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pletely positive (convex) cone K generated by {uuT : u ∈ C} in Sn.

Under certain conditions on C, we describe the automorphismgroup

of K and its corresponding Lie algebra in terms of those of C ∪ −C
and/or C. In particular, we show that when C is a (closed convex)

proper cone, the automorphism groups of C and K are isomorphic

and their corresponding Lie algebras are isomorphic.
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1. Introduction

Given a closed cone C in Rn that is not necessarily convex,we consider the corresponding completely

positive cone K which is the (closed) convex cone generated by {uuT : u ∈ C} in the space Sn of all

n×n real symmetric matrices. This paper deals with the automorphism group ofK and its Lie algebra.
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To motivate our discussion, let C = Rn. In this case, the corresponding completely positive cone

is Sn+, the cone of all positive semidefinite matrices in Sn. For this cone, the automorphism group

Aut(Sn+) (which consists of invertible linear transformations on Sn mapping Sn+ onto itself) and its Lie

algebra Lie(Aut(Sn+)) are known (see [10] or [8], Theorem 13, pp. 150 and [4] or [7], Example 1):

• Every element L in Aut(Sn+) is of the form Q̂ , where Q is an invertible matrix on Rn and

Q̂(X) := QXQT for all X ∈ Sn.

• Every element of Lie(Aut(Sn+)) is of the form LA for some matrix A ∈ Rn×n, where LA is defined on

Sn by

LA(X) := AX + XAT .

Note that in the above statements,Q (which is invertible) belongs to Aut(Rn), the automorphism group

of the cone Rn, and A belongs to Rn×n, the Lie algebra of Aut(Rn). This means that the automorphism

group of Sn+ and its Lie algebra can be described by those of the underlying cone, namely, Rn. This

raises the question whether an analogous result holds for other closed cones. In this article, we prove

the following.

Theorem 1. Let C be a closed cone in Rn, C̃ := C ∪ −C, and K be the completely positive cone of C. Let
Aut(̃C) and Aut(K) denote, respectively, the automorphism groups of C̃ and K in Sn. Suppose that C has

nonempty interior. Then the following hold:

(a) The mapping Q �→ Q̂ : Aut(̃C) → Aut(K) is a two-to-one surjective group homomorphism.

(b) The mapping A �→ LA : Lie(Aut(̃C)) → Lie(Aut(K)) is a Lie algebra isomorphism.

Theorem 2. Suppose C is a closed pointed cone in Rn with nonempty interior. Then,

(i) the mapping A �→ LA : Lie(Aut(C)) → Lie(Aut(K)) is a Lie algebra isomorphism.

If, in addition, C \ {0} is also connected, then

(ii) the mapping Q �→ Q̂ : Aut(C) → Aut(K) is a group isomorphism.

In particular, conclusions (i) and (ii) hold when C is a proper cone, that is, C is a closed convex pointed

cone with nonempty interior.

In Theorem 2, Item (i) is a refinement of a recent result of [6] which says that for a proper cone C,
the mapping in Item (i) is injective.

2. Preliminaries

Throughout this paper, (H, 〈·, ·〉)denotes a real finite dimensional innerproduct space. LetK denote

a closed cone in H, that is, K is closed in H and for x ∈ K , λ � 0 in R we have λx ∈ K . For such a cone,

its interior is denoted by int(K) and its dual is given by K∗ := {y ∈ H : 〈y, x〉 � 0 ∀x ∈ K}. Following

[2], we say that a closed cone K is

• pointed if K ∩ −K = {0};
• proper if K is a closed convex pointed cone with nonempty interior;

Given a linear transformation L : H → H and a closed cone K in H, we say that

• L is copositive on K if 〈L(x), x〉 � 0 for all x ∈ K;

• L is Lyapunov-like on K if K � x ⊥ y ∈ K∗ ⇒ 〈L(x), y〉 = 0;
• L is an automorphism of K if L is invertible and L(K) = K .
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We denote the group of all automorphisms of K by Aut(K); we say that two objects of Aut(K)
are equal if they take identical values on the entire space H. We denote the Lie algebra of Aut(K) by

