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A Lyapunov-like (linear) transformation L on a Euclidean Jordan algebra V is defined
by the condition

x ∈ K, y ∈ K∗, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0,

where K is the symmetric cone of V . In this paper, we give an elementary proof (avoiding
Lie algebraic ideas and results) of the fact that Lyapunov-like transformations on V are
of the form La + D, where a ∈ V , D is a derivation, and La(x) = a ◦ x for all x ∈ V .

Keywords: Euclidean Jordan algebra; symmetric cone; Z and Lyapunov-like
transformations.
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1. Introduction

Given a proper cone K in a finite dimensional real Hilbert space H , a linear trans-
formation L on H is said to be Lyapunov-like on K if

x ∈ K, y ∈ K∗, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0,

where K∗ denotes the dual of K in H . Such transformations appear in complemen-
tarity theory, dynamical systems, and optimization, see Gowda and Sznajder [2007],
Moldovan and Gowda [2010], Gowda and Tao [2011], and Gowda et al. [2013].
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Our primary example (and the name) of such a transformation comes from
taking H = Sn (the space of all n × n real symmetric matrices) and K = Sn

+

(the semidefinite cone) and considering, for any matrix A ∈ Rn×n, the Lyapunov
transformation LA defined by

LA(X) = AX + XAT (X ∈ Sn).

On H = Rn with K = Rn
+, Lyapunov-like matrices are nothing but diagonal

matrices.
In Damm [2004], it is shown that every Lyapunov-like transformation on Sn

+

is of the form LA for some A ∈ Rn×n. This raises the problem of describ-
ing/characterizing Lyapunov-like transformations on other proper cones. A recent
paper by Gowda et al. [2013] studies this problem for completely positive cones.
In the case of a symmetric cone in a Euclidean Jordan algebra, there is a neat
answer: Every Lyapunov-like transformation is of the form La +D, where La is the
Lyapunov transformation corresponding to an element a in the algebra and D is
a derivation. A proof of this (as given in Gowda et al. [2012]) depends on using a
result of Schneider and Vidyasagar [1970] relating Lyapunov-like transformations
with their exponentials (which belong to the automorphism group of the cone)
and then using Lie algebraic ideas. The main objective here is to derive this result
by (only) Jordan algebraic means thus avoiding Lie algebraic ideas and results.
In addition to having pedagogical advantage, our unified presentation/derivation
yields a number of results: a characterization of self-adjoint Lyapunov-like trans-
formations on any Euclidean Jordan algebra (Proposition 2) and characterizations
of Lyapunov-like transformations on Sn

+ (thus giving an alternate proof of a result
of Damm) and on Ln

+ (Theorem 5). We show that a result similar to that of Damm
holds for quaternions (Theorem 2) but fails for octonions (Theorem 3).

2. Preliminaries

Let V denote a Euclidean Jordan algebra of rank r, see Faraut and Korányi [1994],
where the inner product and Jordan product of two elements x and y are given,
respectively, by 〈x, y〉 and x ◦ y. The symmetric cone of V (which is self-dual) is
denoted by K. The unit element of V is denoted by e. We use the notation x ≥ 0
when x ∈ K and write x ⊥ y to mean 〈x, y〉 = 0.

A linear transformation D on V is said to be a derivation if for all x, y ∈ V ,

D(x ◦ y) = D(x) ◦ y + x ◦ D(y).

Recalling that for an element a ∈ V , the corresponding Lyapunov transformation
La is defined by

La(x) = a ◦ x,

any finite sum of commutators of the form

[La, Lb] := LaLb − LbLa
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is a derivation, called the inner derivation. It is known that on a Euclidean Jordan
algebra, every derivation is inner, see, Propositon VI.1.2 in Faraut and Korányi
[1994] or Theorem 8 in Koecher [1999].

We say that a linear transformation L on V is a Z-transformation on K (or on
V ) if

0 ≤ x ⊥ y ≥ 0 ⇒ 〈L(x), y〉 ≤ 0

and is a Lyapunov-like transformation on K if both L and −L are Z-
transformations, that is,

0 ≤ x ⊥ y ≥ 0 ⇒ 〈L(x), y〉 = 0.

It has been observed in Gowda et al. [2012] that the Z and Lyapunov-like properties
remain the same if we replace the given inner product by the canonical inner product
〈x, y〉tr := trace(x ◦ y).

