

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

The automorphism group of a completely positive cone and its Lie algebra

M. Seetharama Gowda ^{a,*}, Roman Sznajder ^b, Jiyuan Tao ^c

ARTICLE INFO

Article history: Received 18 May 2011 Accepted 10 October 2011 Available online 20 November 2011

Submitted by N. Shaked-Monderer

This paper is dedicated to Abraham Berman, Moshe Goldberg, and Raphael Loewy for their profound contributions to mathematics and for their service to the linear algebra community.

AMS classification: Primary 15A04 46N10 Secondary 22D99

Keywords:
Automorphism group
Completely positive and copositive cones
Lie algebra
Lyapunov-like transformation

ABSTRACT

Given a closed cone $\mathcal C$ in R^n , we consider the corresponding completely positive (convex) cone $\mathcal K$ generated by $\{uu^T:u\in\mathcal C\}$ in $\mathcal S^n$. Under certain conditions on $\mathcal C$, we describe the automorphism group of $\mathcal K$ and its corresponding Lie algebra in terms of those of $\mathcal C\cup -\mathcal C$ and/or $\mathcal C$. In particular, we show that when $\mathcal C$ is a (closed convex) proper cone, the automorphism groups of $\mathcal C$ and $\mathcal K$ are isomorphic and their corresponding Lie algebras are isomorphic.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Given a closed cone C in \mathbb{R}^n that is not necessarily convex, we consider the corresponding *completely positive cone* K which is the (closed) convex cone generated by $\{uu^T : u \in C\}$ in the space S^n of all $n \times n$ real symmetric matrices. This paper deals with the automorphism group of K and its Lie algebra.

^a Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, United States

b Department of Mathematics, Bowie State University, Bowie, MD 20715, United States

^C Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD 21210, United States

^{*} Corresponding author.

E-mail addresses: gowda@math.umbc.edu (M.S. Gowda), rsznajder@bowiestate.edu (R. Sznajder), jtao@loyola.edu (J. Tao).

URL: http://www.math.umbc.edu/~gowda (M.S. Gowda).

To motivate our discussion, let $\mathcal{C}=R^n$. In this case, the corresponding completely positive cone is \mathcal{S}^n_+ , the cone of all positive semidefinite matrices in \mathcal{S}^n . For this cone, the automorphism group $\operatorname{Aut}(\mathcal{S}^n_+)$ (which consists of invertible linear transformations on \mathcal{S}^n mapping \mathcal{S}^n_+ onto itself) and its Lie algebra $\operatorname{Lie}(\operatorname{Aut}(\mathcal{S}^n_+))$ are known (see [10] or [8], Theorem 13, pp. 150 and [4] or [7], Example 1):

• Every element *L* in $Aut(S^n_+)$ is of the form $\widehat{\mathbb{Q}}$, where \mathbb{Q} is an invertible matrix on \mathbb{R}^n and

$$\widehat{Q}(X) := QXQ^T$$
 for all $X \in \mathcal{S}^n$.

• Every element of Lie(Aut(S_+^n)) is of the form L_A for some matrix $A \in R^{n \times n}$, where L_A is defined on S^n by

$$L_A(X) := AX + XA^T$$
.

Note that in the above statements, Q (which is invertible) belongs to $Aut(R^n)$, the automorphism group of the cone R^n , and A belongs to $R^{n\times n}$, the Lie algebra of $Aut(R^n)$. This means that the automorphism group of \mathcal{S}^n_+ and its Lie algebra can be described by those of the underlying cone, namely, R^n . This raises the question whether an analogous result holds for other closed cones. In this article, we prove the following.

Theorem 1. Let \mathcal{C} be a closed cone in \mathbb{R}^n , $\widetilde{\mathcal{C}} := \mathcal{C} \cup -\mathcal{C}$, and \mathcal{K} be the completely positive cone of \mathcal{C} . Let $Aut(\widetilde{\mathcal{C}})$ and $Aut(\mathcal{K})$ denote, respectively, the automorphism groups of $\widetilde{\mathcal{C}}$ and \mathcal{K} in \mathcal{S}^n . Suppose that \mathcal{C} has nonempty interior. Then the following hold:

- (a) The mapping $Q\mapsto \widehat{Q}: Aut(\widetilde{\mathcal{C}}) \to Aut(\mathcal{K})$ is a two-to-one surjective group homomorphism.
- (b) The mapping $A \mapsto L_A : Lie(Aut(\tilde{\mathcal{C}})) \to Lie(Aut(\mathcal{K}))$ is a Lie algebra isomorphism.

Theorem 2. Suppose C is a closed pointed cone in R^n with nonempty interior. Then,

- (i) the mapping $A \mapsto L_A$: Lie(Aut(C)) \to Lie(Aut(K)) is a Lie algebra isomorphism. If, in addition, $C \setminus \{0\}$ is also connected, then
- (ii) the mapping $Q \mapsto \widehat{Q} : Aut(\mathcal{C}) \to Aut(\mathcal{K})$ is a group isomorphism.

In particular, conclusions (i) and (ii) hold when \mathcal{C} is a proper cone, that is, \mathcal{C} is a closed convex pointed cone with nonempty interior.

In Theorem 2, Item (i) is a refinement of a recent result of [6] which says that for a proper cone C, the mapping in Item (i) is injective.