Lie(Aut(K)). Recall that L ∈ Lie(Aut(K)) if there is a differentiable curve Q(t) : (−δ, δ) → Aut(K)
such thatQ(0) = Id (Identity transformation) and (derivative)Q ′(0) = L. As Aut(K) is amatrix group,

its Lie algebra is also given by (see [1, Section 7.6])

Lie(Aut(K)) := {L ∈ B(H,H) : etL ∈ Aut(K) for all t ∈ R},
where B(H,H) denotes the set of all (bounded) linear transformations on H.

By using the results of [11], we may state the following.

Theorem 3. For any proper cone K,

L ∈ Lie(Aut(K)) ⇔ L is Lyapunov − like on K.

In the space H = Rn, vectors are written as column vectors and the usual inner product is written

as 〈x, y〉 or as xTy. We denote the nonnegative orthant by Rn+. The set of all n × n real matrices is

denoted by Rn×n; throughout, I denotes the identity matrix in Rn×n. A matrix A ∈ Rn×n is said to be

positive semidefinite if it is copositive on Rn.

The space H = Sn consists of all n× n real symmetric matrices and carries the trace inner product

〈X, Y〉 = trace(XY), where the trace of a matrix is the sum of all its diagonal elements. We recall that

for any two real matrices A and B, trace(AB) = trace(BA); hence when B = uuT for a column vector u,

we have trace(AB) = uTAu. We denote the (symmetric) cone of all positive semidefinite matrices in

Sn by Sn+.

Given A ∈ Rn×n, the corresponding Lyapunov transformation LA is defined by

LA(X) = AX + XAT ( X ∈ Sn).

For any invertible matrix Q in Rn×n, we define the transformation Q̂ on Sn by

Q̂(X) := QXQT (X ∈ Sn).

Proposition 4. The following statements hold:

(i) For A, B ∈ Rn×n, LA = LB ⇒ A = B.

(ii) For Q and P invertible in Rn×n, Q̂ = P̂ ⇒ Q = ±P.

Proof

(i) Since LA = LB ⇒ LA−B = 0, it is enough to show that LA = 0 ⇒ A = 0. When LA = 0, we have

AX + XAT = 0 for any X in Sn, and in particular, for any arbitrary diagonal matrix X . From this,

we easily deduce that A = 0.

(ii) Since Q̂ = P̂ ⇒ ̂P−1Q = I, it is enough to show that Q̂ = I ⇒ Q = ±I. Now Q̂ = I ⇒
QXQT = X for all X ∈ Sn. By taking X = eie

T
i and X = eie

T
j + eje

T
i , where e1, e2, . . . , en are the

standard coordinate vectors in Rn, we deduce that Q = ±I. �

Throughout this paper, C denotes a closed cone in Rn (which is not necessarily convex) and C̃ :=
C ∪ −C. We note that

int(C) �= ∅ ⇔ int(̃C) �= ∅.

This can be seen, for example, by an application of the Baire category Theorem: If a closed ball in Rn is

a union of two closed sets in Rn, then one of the sets must have nonempty interior in Rn.

(When C is pointed, the sets C \ {0} and −(C \ {0}) are separated in the sense that each is disjoint

from the closure of the other. In this case, a connectedness argument can be used instead of the Baire

category Theorem.)
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Corresponding to C, the completely positive cone K and the copositive cone E in Sn are defined,

respectively, by

K :=
{ ∑

uuT : u ∈ C
}

(1)

and

E := {A ∈ Sn : A copositive on C}, (2)

where
∑

uuT denotes a finite sumofmatrices of the form uuT .Note thatK is unchanged if C is replaced

by C̃.Also, every element inK is amatrix of the formBBT with columnsofB coming fromC (equivalently,
u ∈ C̃). When C = Rn+, the objects of K are called completely positive matrices [3].

Proposition 5. Given a closed cone C, the following statements hold:

(i) E is a closed convex cone in Sn and K ⊆ Sn+ ⊆ E .
(ii) K is a closed convex cone and E is the dual of K.