In the rest of the paper, we assume that V denotes a Euclidean Jordan algebra
with symmetric cone K and which carries the canonical inner product. We also
freely use results from Faraut and Korányi [1994].

3. Lyapunov-Like Transformations

We recall the following result.

Proposition 1 (Theorem 4, Gowda et al. [2012]). The following are equiva-
lent :

(1) L is Lyapunov-like on K.
(2) For any Jordan frame {e1, e2, . . . , er} in V,

〈L(ei), ej〉 = 0 ∀ i 
= j.

Here is our representation theorem.

Theorem 1. A linear transformation L on a Euclidean Jordan algebra V is
Lyapunov-like if and only if it is of the form

L = La + D,

where a ∈ V and D is a (inner) derivation. In this situation, La is the symmetric
part of L and D is the skew-symmetric part of L.

Before giving the proof, we consider some special cases.

Proposition 2. Suppose that L is self-adjoint on V . Then L is Lyapunov-like if
and only if it is of the form La for some a ∈ V .

Proof. Suppose L = La for some a ∈ V . If 0 ≤ x ⊥ y ≥ 0, then x ◦ y = 0, see
Proposition 6 in Gowda et al. [2004]. Hence

〈La(x), y〉 = 〈a ◦ x, y〉 = 〈a, x ◦ y〉 = 0
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proving the Lyapunov-like property of La. Now, in addition to being self-adjoint,
suppose that L is Lyapunov-like. Define a := L(e). Then for any x ∈ V , we have

〈L(x), e〉 = 〈x, L(e)〉 = 〈x, a〉 = 〈x ◦ a, e〉 = 〈La(x), e〉
and hence 〈(L − La)(x), e〉 = 0. Let M := L − La. Then M(e) = L(e) − La(e) =
a − a = 0. Now, for any x in V , there exists a Jordan frame {e1, . . . , er} such that
x =

∑
xiei. Since M is a Lyapunov-like, 〈M(ei), ej〉 = 0 for all i 
= j, and

0 = M(e) =
∑

M(ei) ⇒ 〈M(ei), ei〉 = 0 ∀ i.

Thus, 〈M(x), x〉 = 0 for all x. Replacing x by x + ty, where x and y are arbitrary
and t is real, we see that 〈M(x), y〉 = 0. This implies that M(x) = 0 for all x; hence
M = 0, i.e., L = La.

In what follows, we write LT for the transpose/adjoint of L which is defined by
the condition 〈LT(x), y〉 = 〈x, L(y)〉 for all x, y ∈ V .

Proposition 3. The following are equivalent for a linear transformation L on V :

(1) L is a derivation.
(2) L is Lyapunov-like and L(e) = 0.
(3) L is Lyapunov-like and skew-symmetric (i.e., L + LT = 0).

Proof. (1) ⇒ (2): Let L be a derivation, {e1, e2, . . . , er} be a Jordan frame in V ,
and i 
= j. Using ei ◦ ej = 0 and writing 0 = L(ei ◦ ej) = L(ei) ◦ ej + ei ◦ L(ej), we
get, upon taking the inner product with ej,

0 = 〈L(ei) ◦ ej + ei ◦ L(ej), ej〉 = 〈L(ei), ej ◦ ej〉 + 〈L(ej), ei ◦ ej〉 = 〈L(ei), ej〉,
where we used the properties ej ◦ej = ej and 〈x◦y, z〉 = 〈x, y ◦z〉 in V . This proves
that for all i 
= j,

〈L(ei), ej〉 = 0,

that is, L is Lyapunov-like.
Now, for any i, ei ◦ei = ei. Since L is a derivation, we get 2L(ei)◦ei = L(ei) and

2〈L(ei) ◦ ei, ei〉 = 〈L(ei), ei〉. This implies that 〈L(ei), ei〉 = 0, ∀ i = 1, 2, . . . , r. So
we have proved that when L is a derivation, for any Jordan frame {e1, e2, . . . , er},

〈L(ei), ej〉 = 0 ∀ i, j = 1, 2, . . . , r.

Fixing j and summing over i, we get 〈L(e), ej〉 = 0 for all j. As the Jordan frame
is arbitrary, writing the spectral decomposition of any x as x =

∑
xjej , we get

〈L(e), x〉 = 0. As x is arbitrary, this gives L(e) = 0. Thus we have proved that L is
Lyapunov-like and L(e) = 0.