2. Preliminaries

Throughout this paper, $(H, \langle \cdot, \cdot \rangle)$ denotes a real finite dimensional inner product space. Let K denote a closed cone in H, that is, K is closed in H and for $X \in K$, $X \geqslant 0$ in X we have $X \in K$. For such a cone, its interior is denoted by $X \in K$ and its dual is given by $X \in K$ and $X \in K$ is closed cone $X \in K$. Following [2], we say that a closed cone $X \in K$ is

- pointed if $K \cap -K = \{0\}$;
- *proper* if *K* is a closed *convex* pointed cone with nonempty interior;

Given a linear transformation $L: H \to H$ and a closed cone K in H, we say that

- *L* is copositive on *K* if $\langle L(x), x \rangle \ge 0$ for all $x \in K$;
- L is Lyapunov-like on K if $K \ni x \perp y \in K^* \Rightarrow \langle L(x), y \rangle = 0$;
- *L* is an automorphism of *K* if *L* is invertible and L(K) = K.

We denote the group of all automorphisms of K by Aut(K); we say that two objects of Aut(K)are equal if they take identical values on the entire space H. We denote the Lie algebra of Aut(K) by Lie(Aut(K)). Recall that $L \in Lie(Aut(K))$ if there is a differentiable curve $O(t): (-\delta, \delta) \to Aut(K)$ such that Q(0) = Id (Identity transformation) and (derivative) Q'(0) = L. As Aut(K) is a matrix group, its Lie algebra is also given by (see [1, Section 7.6])

$$Lie(Aut(K)) := \{L \in \mathcal{B}(H, H) : e^{tL} \in Aut(K) \text{ for all } t \in R\},\$$

where $\mathcal{B}(H,H)$ denotes the set of all (bounded) linear transformations on H.

By using the results of [11], we may state the following.

Theorem 3. For any proper cone K,

$$L \in Lie(Aut(K)) \Leftrightarrow L$$
 is Lyapunov — like on K .

In the space $H = R^n$, vectors are written as column vectors and the usual inner product is written as $\langle x, y \rangle$ or as $x^T y$. We denote the nonnegative orthant by R_+^n . The set of all $n \times n$ real matrices is denoted by $R^{n\times n}$; throughout, I denotes the identity matrix in $R^{n\times n}$. A matrix $A\in R^{n\times n}$ is said to be positive semidefinite if it is copositive on \mathbb{R}^n .

The space $H = S^n$ consists of all $n \times n$ real symmetric matrices and carries the trace inner product $\langle X, Y \rangle = trace(XY)$, where the trace of a matrix is the sum of all its diagonal elements. We recall that for any two real matrices A and B, trace(AB) = trace(BA); hence when $B = uu^T$ for a column vector u, we have $trace(AB) = u^T Au$. We denote the (symmetric) cone of all positive semidefinite matrices in S^n by S^n_{\perp} .

Given $A \in \mathbb{R}^{n \times n}$, the corresponding *Lyapunov* transformation L_A is defined by

$$L_A(X) = AX + XA^T \quad (X \in S^n).$$

For any invertible matrix Q in $\mathbb{R}^{n \times n}$, we define the transformation $\widehat{\mathbb{Q}}$ on \mathbb{S}^n by

$$\widehat{\mathbb{Q}}(X) := \mathbb{Q}X\mathbb{Q}^T \quad (X \in \mathcal{S}^n).$$

Proposition 4. The following statements hold:

- (i) For $A, B \in R^{n \times n}$, $L_A = L_B \Rightarrow A = B$. (ii) For Q and P invertible in $R^{n \times n}$, $\widehat{Q} = \widehat{P} \Rightarrow Q = \pm P$.

Proof

- (i) Since $L_A = L_B \Rightarrow L_{A-B} = 0$, it is enough to show that $L_A = 0 \Rightarrow A = 0$. When $L_A = 0$, we have $AX + XA^T = 0$ for any X in S^n , and in particular, for any arbitrary diagonal matrix X. From this, we easily deduce that A = 0.
- (ii) Since $\widehat{Q} = \widehat{P} \Rightarrow \widehat{P^{-1}Q} = I$, it is enough to show that $\widehat{Q} = I \Rightarrow Q = \pm I$. Now $\widehat{Q} = I \Rightarrow QXQ^T = X$ for all $X \in \mathcal{S}^n$. By taking $X = e_i e_i^T$ and $X = e_i e_j^T + e_j e_i^T$, where e_1, e_2, \ldots, e_n are the standard coordinate vectors in \mathbb{R}^n , we deduce that $Q = \pm I$. \square

Throughout this paper, \mathcal{C} denotes a *closed cone* in \mathbb{R}^n (which is not necessarily convex) and $\widetilde{\mathcal{C}}:=$ $\mathcal{C} \cup -\mathcal{C}$. We note that

$$int(C) \neq \emptyset \Leftrightarrow int(\widetilde{C}) \neq \emptyset$$
.

This can be seen, for example, by an application of the Baire category Theorem: If a closed ball in \mathbb{R}^n is a union of two closed sets in R^n , then one of the sets must have nonempty interior in R^n .

(When \mathcal{C} is pointed, the sets $\mathcal{C} \setminus \{0\}$ and $-(\mathcal{C} \setminus \{0\})$ are separated in the sense that each is disjoint from the closure of the other. In this case, a connectedness argument can be used instead of the Baire category Theorem.)

Corresponding to C, the *completely positive cone* K and the *copositive cone* E in S^n are defined, respectively, by

$$\mathcal{K} := \left\{ \sum u u^T : u \in \mathcal{C} \right\} \tag{1}$$

and

$$\mathcal{E} := \{ A \in \mathcal{S}^n : A \text{ copositive on } \mathcal{C} \}, \tag{2}$$

where $\sum uu^T$ denotes a finite sum of matrices of the form uu^T . Note that $\mathcal K$ is unchanged if $\mathcal C$ is replaced by $\widetilde{\mathcal C}$. Also, every element in $\mathcal K$ is a matrix of the form BB^T with columns of B coming from $\mathcal C$ (equivalently, $u \in \widetilde{\mathcal C}$). When $\mathcal C = R_+^n$, the objects of $\mathcal K$ are called *completely positive matrices* [3].