(iii) If C has nonempty interior, then K and E are proper cones.

The proof of this proposition is somewhat routine. That K is closed in Sn follows from a standard

argument via an application of the Carathéodory Theorem for cones [3]. It is easy to verify that K is

always pointed. IfK−K �= Sn, then there is some nonzero A in Sn which is orthogonal to the subspace

K − K; hence uTAu = 0 for all u ∈ C. When int(C) is nonempty, say, d ∈ int(C), for any x ∈ Rn and

small ε > 0, we can let u = d + εx ∈ C to get (d + εx)TA(d + εx) = 0. This leads to xTAx = 0

for all x. Since A ∈ Sn, this implies Ax = 0 for all x; hence A = 0. This shows that when int(C) �= ∅,
K − K = Sn. As K is convex, it follows that int(K) �= ∅. Finally, when K is proper, its dual E is also

proper, see [2].

Proposition 6. Let C be a closed cone. Then the following hold:

(i) For u ∈ C and x ∈ Rn, we have [xxT = uuT ⇒ x = u or x = −u].
(ii) When C is pointed, for u, v ∈ C, we have [vvT = uuT ⇒ v = u].
Proof

(i) Take u ∈ C and x ∈ Rn with xxT = uuT . As x2i = u2i for all i, we may assume that x and u are

nonzero. In this case, xxTx = uuTx and so x = λ u for some λ ∈ R. Then xxT = uuT implies that

λ2 = 1. Thus, x = u or x = −u.

(ii) Let u, v ∈ C with vvT = uuT . From (i), v = u or v = −u. If v = −u, then v ∈ C ∩ −C = {0}
and so u = −v = 0. When v �= 0, we must have v = u. �

Recall that for a nonzero element x ∈ K, the ray {λ x : λ � 0} ⊆ K is an extreme ray of K if

y, z ∈ K, x = y + z ⇒ y, z ∈ {λ x : λ � 0}.
In what follows, we denote by Ext(K), the set of all nonzero x for which the corresponding ray is an

extreme ray of K.

Proposition 7. Let C be a closed cone. Then Ext(K) = {uuT : 0 �= u ∈ C}.
Proof. By the description of K, it follows that Ext(K) ⊆ {uuT : 0 �= u ∈ C}. Now, suppose that

0 �= u ∈ C and uuT = ∑N
1 uiu

T
i , where 0 �= ui ∈ C. Then for any v ∈ Rn with uTv = 0, we

have
∑N

1 vTui u
T
i v = vT (uuT )v = 0. This leads to uTi v = 0 for all i. Hence, we have the implication

uTv = 0 ⇒ uTi v = 0 for every i. This shows that for any i, ui is a multiple of u, that is uiu
T
i is a

nonnegative multiple of uuT . Thus uuT is in Ext(K). �

Proposition 8. Let A be in Sn such that every 2 × 2 minor A is zero. Then, rank of A is zero or one.
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This is well known and easy to show: Under the given condition on A, every minor of order 3 × 3,

and by induction, every minor of order k × k (3 � k � n) is zero. Hence, rank of A is zero or one.

3. Proofs of Theorems 1 and 2

In this section, we present the proofs of Theorems 1 and 2 and provide some examples. First, we

present a preliminary result.

Proposition 9. Let C be any closed cone in Rn. Then the following statements hold:

(a) For each Q ∈ Aut(̃C), we have Q̂ ∈ Aut(K).
(b) The mapping Q �→ Q̂ : Aut(̃C) → Aut(K) is a group homomorphism.

(c) The mapping A �→ LA : Lie(Aut(̃C)) → Lie(Aut(K)) is an injective Lie algebra homomorphism.

Proof

(a) Let Q ∈ Aut(̃C). For any u ∈ C̃, we have Qu ∈ C̃ and so

Q̂(uuT ) = (Qu)(Qu)T ∈ K.