(2) ⇒ (3): Let {e1, e2, . . . , er} be any Jordan frame. Then 〈L(ei), ej〉 = 0, ∀ i 
= j.
The condition L(e) = 0 implies that

∑
L(ei) = 0 and hence 〈L(ei), ej〉 = 0 even

1340034-4



3rd Reading

August 20, 2013 8:40 WSPC/0219-1989 151-IGTR 1340034

A Representation Theorem for Lyapunov-like Transformations

when i = j. Now for any x ∈ V , we have the spectral expansion x =
∑r

1 xiei for
some Jordan frame {e1, e2, . . . , er} and eigenvalues x1, x2, . . . , xr. Then

〈L(x), x〉 =
∑
i,j

xixj〈L(ei), ej〉 = 0.

This implies that L + LT = 0, i.e., L is skew-symmetric.

(3) ⇒ (2): Assume that L is Lyapunov-like and skew-symmetric. Then for any
Jordan frame {e1, e2, . . . , er}, we have 〈L(ei), ej〉 = 0 for all i and j. As in the last
part of the proof of (1) ⇒ (2), we get L(e) = 0.

(3) ⇒ (1): Let D = L be Lyapunov-like and skew-symmetric.

Claim (i): For any Jordan frame {e1, e2, . . . , er}, and for all i and k 
= l,

2ei ◦ D(ei) = D(ei) and ek ◦ D(el) + el ◦ D(ek) = 0. (1)

To see this, fix an index k, 1 ≤ k ≤ r. Write the Peirce decomposition of D(ek)
as D(ek) =

∑
xiei +

∑
i<j xij . Since D is skew symmetric, 〈D(ei), ei〉 = 0 for

i = 1, . . . , r. Since D is a Lyapunov-like, 〈D(ek), ej〉 = 0 for k 
= j. Thus, xi = 0 for
i = 1, . . . , r. Hence

D(ek) =
∑
i<j

xij .

Now, if a certain xij = 0, then 〈D(ek), xij〉 = 0. If xij 
= 0, then i 
= j and
λ(ei + ej) + xij ≥ 0, where λ = ‖xij‖√

2
(see Lemma 6 in Gowda et al. [2012]). From

〈ek, λ(ei + ej) + xij〉 = 0 for k 
= i, j we have 〈D(ek), λ(ei + ej) + xij〉 = 0. This
implies 〈D(ek), xij〉 = 0.

Thus,

D(ek) =
k−1∑
i=1

xik +
r∑

j=k+1

xkj .

Multiplying both sides of this equality by ek and using xik ◦ ek = 1
2xik, etc., we

get ek ◦ D(ek) = 1
2D(ek). This proves the first part of (1). Now for the second

part. Based on the discussion above, we write the Peirce decomposition of D(ek)
for k = 1, 2, . . . , r:

D(e1) = x12 + x13 + · · · + x1r ,

D(e2) = y12 + y23 + · · · + y2r,

D(e3) = z13 + z23 + · · · + z3r,

... =
...

D(ek) =
k−1∑
i=1

pik +
r∑

j=k+1

pkj ,

... =
...
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D(el) =
l−1∑
i=1

qil +
r∑

j=l+1

qlj ,

... =
...

D(er) = w1r + w2r + · · · + wr−1r.

Now, adding these equations, we get

D(e) = (x12 + y12) + (x13 + z13) + · · · + (plk + qlk) + · · · .
Let l 
= k. Since the grouped terms in D(e) belong to orthogonal Peirce spaces and
D(e) = 0, we have plk + qlk = 0. Since ek ◦ D(el) = 1

2qlk and el ◦ D(ek) = 1
2plk, we

have ek ◦D(el) + el ◦ D(ek) = 1
2 (plk + qlk) = 0. This proves the second part of (1).

Claim (ii): For any x ∈ V ,

D(x2) = 2x ◦ D(x). (2)

To see this, let x ∈ V with spectral decomposition x =
∑

xiei. Then

2x ◦ D(x) = 2
(∑

xiei

)
◦
(∑

xjD(ej)
)

= 2

(∑
i

x2
i ei ◦ D(ei)

)
+ 2

∑
i<j

xixj(ei ◦ D(ej) + ej ◦ D(ei))

= 2

(∑
i

x2
i ei ◦ D(ei)

)

=
∑

i

x2
i D(ei)

= D

(∑
i

x2
i ei

)
= D(x2).

Now, replacing x by x + λy in (2) and comparing coefficients of λ, we get
D(x ◦ y) = x ◦ D(y) + y ◦ D(x). Thus, D is a derivation.

