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Peirce-diagonalizable linear transformations on a Euclidean Jordan algebra are of the form L(x) = A · x :=∑
aijxij , where A = [aij] is a real symmetric matrix and

∑
xij is the Peirce decomposition of an element

x in the algebra with respect to a Jordan frame. Examples of such transformations include Lyapunov
transformations and quadratic representations on Euclidean Jordan algebras. Schur (or Hadamard) product
of symmetric matrices provides another example. Motivated by a recent generalization of the Schur product
theorem, we study general and complementarity properties of such transformations.

Keywords: Peirce-diagonalizable transformation; linear complementarity problem; Euclidean Jordan
algebra; symmetric cone; Schur/Hadamard product; Lypaunov transformation; quadratic representation

2010 AMS Subject Classifications: 15A33; 17C20; 17C65; 90C33

1. Introduction

Let L be a linear transformation on a Euclidean Jordan algebra (V , ◦, 〈·, ·〉) of rank r and let Sr

denote the set of all real r × r symmetric matrices. We say that L is Peirce-diagonalizable if there
exist a Jordan frame {e1, e2, . . . , er} (with a specified ordering of its elements) in V and a matrix
A = [aij] ∈ Sr such that for any x ∈ V with its Peirce decomposition x = ∑

i≤j xij with respect to
{e1, e2, . . . , er}, we have

L(x) = A · x :=
∑

1≤i≤j≤r

aijxij. (1)

The above expression defines a Peirce-diagonal transformation and a Peirce-diagonal represen-
tation of L.

Our first example is obtained by taking V = Sr with the canonical Jordan frame (see Section 2
for various notations and definitions). In this case, A · x reduces to the well-known Schur (also
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720 M.S. Gowda et al.

known as Hadamard) product of two symmetric matrices and L is the corresponding induced
transformation.

On a general Euclidean Jordan algebra, we have two basic examples. The Lyapunov transfor-
mation La and the quadratic representation Pa corresponding to any element a ∈ V are defined,
respectively, by

La(x) = a ◦ x and Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x.

If the spectral decomposition of a is given by

a = a1e1 + a2e2 + · · · + arer ,

where {e1, e2, . . . , er} is a Jordan frame and a1, a2, . . . , ar are the eigenvalues of a, then with
respect to this Jordan frame and the induced Peirce decomposition x = ∑

i≤j xij of any element,
we have [19]

La(x) =
∑
i≤j

(
ai + aj

2

)
xij and Pa(x) =

∑
i≤j

(aiaj)xij. (2)

Thus, both La and Pa have the form (1) and the corresponding matrices are given, respectively,
by [(ai + aj)/2] and [aiaj]. We shall see (in Section 3) that every transformation L given by (1) is
a linear combination of quadratic representations.

Our third example deals with Löwner functions. Given a differentiable function φ : R → R,
consider the corresponding Löwner function � : V → V defined by (the spectral decompositions)

a = λ1e1 + λ2e2 + · · · + λrer and �(a) = φ(λ1)e1 + φ(λ2)e2 + · · · + φ(λr)er .

Then, the directional derivative of � at a = ∑
λiei in the direction of x = ∑

xij (Peirce
decomposition written with respect to {e1, e2, . . . , er}) is given by

�′(a; x) :=
∑
i≤j

aijxij,

where aij := (φ(λi) − φ(λj))/(λi − λj) (which, by convention, is the derivative of φ when λi =
λj). We now note that (for a fixed a), �′(a; x) is of the form (1). Korányi [15] studies the operator
monotonicity of � based on such expressions.

Expressions like (1) also appear in connection with the so-called uniform non-singularity
property; see the recent paper [2] for further details.

Our objective in this paper is to study Peirce-diagonalizable transformations and, in particular,
to describe their complementarity properties. Consider a Euclidean Jordan algebra V with the
corresponding symmetric cone K . Given a linear transformation L on V and an element q ∈ V ,
the (symmetric cone) linear complementarity problem, denoted by LCP(L, K , q), is to find an
x ∈ V such that

x ∈ K , L(x) + q ∈ K , and 〈L(x) + q, x〉 = 0. (3)

This problem is a generalization of the standard linear complementarity problem [3] which cor-
responds to a square matrix M ∈ Rn×n, the cone Rn+, and a vector q ∈ Rn; it is a special case of
a variational inequality problem [4].