This implies that Q̂(K) ⊆ K. Since Q−1 ∈ Aut(̃C) and Q̂−1 = ̂Q−1, we also have Q̂−1(K) ⊆ K.

Thus Q̂ ∈ Aut(K).
(b) It is easy to see that themappingQ �→ Q̂ : Aut(̃C) → Aut(K) is a group homomorphism under

multiplication/composition.

(c) Now, let A ∈ Lie(Aut(̃C)) so that there is a differentiable curve Q(t) in Aut(̃C) with Q(0) = I

(Identity matrix) and Q ′(0) = A. Then by (b), L(t) := ̂Q(t) is a differentiable curve in Aut(K)
with L(0) = Id (Identity transformation). As

L′(t)(X) = Q ′(t)XQ(t)T + Q(t)XQ ′(t)T ,
we see, by putting t = 0, that L′(0) = LA. Thus, LA ∈ Lie(Aut(K)). That the linear mapping

A �→ LA is a Lie algebra homomorphism follows from L[A,B] = LAB−BA = LALB − LBLA = [LA, LB].
Finally, the injectivity comes from Proposition 4. This completes the proof. �

Proof of Theorem 1. (a) In view of the above proposition, the mapping Q �→ Q̂ : Aut(̃C) → Aut(K)
is a homomorphism. We now show that it is surjective. Let L ∈ Aut(K). By the Riesz Representation

Theorem, there exist matrices Aij ∈ Sn such that for any X ∈ Sn,

L(X) = [〈Aij, X〉] .

Since L is an automorphism of K, it preserves the extreme rays of K: For any nonzero u in C, there is a

nonzero v ∈ C such that L(uuT ) = vvT . Thus, uTAiju = vivj for all i, j and so

(uTAiju)(u
TAklu) = (uTAilu)(u

TAkju), (3)

for all indices i, j, k, l, at least three of which are distinct.

Now, fix 0 �= x ∈ Rn and let d ∈ int(C) (which is nonempty by assumption). Then for all small

positive ε, d+εx ∈ int(C), hence (3) holdswith u replaced by d+εx. Expanding and comparing terms

containing ε4, we get

(xTAijx)(x
TAklx) = (xTAilx)(x

TAkjx).

Thismeans that L(xxT ) = [xTAijx] is amatrixwith vanishing 2×2minors. By Proposition 8, L(xxT ) has
rank less thanor equal to one. As this holds for anynonzero x inRn,matriceswith rank less thanor equal

to one in Sn are mapped, under L, to matrices of the same type. By a result of Lim [9] or Waterhouse

[12], there exists an invertible matrix Q ∈ Rn×n and a real number μ such that L(X) = μQXQT for all

X ∈ Sn. Since L(uuT ) ∈ Sn+ for any nonzero u ∈ C, μ cannot be negative. Also, μ cannot be zero, as L

is invertible. We may assume that μ = 1. Thus, there exists an invertible matrix Q such that
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L(X) = QXQT (X ∈ Sn).

Now, let 0 �= u ∈ C. As L preserves Ext(K), (Qu)(Qu)T = L(uuT ) = vvT for some 0 �= v ∈ C. From
Proposition 6, Qu = v ∈ C or Qu = −v ∈ −C. This shows that Q(C) ⊆ C ∪ −C and hence

Q (̃C) ⊆ C̃.
Now, applying this argument to L−1 and to the corresponding Q−1, we get Q−1(̃C) ⊆ C̃. This means

that Q ∈ Aut(̃C). Thus, we have shown that

L = Q̂ , where Q ∈ Aut(̃C).

