. In this paper, we have described some comple-

mentarity properties of linear transformations on product (symmetric) cones that are inherited by

principal pivotal transforms, principal subtransformations, and Schur complements. We end this

paper with a short list of open problems: Suppose that L has the UNS-property.

• Does L−1 have the UNS-property?

• Does L3 have the UNS-property?

• Should L have the Lipschitzian property?

Acknowledgements. We thank two anonymous referees for their very constructive comments
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