Proposition 5. Given a closed cone C, the following statements hold:

- (i) \mathcal{E} is a closed convex cone in \mathcal{S}^n and $\mathcal{K} \subseteq \mathcal{S}^n_+ \subseteq \mathcal{E}$.
- (ii) \mathcal{K} is a closed convex cone and \mathcal{E} is the dual of \mathcal{K} .
- (iii) If C has nonempty interior, then K and E are proper cones.

The proof of this proposition is somewhat routine. That $\mathcal K$ is closed in $\mathcal S^n$ follows from a standard argument via an application of the Carathéodory Theorem for cones [3]. It is easy to verify that $\mathcal K$ is always pointed. If $\mathcal K-\mathcal K\neq \mathcal S^n$, then there is some nonzero A in $\mathcal S^n$ which is orthogonal to the subspace $\mathcal K-\mathcal K$; hence $u^TAu=0$ for all $u\in \mathcal C$. When $int(\mathcal C)$ is nonempty, say, $d\in int(\mathcal C)$, for any $x\in R^n$ and small $\varepsilon>0$, we can let $u=d+\varepsilon x\in \mathcal C$ to get $(d+\varepsilon x)^TA(d+\varepsilon x)=0$. This leads to $x^TAx=0$ for all x. Since $A\in \mathcal S^n$, this implies Ax=0 for all x; hence A=0. This shows that when $int(\mathcal C)\neq \emptyset$, $\mathcal K-\mathcal K=\mathcal S^n$. As $\mathcal K$ is convex, it follows that $int(\mathcal K)\neq \emptyset$. Finally, when $\mathcal K$ is proper, its dual $\mathcal E$ is also proper, see [2].

Proposition 6. Let C be a closed cone. Then the following hold:

- (i) For $u \in C$ and $x \in R^n$, we have $[xx^T = uu^T \Rightarrow x = u \text{ or } x = -u]$.
- (ii) When C is pointed, for $u, v \in C$, we have $[vv^T = uu^T \Rightarrow v = u]$.

Proof

- (i) Take $u \in \mathcal{C}$ and $x \in \mathbb{R}^n$ with $xx^T = uu^T$. As $x_i^2 = u_i^2$ for all i, we may assume that x and u are nonzero. In this case, $xx^Tx = uu^Tx$ and so $x = \lambda u$ for some $\lambda \in \mathbb{R}$. Then $xx^T = uu^T$ implies that $\lambda^2 = 1$. Thus, x = u or x = -u.
- (ii) Let $u, v \in \mathcal{C}$ with $vv^T = uu^T$. From (i), v = u or v = -u. If v = -u, then $v \in \mathcal{C} \cap -\mathcal{C} = \{0\}$ and so u = -v = 0. When $v \neq 0$, we must have v = u. \square

Recall that for a nonzero element $x \in \mathcal{K}$, the ray $\{\lambda x : \lambda \ge 0\} \subseteq \mathcal{K}$ is an *extreme ray* of \mathcal{K} if $y, z \in \mathcal{K}$, $x = y + z \Rightarrow y, z \in \{\lambda x : \lambda \ge 0\}$.

In what follows, we denote by $Ext(\mathcal{K})$, the set of all nonzero x for which the corresponding ray is an extreme ray of \mathcal{K} .

Proposition 7. Let C be a closed cone. Then $Ext(K) = \{uu^T : 0 \neq u \in C\}$.

Proof. By the description of \mathcal{K} , it follows that $Ext(\mathcal{K}) \subseteq \{uu^T : 0 \neq u \in \mathcal{C}\}$. Now, suppose that $0 \neq u \in \mathcal{C}$ and $uu^T = \sum_{i=1}^N u_i u_i^T$, where $0 \neq u_i \in \mathcal{C}$. Then for any $v \in \mathbb{R}^n$ with $u^T v = 0$, we have $\sum_{i=1}^N v^T u_i u_i^T v = v^T (uu^T) v = 0$. This leads to $u_i^T v = 0$ for all i. Hence, we have the implication $u^T v = 0 \Rightarrow u_i^T v = 0$ for every i. This shows that for any i, u_i is a multiple of u, that is $u_i u_i^T$ is a nonnegative multiple of uu^T . Thus uu^T is in $Ext(\mathcal{K})$. \square

Proposition 8. Let A be in S^n such that every 2×2 minor A is zero. Then, rank of A is zero or one.

This is well known and easy to show: Under the given condition on A, every minor of order 3×3 , and by induction, every minor of order $k \times k$ ($3 \le k \le n$) is zero. Hence, rank of A is zero or one.

3. Proofs of Theorems 1 and 2

In this section, we present the proofs of Theorems 1 and 2 and provide some examples. First, we present a preliminary result.

Proposition 9. Let C be any closed cone in R^n . Then the following statements hold:

- (a) For each $Q \in Aut(\widetilde{C})$, we have $\widehat{Q} \in Aut(K)$.
- (b) The mapping $Q \mapsto \widehat{Q} : Aut(\widetilde{C}) \to Aut(\mathcal{K})$ is a group homomorphism.
- (c) The mapping $A \mapsto L_A : Lie(Aut(\tilde{\mathcal{C}})) \to Lie(Aut(\mathcal{K}))$ is an injective Lie algebra homomorphism.

Proof

(a) Let $0 \in Aut(\widetilde{C})$. For any $u \in \widetilde{C}$, we have $0u \in \widetilde{C}$ and so

$$\widehat{Q}(uu^T) = (Qu)(Qu)^T \in \mathcal{K}.$$

This implies that $\widehat{Q}(\mathcal{K}) \subseteq \mathcal{K}$. Since $Q^{-1} \in Aut(\widetilde{\mathcal{C}})$ and $\widehat{Q}^{-1} = \widehat{Q^{-1}}$, we also have $\widehat{Q}^{-1}(\mathcal{K}) \subseteq \mathcal{K}$. Thus $\widehat{Q} \in Aut(\mathcal{K})$.