It is clear that for any Q ∈ Aut(̃C), −Q ∈ Aut(̃C) and Q̂ =̂−Q . In view of Proposition 4, each element

of Aut(K) has exactly two pre-images in Aut(̃C). This completes the proof of (a).
(b) In view of the previous proposition, we need only to show that the specified mapping is sur-

jective. Let L ∈ Lie(Aut(K)). By Lemma 10 given below, there is a differentiable curve Q(t) in Aut(̃C)
such that Q(0) = I and etL(X) = Q(t)XQ(t)T for all X ∈ Sn. Now, differentiating both sides of

etL(X) = Q(t)XQ(t)T (for any fixed X) and evaluating the derivatives at t = 0, we get

L(X) = AX + XAT (X ∈ Sn),

where A = Q ′(0). By definition, A ∈ Lie(Aut(̃C)). Thus, L = LA with A ∈ Lie(Aut(̃C)). This completes

the proof of (b). �

Lemma 10. Suppose that the mapping Q �→ Q̂ : Aut(̃C) → Aut(K) is a two-to-one surjective mapping.

Let ε > 0 so that the open balls B(I, ε) and B(−I, ε) around I and −I respectively, are disjoint in Rn×n.

Then for any L ∈ Lie(Aut(K)), there is a δ > 0 and a (unique) differentiable curve Q(t) : (−δ, δ) →
Aut(̃C) ∩ B(I, 1

2
ε) such that Q(0) = I and

etL = ̂Q(t) ∀ t ∈ (−δ, δ) .

Furthermore, if C is pointed, we may choose ε > 0 and δ > 0 so that

Q(t) : (−δ, δ) → Aut(C) ∩ B

(
I,

1

2
ε

)
.

Proof. Let L ∈ Lie(Aut(K)) so that etL ∈ Aut(K) for all t. By our assumption, there existsQ(t) ∈ Aut(̃C)
such that etL(X) = Q(t)XQ(t)T for all X ∈ Sn. We see that etL(I) = Q(t)Q(t)T ; this shows that

{Q(t) : −1 � t � 1} is aboundedset inRn×n.Nowchooseδ > 0so that for t ∈ (−δ, δ),Q(t) ∈ B(I, ε)
or Q(t) ∈ B(−I, ε). (If this is not true, then by using the boundedness of {Q(t) : −1 � t � 1} and

taking appropriate limits, we get aQ that is outside these balls satisfying Id(X) = QXQT for all X ∈ Sn.

This would contradict Proposition 4.)

Note that if Q(t) ∈ B(−I, ε), then −Q(t) ∈ B(I, ε). Since the mapping Q �→ Q̂ is two-to-one

mapping, in B(I, ε) we have exactly one Q(t) for each t.

Thus, we may assume that for each t ∈ (−δ, δ), there is a unique Q(t) ∈ B(I, 1
2
ε) ∩ Aut(̃C). We

now claim that this Q(t) is continuous in t. Suppose tk → t in (−δ, δ) and (because of boundedness)

Q(tkm) → Q �= Q(t). But then

QXQ
T = lim etkm L(X) = etL(X) = Q(t)XQ(t)T (X ∈ Sn)

implies thatQ = Q(t) by Proposition 4 anduniqueness in B(I, ε). This contradiction proves continuity.

Now, by taking a smaller δ (if necessary), we show that Q(t) is differentiable on (−δ, δ). We show

this by proving the differentiability of the first column of Q(t) and repeating the argument for other

columns. Let e1 be the vector in Rn with one in the first slot and zeros elsewhere and E1 := e1e
T
1. Let

Q(t)e1 = v(t) so that

etL(E1) = v(t)v(t)T .
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Let α(t) denote the first component of v(t). Now, for all t near zero, the (1, 1) component of etL(E1),
namely etL(E1)11, is close to one and differentiable in t; thus, α(t)2 = etL(E1)11 is nonzero and differ-

entiable at all points near zero. As α(t) is continuous, nonzero, and α(t)2 is differentiable, α(t) is also
differentiable near zero. Now, v(t) is 1

α(t)
times the first column of etL(E1), hence differentiable at all

points near zero. By a similar argument, we see that all columns of Q(t) are differentiable near zero.