Proof of Theorem 1. If L is Lyapunov-like, then so are L+LT

2 and L−LT

2 . Note
that L+LT

2 is self-adjoint and L−LT

2 is skew-symmetric. By the above propositions,
we can let L+LT

2 = La and L−LT

2 = D, where a ∈ V and D is a derivation.
Then L = La + D. The converse statement in the theorem follows from the above
propositions.

3.1. Lyapunov-like transformations on matrix algebras

Let F denote any one of the following: the set of all real numbers R, the set of
all complex numbers C, the set of all quaternions H, the set of all octonions O.
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Given any element p ∈ F , we write Re(p) for its real part and p for its conjugate.
We note that quaternions are noncommutative but associative, while octonions are
noncommutative and nonassociative. Still, for any three elements a, b and c in F ,
we have, see Dray and Manogue [1998],

Re(a) = Re(a), Re(ab) = Re(ba), and Re[a(bc)] = Re[(ab)c]. (3)

For any A ∈ Fn×n, let tr(A) denote the sum of the diagonal elements of A. Then,
for any three matrices A, B and C in Fn×n, see Proposition V.2.1, Faraut and
Korányi [1994],

Re tr(A) = Re tr(A∗), Re tr(AB) = Re tr(BA),

Re tr(A(BC)) = Re tr((AB)C),
(4)

where A∗ is the conjugate transpose of A.
Let Herm(Fn×n) denote the space of all Hermitian n× n matrices with entries

from F . For any given A ∈ Fn×n, we define the Lyapunov transformation LA on
Herm(Fn×n) by

LA(X) = AX + XA∗.

The following extends a result of Damm [2004] and at the same time gives an
alternate proof.

Theorem 2. Let F denote real numbers, complex numbers, or quaternions. A lin-
ear transformation L on the Euclidean Jordan algebra Herm(Fn×n) is Lyapunov-
like if and only if there exists an A ∈ Fn×n such that L = LA.

Proof. Suppose that A ∈ Fn×n and consider X, Y ∈ Herm(Fn×n) such that

X ≥ 0, Y ≥ 0, and 〈X, Y 〉 = 0,

where X ≥ 0 means that X belongs to the symmetric cone of Herm(Fn×n). Then
XY = YX = 0. (This is well known for F = R or C; see Remark 3 in Moldovan and
Gowda [2009] for F = H.) Now, relying on the associativity in F , and using (4),

〈LA(X), Y 〉 = Re tr(LA(X)Y ) = Re tr(AXY + XA∗Y ) = 2Re tr(XA∗Y )

= 2Re tr(A∗YX ) = 0.

This proves the Lyapunov-like property of LA on Herm(Fn×n). Now for the con-
verse. Suppose L is Lyapunov-like on Herm(Fn×n). By the previous theorem,
L = LA + D, where A ∈ Herm(Fn×n) and D is a derivation. As D is inner,
we can write

D =
m∑
1

[LAi , LBi ],

where Ai, Bi ∈ Herm(Fn×n), i = 1, 2, . . . , m. Using the associativity of the ordinary
matrix product of matrices in Fn×n,

[LAi , LBi ] = L[Ai,Bi].
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It follows that D = LB, where B :=
∑m

1 [Ai, Bi] ∈ Fn×n. Hence, L = LA + LB =
LA+B = LC , where C := A + B ∈ Fn×n. This completes the proof.

We next show that a result of the previous type is not valid for matrices over
octonions.

Theorem 3. There exists A ∈ O3×3 such that LA is not Lyapunov-like on
Herm(O3×3).

Proof. By Remark 3 in Moldovan and Gowda [2009], there exists a Jordan frame
{E1, E2, E3} in Herm(O3×3) such that E1E2 
= 0. (Such a Jordan frame comes,
for example, from the spectral decomposition of the matrix given in Remark 2
in Moldovan and Gowda [2009].)

Now, E1 ◦ E2 = 0 ⇒ E1E2 + E2E1 = 0. Let

E1E2 :=



p a b

α q c

β γ r


.

Then

E2E1 = (E1E2)∗ =



p̄ ᾱ β̄

ā q̄ γ̄

b̄ c̄ r̄


.

From E1E2 + E2E1 = 0, we get Re(p) = Re(q) = Re(r) = 0, a + ᾱ = 0, b + β̄ = 0,
and c + γ̄ = 0. We will construct an octonion matrix

A :=




a11 a12 a13

a21 a22 a23

a31 a32 a33




such that 〈LA(E1), E2〉 
= 0.