- (b) It is easy to see that the mapping $Q\mapsto \widehat{Q}: Aut(\widetilde{\mathcal{C}})\to Aut(\mathcal{K})$ is a group homomorphism under multiplication/composition.
- (c) Now, let $A \in Lie(Aut(\widetilde{C}))$ so that there is a differentiable curve Q(t) in $Aut(\widetilde{C})$ with Q(0) = I (Identity matrix) and Q'(0) = A. Then by (b), $L(t) := \widehat{Q(t)}$ is a differentiable curve in $Aut(\mathcal{K})$ with L(0) = Id (Identity transformation). As

$$L'(t)(X) = Q'(t)XQ(t)^{T} + Q(t)XQ'(t)^{T},$$

we see, by putting t=0, that $L'(0)=L_A$. Thus, $L_A\in Lie(Aut(\mathcal{K}))$. That the linear mapping $A\mapsto L_A$ is a Lie algebra homomorphism follows from $L_{[A,B]}=L_{AB-BA}=L_AL_B-L_BL_A=[L_A,L_B]$. Finally, the injectivity comes from Proposition 4. This completes the proof. \square

Proof of Theorem 1. (a) In view of the above proposition, the mapping $Q \mapsto \widehat{Q} : Aut(\widetilde{C}) \to Aut(\mathcal{K})$ is a homomorphism. We now show that it is surjective. Let $L \in Aut(\mathcal{K})$. By the Riesz Representation Theorem, there exist matrices $A_{ii} \in \mathcal{S}^n$ such that for any $X \in \mathcal{S}^n$,

$$L(X) = [\langle A_{ii}, X \rangle].$$

Since L is an automorphism of K, it preserves the extreme rays of K: For any nonzero u in C, there is a nonzero $v \in C$ such that $L(uu^T) = vv^T$. Thus, $u^TA_{ij}u = v_iv_j$ for all i, j and so

$$(u^{T}A_{ij}u)(u^{T}A_{kl}u) = (u^{T}A_{il}u)(u^{T}A_{kj}u),$$
(3)

for all indices *i*, *j*, *k*, *l*, at least three of which are distinct.

Now, fix $0 \neq x \in \mathbb{R}^n$ and let $d \in int(\mathcal{C})$ (which is nonempty by assumption). Then for all small positive ε , $d + \varepsilon x \in int(\mathcal{C})$, hence (3) holds with u replaced by $d + \varepsilon x$. Expanding and comparing terms containing ε^4 , we get

$$(x^T A_{ii} x)(x^T A_{kl} x) = (x^T A_{il} x)(x^T A_{ki} x).$$

This means that $L(xx^T) = [x^T A_{ij}x]$ is a matrix with vanishing 2×2 minors. By Proposition 8, $L(xx^T)$ has rank less than or equal to one. As this holds for any nonzero x in R^n , matrices with rank less than or equal to one in S^n are mapped, under L, to matrices of the same type. By a result of Lim [9] or Waterhouse [12], there exists an invertible matrix $Q \in R^{n \times n}$ and a real number μ such that $L(X) = \mu QXQ^T$ for all $X \in S^n$. Since $L(uu^T) \in S^n_+$ for any nonzero $u \in C$, μ cannot be negative. Also, μ cannot be zero, as L is invertible. We may assume that $\mu = 1$. Thus, there exists an invertible matrix Q such that

$$L(X) = QXQ^T \quad (X \in S^n).$$

Now, let $0 \neq u \in \mathcal{C}$. As L preserves $Ext(\mathcal{K})$, $(Qu)(Qu)^T = L(uu^T) = vv^T$ for some $0 \neq v \in \mathcal{C}$. From Proposition 6, $Qu = v \in \mathcal{C}$ or $Qu = -v \in -\mathcal{C}$. This shows that $Q(\mathcal{C}) \subseteq \mathcal{C} \cup -\mathcal{C}$ and hence

$$Q(\widetilde{\mathcal{C}}) \subseteq \widetilde{\mathcal{C}}.$$

Now, applying this argument to L^{-1} and to the corresponding Q^{-1} , we get $Q^{-1}(\widetilde{C}) \subseteq \widetilde{C}$. This means that $Q \in Aut(\widetilde{C})$. Thus, we have shown that

$$L = \widehat{Q}$$
, where $Q \in Aut(\widetilde{C})$.

It is clear that for any $Q \in Aut(\widetilde{C})$, $-Q \in Aut(\widetilde{C})$ and $\widehat{Q} = -Q$. In view of Proposition 4, each element of $Aut(\mathcal{K})$ has exactly two pre-images in $Aut(\widetilde{C})$. This completes the proof of (a).

(b) In view of the previous proposition, we need only to show that the specified mapping is surjective. Let $L \in Lie(Aut(\mathcal{K}))$. By Lemma 10 given below, there is a differentiable curve Q(t) in $Aut(\widetilde{\mathcal{C}})$ such that Q(0) = I and $e^{tL}(X) = Q(t)XQ(t)^T$ for all $X \in \mathcal{S}^n$. Now, differentiating both sides of $e^{tL}(X) = Q(t)XQ(t)^T$ (for any fixed X) and evaluating the derivatives at t = 0, we get

$$L(X) = AX + XA^T \quad (X \in \mathcal{S}^n),$$

where A = Q'(0). By definition, $A \in Lie(Aut(\widetilde{\mathcal{C}}))$. Thus, $L = L_A$ with $A \in Lie(Aut(\widetilde{\mathcal{C}}))$. This completes the proof of (b). \square