Thus, Q(t) is differentiable on some (−δ, δ).
Now suppose that C is pointed. The stated conclusion about Q(t) follows once we show that for all

small ε > 0,

Aut(̃C) ∩ B(I, ε) ⊆ Aut(C).
Assuming this inclusion to be false for every ε, we can find sequences xk ∈ C, Qk ∈ Aut(̃C) such

that Qk → I and Qk(xk) �∈ C. We may assume that ||xk|| = 1 for all k and let lim xk = x ∈ C.
As Qk(xk) ∈ −C, taking limits, we get I(x) ∈ −C. Thus, x ∈ C ∩ −C. Since ||x|| = 1, we reach a

contradiction to the pointedness of C. We thus have the inclusion and the proof is complete. �

Proof of Theorem 2. Suppose that C is pointed and has nonempty interior. To see Item (i), we proceed

as in the proof of Theorem 1. As Aut(C) is a subgroup of Aut(̃C) and Lie(Aut(C)) ⊆ Lie(Aut(̃C)), the
mapping A �→ LA : Lie(Aut(C)) → Lie(Aut(K)) is an injective Lie algebra homomorphism. To show

that this map is surjective, let L ∈ Lie(Aut(K)). Then we have etL ∈ Aut(K) for all t ∈ R. By Theorem 1

and Lemma 10, there is a differentiable curve Q(t) in Aut(C) such that Q(0) = I and etL = ̂Q(t) for all
t near zero. By repeating the proof of part (b) in Theorem 1, we verify that L = LA, where, A = Q ′(0)
now belongs to Lie(Aut(C)). This completes the proof of (i).

Now suppose, additionally, that C \ {0} is connected. Since Aut(C) is a subgroup of Aut(̃C), the
mapping Q �→ Q̂ : Aut(C) → Aut(K) is a homomorphism. We now show that this map is surjective

and injective. Let L ∈ Aut(K). Since int(C) �= ∅ we can apply Theorem 1 and get a Q ∈ Aut(̃C) such

that L = Q̂ . Then Q (̃C) = C̃ implies that Q(C) ⊆ C ∪ −C and by the invertibility of Q ,

Q(C \ {0}) ⊆ (C \ {0}) ∪ −(C \ {0}).
Since C is pointed, the sets C \ {0} and−(C \ {0}) are separated (in the sense that each is disjoint from

the closure of the other). By our assumption, C \ {0} is connected; hence Q(C \ {0}) is also connected.

It follows that Q(C \ {0}) ⊆ (C \ {0}) or Q(C \ {0}) ⊆ −(C \ {0}) and by taking closures, Q(C) ⊆ C
or Q(C) ⊆ −C; As Q and −Q define the same L, without loss of generality, we may assume that

Q(C) ⊆ C. Now, working with L−1 and Q−1, we get Q−1(C) ⊆ C or Q−1(C) ⊆ −C. Since C is pointed

and has nonzero elements, we cannot have Q(C) ⊆ C and Q−1(C) ⊆ −C. Thus, Q−1(C) ⊆ C. Hence,
Q(C) = C, that is, Q ∈ Aut(C). Thus, we have shown that for each L ∈ Aut(K), there is a Q ∈ Aut(C)
such that L = Q̂ .

Now for the uniqueness: Now let P ∈ Aut(C) such that L = P̂. Then, by Proposition 4, P = ±Q . If

P = −Q , then we have the equality −C = −Q(C) = P(C) = C. However, this cannot happen since C
is pointed and has nonzero elements. Hence we must have P = Q . This establishes (ii).

Finally, let C be a proper cone. Then C is pointed and C \ {0} is convex. Also, int(C) �= ∅. Thus, all
the conditions of Theorem 2 are satisfied. Hence we have statements (i) and (ii). This completes the

proof. �

Remark. The proof of Theorem 2 given above actually reveals the following: Suppose C is a closed

pointed cone with nonempty interior and C \ {0} is connected. Then
Aut(̃C) = Aut(C) ∪ −Aut(C).

We now provide some examples to illustrate our results.

Example 1. Let C = Rn (or the closed upper half-space in Rn). Then Theorem 1 is applicable and we

get the results mentioned in the Introduction. �
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We note that Theorem 2 is applicable to any self-dual cone C (that is, C = C∗), in particular, to

symmetric cones in Euclidean Jordan algebras [5].