As E1E2 
= 0, some row of E1E2 is nonzero. Without loss of generality, assume
that the first row [p a b] is nonzero. In this case, we take aij = 0 for i ∈ {2, 3} and
j ∈ {1, 2, 3}. Then, using (4),

Re tr((AE1)E2) = Re tr((A(E1E2)) = Re tr((AE1)∗E2)

and so

〈LA(E1), E2〉 = Re tr(LA(E1)E2) = Re tr((AE1)E2 + (AE1)∗E2)

= 2Re(a11p + a12α + a13β).

As [p a b] is nonzero, the vector [p α β] is also nonzero. Now, if p 
= 0, we can
take a11 = 1

p , a12 = a13 = 0. Then 〈LA(E1), E2〉 = 2. A similar construction can be
made if α or β is nonzero. Thus, A can be constructed so that 〈LA(E1), E2〉 
= 0.
This means that LA is not Lyapunov-like.
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3.2. Lyapunov-like transformations on Ln

Consider the Jordan spin algebra Ln whose underlying space is Rn, n > 1. We
write any element x in the form

x =

[
x0

x

]
(5)

with x0 ∈ R and x ∈ Rn−1. The inner product in Ln is the usual inner product on
Rn. The Jordan product x ◦ y in Ln is defined by

x ◦ y =

[
x0

x

]
◦
[
y0

y

]
:=

[
〈x, y〉

x0y + y0x

]
.

Then Ln is a Euclidean Jordan algebra of rank 2. In this section, we give two charac-
terizations of Lyapunov-like transformations on Ln. Our second result, Theorem 5,
can also be deduced from Theorem 1.

Recalling that the underlying space of Ln is Rn (n > 1), we fix a matrix A ∈
Rn×n and let J ∈ Rn×n be defined by

J := diag(1,−1, . . . ,−1).

We recall the following from Gowda and Tao [2009]:

Lemma 1. The matrix A has the Z-property on Ln if and only if there exists
γ ∈ R such that γJ − (JA + ATJ) is positive semidefinite on Rn.

As a consequence, we prove

Theorem 4. The matrix A ∈ Rn×n is Lyapunov-like on Ln if and only if there
exists β ∈ R such that βJ + (JA + ATJ) = 0.

Proof. Suppose A is Lyapunov-like, in which case, A and −A have the Z-property.
Then by Lemma 1, there exist α and β such that αJ − (JA + ATJ) and βJ +
(JA + ATJ) are positive semidefinite. Therefore, αJ − (JA + ATJ) + βJ + (JA +
ATJ) = (α + β)J is positive semidefinite. Thus, we have α = −β. Now, −βJ −
(JA + ATJ) = −(βJ + (JA + ATJ)) is positive semidefinite and symmetric, hence
βJ + (JA + ATJ) = 0. The ‘if’ part is obvious because of the previous lemma.

Theorem 5. A matrix A ∈ Rn×n is Lyapunov-like on Ln if and only if it is of the
form

A =

[
a bT

b D

]
, (6)

where a ∈ R, D ∈ R(n−1)×(n−1), with D + DT = 2aI.

Proof. To see the ‘if’ part, take x and y in Ln such that 0 ≤ x ⊥ y ≥ 0. Assuming
that x and y are nonzero, we may write x = [1 u]T, y = [1 −u]T, where ‖u‖ = 1

1340034-9
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(see e.g., Tao [2004]). Then 〈Ax, y〉 = a− uTDu = 0, where the last equality comes
from D + DT = 2aI. This proves the Lyapunov-like property of A. Now for the
“only if” part. Suppose the matrix A is Lyapunov-like on Ln and is given by

A =

[
a bT

c D

]
.

Putting x = [1 u]T, y = [1 −u]T with ‖u‖ = 1, we see that 0 ≤ x ⊥ y ≥ 0. Since
A is Lyapunov-like, we have 〈Ax, y〉 = 0 and so

a + (b − c)Tu − uTDu = 0. (7)

Replacing u by −u in (7), we have

a − (b − c)Tu − uTDu = 0. (8)

The above two equations lead to (b − c)Tu = 0 for all u with ‖u‖ = 1. Thus, b = c.
Now from the previous result, we have, βJ + (JA + ATJ) = 0 (for some β). This
leads to β = −2a and D + DT = −βI. Therefore, D + DT = 2aI. This completes
the proof.
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