Lemma 10. Suppose that the mapping $Q \mapsto \widehat{Q} : Aut(\widetilde{C}) \to Aut(\mathcal{K})$ is a two-to-one surjective mapping. Let $\epsilon > 0$ so that the open balls $B(I, \varepsilon)$ and $B(-I, \varepsilon)$ around I and -I respectively, are disjoint in $R^{n \times n}$. Then for any $L \in Lie(Aut(\mathcal{K}))$, there is a $\delta > 0$ and a (unique) differentiable curve $Q(t) : (-\delta, \delta) \to Aut(\widetilde{C}) \cap B(I, \frac{1}{2}\varepsilon)$ such that Q(0) = I and

$$e^{tL} = \widehat{Q(t)} \ \forall \ t \in (-\delta, \delta).$$

Furthermore, if C is pointed, we may choose $\varepsilon > 0$ and $\delta > 0$ so that

$$Q(t): (-\delta, \delta) \to Aut(\mathcal{C}) \cap B\left(I, \frac{1}{2}\varepsilon\right).$$

Proof. Let $L \in Lie(Aut(\mathcal{K}))$ so that $e^{tL} \in Aut(\mathcal{K})$ for all t. By our assumption, there exists $Q(t) \in Aut(\widetilde{\mathcal{C}})$ such that $e^{tL}(X) = Q(t)XQ(t)^T$ for all $X \in \mathcal{S}^n$. We see that $e^{tL}(I) = Q(t)Q(t)^T$; this shows that $\{Q(t): -1 \leqslant t \leqslant 1\}$ is a bounded set in $R^{n \times n}$. Now choose $\delta > 0$ so that for $t \in (-\delta, \delta)$, $Q(t) \in B(I, \varepsilon)$ or $Q(t) \in B(-I, \varepsilon)$. (If this is not true, then by using the boundedness of $\{Q(t): -1 \leqslant t \leqslant 1\}$ and taking appropriate limits, we get a Q that is outside these balls satisfying $Id(X) = QXQ^T$ for all $X \in \mathcal{S}^n$. This would contradict Proposition 4.)

Note that if $Q(t) \in B(-I, \varepsilon)$, then $-Q(t) \in B(I, \varepsilon)$. Since the mapping $Q \mapsto \widehat{Q}$ is two-to-one mapping, in $B(I, \varepsilon)$ we have exactly one Q(t) for each t.

Thus, we may assume that for each $t \in (-\delta, \delta)$, there is a unique $Q(t) \in B(I, \frac{1}{2}\varepsilon) \cap Aut(\widetilde{C})$. We now claim that this Q(t) is continuous in t. Suppose $t_k \to \overline{t}$ in $(-\delta, \delta)$ and (because of boundedness) $Q(t_{k_m}) \to \overline{Q} \neq Q(\overline{t})$. But then

$$\overline{Q}X\overline{Q}^T = \lim e^{t_{k_m}L}(X) = e^{\overline{t}L}(X) = Q(\overline{t})XQ(\overline{t})^T \quad (X \in S^n)$$

implies that $\overline{Q} = Q(\overline{t})$ by Proposition 4 and uniqueness in $B(I, \varepsilon)$. This contradiction proves continuity. Now, by taking a smaller δ (if necessary), we show that Q(t) is differentiable on $(-\delta, \delta)$. We show this by proving the differentiability of the first column of Q(t) and repeating the argument for other columns. Let e_1 be the vector in \mathbb{R}^n with one in the first slot and zeros elsewhere and $E_1 := e_1 e_1^T$. Let $Q(t)e_1 = v(t)$ so that

$$e^{tL}(E_1) = v(t)v(t)^T.$$

Let $\alpha(t)$ denote the first component of v(t). Now, for all t near zero, the (1,1) component of $e^{tL}(E_1)$, namely $e^{tL}(E_1)_{11}$, is close to one and differentiable in t; thus, $\alpha(t)^2 = e^{tL}(E_1)_{11}$ is nonzero and differentiable at all points near zero. As $\alpha(t)$ is continuous, nonzero, and $\alpha(t)^2$ is differentiable, $\alpha(t)$ is also differentiable near zero. Now, v(t) is $\frac{1}{\alpha(t)}$ times the first column of $e^{tL}(E_1)$, hence differentiable at all points near zero. By a similar argument, we see that all columns of Q(t) are differentiable near zero. Thus, Q(t) is differentiable on some $(-\delta, \delta)$.

Now suppose that \mathcal{C} is pointed. The stated conclusion about Q(t) follows once we show that for all small $\varepsilon > 0$.

$$Aut(\widetilde{\mathcal{C}}) \cap B(I, \varepsilon) \subseteq Aut(\mathcal{C}).$$

Assuming this inclusion to be false for every ε , we can find sequences $x_k \in \mathcal{C}$, $Q_k \in Aut(\widetilde{\mathcal{C}})$ such that $Q_k \to I$ and $Q_k(x_k) \notin \mathcal{C}$. We may assume that $||x_k|| = 1$ for all k and let $\lim x_k = x \in \mathcal{C}$. As $Q_k(x_k) \in -\mathcal{C}$, taking limits, we get $I(x) \in -\mathcal{C}$. Thus, $x \in \mathcal{C} \cap -\mathcal{C}$. Since ||x|| = 1, we reach a contradiction to the pointedness of \mathcal{C} . We thus have the inclusion and the proof is complete. \square

Proof of Theorem 2. Suppose that \mathcal{C} is pointed and has nonempty interior. To see Item (i), we proceed as in the proof of Theorem 1. As $Aut(\mathcal{C})$ is a subgroup of $Aut(\widetilde{\mathcal{C}})$ and $Lie(Aut(\mathcal{C})) \subseteq Lie(Aut(\widetilde{\mathcal{C}}))$, the mapping $A \mapsto L_A : Lie(Aut(\mathcal{C})) \to Lie(Aut(\mathcal{K}))$ is an injective Lie algebra homomorphism. To show that this map is surjective, let $L \in Lie(Aut(\mathcal{K}))$. Then we have $e^{tL} \in Aut(\mathcal{K})$ for all $t \in R$. By Theorem 1 and Lemma 10, there is a differentiable curve Q(t) in $Aut(\mathcal{C})$ such that Q(0) = I and $e^{tL} = Q(t)$ for all t near zero. By repeating the proof of part (b) in Theorem 1, we verify that $L = L_A$, where, A = Q'(0) now belongs to $Lie(Aut(\mathcal{C}))$. This completes the proof of (i).