Example 2. Let C = Rn+. In this case,K is the set of all completely positive matrices [3] and E is the set

of all symmetric copositive matrices. It is well known that every automorphism of Rn+ is a product of

a permutation matrix and a diagonal matrix with positive diagonal. In addition, it easily follows from

Theorem 3 that Lie(Aut(Rn+)) is the set of all n × n diagonal matrices. Now, applying Theorem 2, one

can describe Aut(K) and its Lie algebra. �

The following examples show that the mappings Q �→ Q̂ and A �→ LA in Theorems 1 and 2 need

not be surjective without appropriate conditions on C.

Example 3. For n>2, let Ln+ denote the so-called ice-cream cone (or the second order cone) given by

Ln+ =
⎧⎨
⎩

⎡
⎣ t

x

⎤
⎦ ∈ Rn : t ∈ R, x ∈ Rn−1, t � ‖x‖

⎫⎬
⎭

and let

C := ∂Ln+ =
⎧⎨
⎩

⎡
⎣ t

x

⎤
⎦ ∈ Rn : t = ‖x‖

⎫⎬
⎭ .

Clearly C is pointed and C \ {0} is connected, but int(C) = ∅. (It may be instructive to visualize C in R3.)

Let Jn = diag(1, −1, . . . , −1) ∈ Rn×n and �(X) := 〈X, Jn〉 for any X ∈ Sn. Since K − K ⊆ ker(�),
we see that K − K �= Sn.

Let L be an invertible linear transformation on Sn such that L coincides with the Identity transfor-

mation on K − K, but not on the entire Sn. (For example, writing Sn = (K − K) ⊕ (K − K)⊥, we

may define L(x + y) = x + 2y for x ∈ K − K and y ∈ (K − K)⊥.) Then L ∈ Aut(K). Assume that

there is a Q ∈ Aut(̃C) such that L = Q̂ , that is, L(X) = QXQT for every X ∈ Sn. Then for all u ∈ C,
uuT = L(uuT ) = QuuTQT = (Qu)(Qu)T . By Proposition 6, Q(u) = ±u. Thus, C = C1 ∪ C2, where

C1 := {u ∈ C : Qu = u} and C2 := {u ∈ C : Qu = −u}. Since C1 \ {0} and C2 \ {0} are separated, and

C \ {0} = C1 \ {0} ∪ C2 \ {0},
by connectedness of C \ {0}, we get C ⊆ C1 or C ⊆ C2, i.e., Q = ±I on C. If Q = I on C, by linearity,

Q = I on Ln+. As Ln+ − Ln+ = Rn, Q = I on Rn. This yields L = Q̂ = Î = Id which is a contradiction.

Similarly, ifQ = −I on C, we getQ = −I on Rn and hence L = Id, which, once again, is a contradiction.

This shows that the mapping Q �→ Q̂ : Aut(̃C) → Aut(K) is not surjective. Thus, statements (a) in

Theorem 1 and (ii) in Theorem 2 fail to hold.

Now, for t ∈ (−1, 1), consider the differentiable curve L(t) : (K −K) ⊕ (K −K)⊥ → (K −K) ⊕
(K − K)⊥ given by

L(t)(x + y) := x + (1 + t)y (x ∈ K − K, y ∈ (K − K)⊥).

Then L(t) ∈ Aut(K) and L(0) = Id. By definition, L1 := L′(0) ∈ Lie(Aut(K)). Note that

L1(x) = 0 for all x ∈ K − K and L1(y) = y for all y ∈ (K − K)⊥.

Suppose, if possible, L1 = LA for some A ∈ Rn×n. Since L1(K − K) = {0}, for any u ∈ C,

0 = L1(uu
T ) = AuuT + uuTAT .