Now suppose, additionally, that $\mathcal{C}\setminus\{0\}$ is connected. Since $Aut(\mathcal{C})$ is a subgroup of $Aut(\widetilde{\mathcal{C}})$, the mapping $Q\mapsto \widehat{Q}:Aut(\mathcal{C})\to Aut(\mathcal{K})$ is a homomorphism. We now show that this map is surjective and injective. Let $L\in Aut(\mathcal{K})$. Since $int(\mathcal{C})\neq\emptyset$ we can apply Theorem 1 and get a $Q\in Aut(\widehat{\mathcal{C}})$ such that $L=\widehat{Q}$. Then $Q(\widehat{\mathcal{C}})=\widehat{\mathcal{C}}$ implies that $Q(\mathcal{C})\subseteq\mathcal{C}\cup -\mathcal{C}$ and by the invertibility of Q,

$$Q(\mathcal{C} \setminus \{0\}) \subseteq (\mathcal{C} \setminus \{0\}) \cup -(\mathcal{C} \setminus \{0\}).$$

Since \mathcal{C} is pointed, the sets $\mathcal{C}\setminus\{0\}$ and $-(\mathcal{C}\setminus\{0\})$ are separated (in the sense that each is disjoint from the closure of the other). By our assumption, $\mathcal{C}\setminus\{0\}$ is connected; hence $Q(\mathcal{C}\setminus\{0\})$ is also connected. It follows that $Q(\mathcal{C}\setminus\{0\})\subseteq (\mathcal{C}\setminus\{0\})$ or $Q(\mathcal{C}\setminus\{0\})\subseteq -(\mathcal{C}\setminus\{0\})$ and by taking closures, $Q(\mathcal{C})\subseteq \mathcal{C}$ or $Q(\mathcal{C})\subseteq -\mathcal{C}$; As Q and Q define the same $Q(\mathcal{C})\subseteq \mathcal{C}$ or $Q(\mathcal{C})\subseteq \mathcal{C}$. Now, working with $Q(\mathcal{C})\subseteq \mathcal{C}$ and $Q(\mathcal{C})\subseteq \mathcal{C}$ or $Q(\mathcal{C})\subseteq \mathcal{C}$. Since $Q(\mathcal{C})\subseteq \mathcal{C}$ is pointed and has nonzero elements, we cannot have $Q(\mathcal{C})\subseteq \mathcal{C}$ and $Q(\mathcal{C})\subseteq \mathcal{C}$. Thus, $Q(\mathcal{C})\subseteq \mathcal{C}$. Hence, $Q(\mathcal{C})\subseteq \mathcal{C}$, that is, $Q\in \mathcal{C}$. Thus, we have shown that for each $Q(\mathcal{C})\subseteq \mathcal{C}$ there is a $Q\in \mathcal{C}$ such that $Q(\mathcal{C})\subseteq \mathcal{C}$ is an expectation.

Now for the uniqueness: Now let $P \in Aut(\mathcal{C})$ such that $L = \widehat{P}$. Then, by Proposition 4, $P = \pm Q$. If P = -Q, then we have the equality $-\mathcal{C} = -Q(\mathcal{C}) = P(\mathcal{C}) = \mathcal{C}$. However, this cannot happen since \mathcal{C} is pointed and has nonzero elements. Hence we must have P = Q. This establishes (ii).

Finally, let \mathcal{C} be a proper cone. Then \mathcal{C} is pointed and $\mathcal{C}\setminus\{0\}$ is convex. Also, $int(\mathcal{C})\neq\emptyset$. Thus, all the conditions of Theorem 2 are satisfied. Hence we have statements (i) and (ii). This completes the proof. \square

Remark. The proof of Theorem 2 given above actually reveals the following: Suppose \mathcal{C} is a closed pointed cone with nonempty interior and $\mathcal{C}\setminus\{0\}$ is connected. Then

$$Aut(\widetilde{\mathcal{C}}) = Aut(\mathcal{C}) \cup -Aut(\mathcal{C}).$$

We now provide some examples to illustrate our results.

Example 1. Let $C = R^n$ (or the closed upper half-space in R^n). Then Theorem 1 is applicable and we get the results mentioned in the Introduction. \Box

We note that Theorem 2 is applicable to any self-dual cone \mathcal{C} (that is, $\mathcal{C} = \mathcal{C}^*$), in particular, to symmetric cones in Euclidean Jordan algebras [5].

Example 2. Let $C = R_+^n$. In this case, K is the set of all completely positive matrices [3] and E is the set of all symmetric copositive matrices. It is well known that every automorphism of R_+^n is a product of a permutation matrix and a diagonal matrix with positive diagonal. In addition, it easily follows from Theorem 3 that $Lie(Aut(R_+^n))$ is the set of all $n \times n$ diagonal matrices. Now, applying Theorem 2, one can describe Aut(K) and its Lie algebra. \square

The following examples show that the mappings $Q \mapsto \widehat{Q}$ and $A \mapsto L_A$ in Theorems 1 and 2 need not be surjective without appropriate conditions on C.

Example 3. For n>2, let \mathcal{L}^n_+ denote the so-called ice-cream cone (or the second order cone) given by

$$\mathcal{L}_{+}^{n} = \left\{ \begin{bmatrix} t \\ x \end{bmatrix} \in R^{n} : t \in R, \ x \in R^{n-1}, \ t \geqslant ||x|| \right\}$$

and let

$$\mathcal{C} := \partial \mathcal{L}_{+}^{n} = \left\{ \begin{bmatrix} t \\ x \end{bmatrix} \in \mathbb{R}^{n} : t = \|x\| \right\}.$$

Clearly \mathcal{C} is pointed and $\mathcal{C}\setminus\{0\}$ is connected, but $int(\mathcal{C})=\emptyset$. (It may be instructive to visualize \mathcal{C} in \mathbb{R}^3 .) Let $J_n=diag(1,-1,\ldots,-1)\in\mathbb{R}^{n\times n}$ and $\Gamma(X):=\langle X,J_n\rangle$ for any $X\in\mathcal{S}^n$. Since $\mathcal{K}-\mathcal{K}\subseteq\ker(\Gamma)$, we see that $\mathcal{K}-\mathcal{K}\neq\mathcal{S}^n$.

Let L be an invertible linear transformation on \mathcal{S}^n such that L coincides with the Identity transformation on $\mathcal{K} - \mathcal{K}$, but not on the entire \mathcal{S}^n . (For example, writing $\mathcal{S}^n = (\mathcal{K} - \mathcal{K}) \oplus (\mathcal{K} - \mathcal{K})^{\perp}$, we may define L(x+y) = x+2y for $x \in \mathcal{K} - \mathcal{K}$ and $y \in (\mathcal{K} - \mathcal{K})^{\perp}$.) Then $L \in Aut(\mathcal{K})$. Assume that there is a $Q \in Aut(\widetilde{\mathcal{C}})$ such that $L = \widehat{Q}$, that is, $L(X) = QXQ^T$ for every $X \in \mathcal{S}^n$. Then for all $u \in \mathcal{C}$, $uu^T = L(uu^T) = Quu^TQ^T = (Qu)(Qu)^T$. By Proposition 6, $Q(u) = \pm u$. Thus, $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$, where $\mathcal{C}_1 := \{u \in \mathcal{C} : Qu = u\}$ and $\mathcal{C}_2 := \{u \in \mathcal{C} : Qu = -u\}$. Since $\mathcal{C}_1 \setminus \{0\}$ and $\mathcal{C}_2 \setminus \{0\}$ are separated, and

$$\mathcal{C} \setminus \{0\} = \mathcal{C}_1 \setminus \{0\} \cup \mathcal{C}_2 \setminus \{0\},\$$

by connectedness of $\mathcal{C}\setminus\{0\}$, we get $\mathcal{C}\subseteq\mathcal{C}_1$ or $\mathcal{C}\subseteq\mathcal{C}_2$, i.e., $Q=\pm I$ on \mathcal{C} . If Q=I on \mathcal{C} , by linearity, Q=I on \mathcal{L}^n_+ . As $\mathcal{L}^n_+-\mathcal{L}^n_+=R^n$, Q=I on R^n . This yields $L=\widehat{Q}=\widehat{I}=Id$ which is a contradiction. Similarly, if Q=-I on \mathcal{C} , we get Q=-I on R^n and hence L=Id, which, once again, is a contradiction. This shows that the mapping $Q\mapsto \widehat{Q}: Aut(\widehat{\mathcal{C}})\to Aut(\mathcal{K})$ is not surjective. Thus, statements (a) in Theorem 1 and (ii) in Theorem 2 fail to hold.

Now, for $t \in (-1, 1)$, consider the differentiable curve $L(t) : (\mathcal{K} - \mathcal{K}) \oplus (\mathcal{K} - \mathcal{K})^{\perp} \to (\mathcal{K} - \mathcal{K}) \oplus (\mathcal{K} - \mathcal{K})^{\perp}$ given by

$$L(t)(x+y) := x + (1+t)y \quad (x \in \mathcal{K} - \mathcal{K}, \ y \in (\mathcal{K} - \mathcal{K})^{\perp}).$$

Then $L(t) \in Aut(\mathcal{K})$ and L(0) = Id. By definition, $L_1 := L'(0) \in Lie(Aut(\mathcal{K}))$. Note that

$$L_1(x) = 0$$
 for all $x \in \mathcal{K} - \mathcal{K}$ and $L_1(y) = y$ for all $y \in (\mathcal{K} - \mathcal{K})^{\perp}$.

Suppose, if possible, $L_1 = L_A$ for some $A \in \mathbb{R}^{n \times n}$. Since $L_1(\mathcal{K} - \mathcal{K}) = \{0\}$, for any $u \in \mathcal{C}$,

$$0 = L_1(uu^T) = Auu^T + uu^T A^T.$$

It follows that for any $x \in int(\mathcal{L}^n_+)$,

$$x^T (Auu^T + uu^T A^T) x = 0.$$

Thus, u^Tx (x^TAu) = 0. As $u^Tx > 0$ for any $x \in int(\mathcal{L}^n_+)$ and $0 \neq u \in \mathcal{C}$, we must have $x^TAu = 0$ for all such x and u. Since $\mathcal{L}^n_+ - \mathcal{L}^n_+ = R^n$, $x^TAu = 0$ for all $x \in R^n$ and $u \in \mathcal{C}$; thus, for any $u \in \mathcal{C}$, Au = 0. Again, by linearity, Au = 0 for all $u \in \mathcal{L}^n_+$ and Au = 0 for any $u \in R^n$. Thus, A = 0. This gives $L_1 = L_A = 0$. This is not possible, as $L_1(y) = y$ for all $y \in (\mathcal{K} - \mathcal{K})^\perp$. Hence, statements (b) in Theorem 1 and (i) in Theorem 2 fail to hold. \square

Example 4. Let C be the closed upper half-plane in R^2 . Then C has nonempty interior, $C \setminus \{0\}$ is connected, but C is not pointed. We show that the mappings in Items (i) and (ii) of Theorem 2 are not surjective.