It follows that for any x ∈ int(Ln+),

xT (AuuT + uuTAT )x = 0.
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Thus, uTx (xTAu) = 0. As uTx > 0 for any x ∈ int(Ln+) and 0 �= u ∈ C, we must have xTAu = 0

for all such x and u. Since Ln+ − Ln+ = Rn, xTAu = 0 for all x ∈ Rn and u ∈ C; thus, for any u ∈ C,
Au = 0. Again, by linearity, Au = 0 for all u ∈ Ln+ and Au = 0 for any u ∈ Rn. Thus, A = 0. This

gives L1 = LA = 0. This is not possible, as L1(y) = y for all y ∈ (K − K)⊥. Hence, statements (b) in
Theorem 1 and (i) in Theorem 2 fail to hold. �

Example 4. Let C be the closed upper half-plane in R2. Then C has nonempty interior, C \ {0} is

connected, but C is not pointed. We show that the mappings in Items (i) and (ii) of Theorem 2 are not

surjective.

It is clear that every (symmetric) 2 × 2 matrix that is copositive on C is also positive semidefinite;

hence E = S2+ and so K = S2+. By the result mentioned in the Introduction,

Aut(K) =
{
Q̂ : Q invertible in R2×2

}
and

Lie(Aut(K)) =
{
LA : A ∈ R2×2

}
.

For the cone C, it is easily verified that

Aut(C) =
⎧⎨
⎩A =

⎡
⎣ a b

0 c

⎤
⎦ : c > 0, a �= 0

⎫⎬
⎭

and

Lie(Aut(C)) =
⎧⎨
⎩B =

⎡
⎣ p q

0 r

⎤
⎦ : p, q, r ∈ R

⎫⎬
⎭ .

Now let

Q =
⎡
⎣ 2 1

1 1

⎤
⎦ .

For this Q , it is easily verified (using Proposition 4) that Q̂ , which is in Aut(K), is not of the

form Â for any A ∈ Aut(C). Also, LQ , which belongs to Lie(Aut(K), is not of the form LB for any

B ∈ Lie(Aut(C)). �

Example 5. Let C = R2+ ∪{λf : λ � 0}, where f = [−1 1]T . Then C is pointed, has nonempty interior,

but C \ {0} is not connected.
Now it is easy to see that Aut(C) ⊆ Aut(R2+) and based on the description of elements in Aut(R2+)

(see Example 2),

Aut(C) =
⎧⎨
⎩A =

⎡
⎣ α 0

0 α

⎤
⎦ : α > 0

⎫⎬
⎭ .

Let

Q =
⎡
⎣ 0 1

1 0

⎤
⎦ .

Then Q(f ) = −f and Q ∈ Aut(R2+) and so, Q̂(K) ⊆ K. As Q−1 = Q , we must have Q̂ ∈ Aut(K). By

Proposition 4, Q̂ is not of the form Â for any A ∈ Aut(C). Thus, the mapping in Item (ii) of Theorem 2

is not surjective. �
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4. The copositive cone

Recall that E denotes the copositive cone of C. In this section we describe the elements of Aut(E)
and its Lie algebra.

It is easily seen that for any closed convex cone K in (the real Hilbert space) H,

L ∈ Aut(K) ⇔ L∗ ∈ Aut(K∗),

where L∗ denotes the adjoint/transpose of L. This equivalence, along with the equality (etL)∗ = etL
∗

for any t ∈ R shows that

L ∈ Lie(Aut(K)) ⇔ L∗ ∈ Lie(Aut(K∗)).
When specialized to a completely positive cone, we get the following.

Proposition 11. Let C be any closed cone in Rn. Then

(i) L ∈ Aut(K) ⇔ L∗ ∈ Aut(E).
(ii) L ∈ Lie(Aut(K)) ⇔ L∗ ∈ Lie(Aut(E)).

This proposition, coupled with Theorems 1 and 2, will allow us to describe the automorphisms of

E and the corresponding Lie algebra. Here is a sample result.

Corollary 12. Suppose C is a closed pointed cone with nonempty interior and C \ {0} is connected. Then
every L ∈ Aut(E) is given by

L(X) = QTXQ (X ∈ Sn)

for some Q ∈ Aut(C) and every L ∈ Lie(Aut(E)) is of the form L = LAT for some A ∈ Lie(Aut(C)).
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