It is clear that every (symmetric) 2×2 matrix that is copositive on \mathcal{C} is also positive semidefinite; hence $\mathcal{E} = \mathcal{S}_+^2$ and so $\mathcal{K} = \mathcal{S}_+^2$. By the result mentioned in the Introduction,

$$Aut(\mathcal{K}) = \left\{ \widehat{Q} : Q \text{ invertible in } R^{2\times 2} \right\}$$

and

$$Lie(Aut(\mathcal{K})) = \{L_A : A \in \mathbb{R}^{2 \times 2}\}.$$

For the cone C, it is easily verified that

$$Aut(\mathcal{C}) = \left\{ A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : c > 0, a \neq 0 \right\}$$

and

$$Lie(Aut(\mathcal{C})) = \left\{ B = \begin{bmatrix} p & q \\ 0 & r \end{bmatrix} : p, q, r \in R \right\}.$$

Now let

$$Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

For this Q, it is easily verified (using Proposition 4) that \widehat{Q} , which is in $Aut(\mathcal{K})$, is not of the form \widehat{A} for any $A \in Aut(\mathcal{C})$. Also, L_Q , which belongs to $Lie(Aut(\mathcal{K}))$, is not of the form L_B for any $B \in Lie(Aut(\mathcal{C}))$. \square

Example 5. Let $C = R_+^2 \cup \{\lambda f : \lambda \geqslant 0\}$, where $f = [-1\ 1]^T$. Then C is pointed, has nonempty interior, but $C \setminus \{0\}$ is not connected.

Now it is easy to see that $Aut(\mathcal{C}) \subseteq Aut(R_+^2)$ and based on the description of elements in $Aut(R_+^2)$ (see Example 2),

$$Aut(\mathcal{C}) = \left\{ A = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} : \alpha > 0 \right\}.$$

Let

$$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Then Q(f) = -f and $Q \in Aut(R_+^2)$ and so, $\widehat{Q}(\mathcal{K}) \subseteq \mathcal{K}$. As $Q^{-1} = Q$, we must have $\widehat{Q} \in Aut(\mathcal{K})$. By Proposition 4, \widehat{Q} is not of the form \widehat{A} for any $A \in Aut(\mathcal{C})$. Thus, the mapping in Item (ii) of Theorem 2 is not surjective. \square

4. The copositive cone

Recall that \mathcal{E} denotes the copositive cone of \mathcal{C} . In this section we describe the elements of $Aut(\mathcal{E})$ and its Lie algebra.

It is easily seen that for any closed convex cone *K* in (the real Hilbert space) *H*,

$$L \in Aut(K) \Leftrightarrow L^* \in Aut(K^*),$$

where L^* denotes the adjoint/transpose of L. This equivalence, along with the equality $(e^{tL})^* = e^{tL^*}$ for any $t \in R$ shows that

$$L \in Lie(Aut(K)) \Leftrightarrow L^* \in Lie(Aut(K^*)).$$

When specialized to a completely positive cone, we get the following.

Proposition 11. Let C be any closed cone in \mathbb{R}^n . Then

- (i) $L \in Aut(\mathcal{K}) \Leftrightarrow L^* \in Aut(\mathcal{E})$.
- (ii) $L \in Lie(Aut(\mathcal{K})) \Leftrightarrow L^* \in Lie(Aut(\mathcal{E}))$.

This proposition, coupled with Theorems 1 and 2, will allow us to describe the automorphisms of \mathcal{E} and the corresponding Lie algebra. Here is a sample result.

Corollary 12. Suppose C is a closed pointed cone with nonempty interior and $C \setminus \{0\}$ is connected. Then every $L \in Aut(\mathcal{E})$ is given by

$$L(X) = Q^T X Q \quad (X \in S^n)$$

for some $Q \in Aut(\mathcal{C})$ and every $L \in Lie(Aut(\mathcal{E}))$ is of the form $L = L_{A^T}$ for some $A \in Lie(Aut(\mathcal{C}))$.

Acknowledgments

It is a pleasure to thank the referee for his/her insightful comments and prodding us to look beyond convex cones.

References

- [1] A. Baker, Matrix Groups, Springer, London, 2002.
- [2] A. Berman, R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences, SIAM, Philadelphia, 1994.
- [3] A. Berman, N. Shaked-Monderer, Completely Positive Matrices, World Scientific, New Jersey, 2003.
- [4] T. Damm, Positive groups on H^n are completely positive, Linear Algebra Appl. 393 (2004) 127–137.
- [5] J. Faraut, A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
- [6] M.S. Gowda, On copositive and completely positive cones and Z-transformations, Research Report, February 2011, Electron. J. Linear Algebra, in press.
- [7] M.S. Gowda, J. Tao, G. Ravindran, On the **P**-property of **Z** and Lyapunov-like transformations on Euclidean Jordan algebras, Research Report, (Revised) February 2011, Linear Algebra Appl., in press.
- [8] M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, Springer Lecture Notes in Mathematics, Springer, Berlin, 1999.
- [9] M.H. Lim, Linear transformations on symmetric matrices, Linear and Multilinear Algebra 7 (1979) 47-57.
- [10] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965) 11–17.
- [11] H. Schneider, M. Vidyasagar, Cross-positive matrices, SIAM J. Numer. Anal. 7 (1970) 508–519.
- [12] W.C. Waterhouse, Linear transformations preserving symmetric rank one matrices, J. Algebra 125 (1989) 502-518.