In the theory of complementarity problems, global uniqueness and solvability issues are of
fundamental importance. A linear transformation L is said to have the Q-property (respectively,
GUS-property) if for every q ∈ V , LCP(L, K , q) has a solution (respectively, unique solution);
it is said to have the R0-property if LCP(L, K , 0) has a unique solution (namely zero) and the
S-property if there is a d > 0 in V with L(d) > 0, where d > 0 means that d belongs to the interior
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Optimization Methods & Software 721

of symmetric cone of V . In the context of Lyapunov and quadratic representations, we have the
following known results.

(i) For any transformation of the form La,

strict monotonicity ⇐⇒ GUS ⇐⇒ P ⇐⇒ Q ⇐⇒ S ⇐⇒ a > 0.

(ii) For any transformation of the form Pa,

strict monotonicity ⇐⇒ GUS ⇐⇒ P ⇐⇒ R0 ⇐⇒ Q.

In this paper, we will extend item (i) to Peirce-diagonalizable transformations satisfying the so-
called Z-property (see Corollary 6.2 and Remark 11). We will also show how to deduce item (ii)
from general complementarity results on Peirce-diagonalizable transformations (see Theorem 6.4
and Remark 14).

Our motivation for this study also comes from a recent result which generalizes the well-known
Schur product theorem to Euclidean Jordan algebras [18]: If A in (1) is positive-semidefinite and
x ∈ K , then A · x ∈ K .

The organization of the paper is as follows. Section 2 covers some basic material. In Section 3,
we cover general properties of Peirce-diagonalizable transformations. Section 4 deals with the
copositivity property. In this section, we introduce certain cones between the cones of completely
positive matrices and doubly non-negative matrices. Section 5 deals with the Z-property, and
finally in Section 6, we cover the complementarity properties.

2. Some preliminaries

Throughout this paper, we fix a Euclidean Jordan algebra (V , ◦, 〈·, ·〉) of rank r with the corre-
sponding symmetric cone (of squares) K [5,9]. It is well known that V is a product of simple
algebras, each isomorphic to one of the matrix algebras Sn, Hn, Qn (which are, respectively, the
spaces of n × n Hermitian matrices over real numbers/complex numbers/quaternions), O3 (the
space of 3 × 3 Hermitian matrices over octonions), or the Jordan spin algebra Ln (n ≥ 3). In the
matrix algebras, the (canonical) inner product is given by

〈X , Y〉 = Re trace(XY),

and in Ln, it is the usual inner product on Rn. The symmetric cone of Sn will be denoted by Sn+
(with a similar notation in other spaces). In any matrix algebra, let Eij be the matrix with ones
in the (i, j) and (j, i) slots and zeros elsewhere; we write, Ei := Eii. In a matrix algebra of rank
r, {E1, E2, . . . , Er} is the canonical Jordan frame. We use the notation A = [aij] to say that A is a
matrix with components aij; we also write

A � 0 ⇐⇒ A ∈ Sr
+ and x ≥ 0 (> 0) ⇐⇒ x ∈ K (int(K)).

For a given Jordan frame {e1, e2, . . . , er} in V , we consider the corresponding Peirce
decomposition [5, Theorem IV.2.1]

V =
∑

1≤i≤j≤r

Vij,

where Vii = Rei and Vij = {x ∈ V : x ◦ ei = 1
2 x = x ◦ ej}, when i 
= j. For any x ∈ V , we get the

corresponding Peirce decomposition x = ∑
i≤j xij. We note that this is an orthogonal direct sum

and xii = xiei for all i, where xi ∈ R.
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722 M.S. Gowda et al.

We recall a few new concepts and notation. Given a matrix A ∈ Sr , a Euclidean Jordan algebra
V , and a Jordan frame {e1, e2, . . . , er} with a specific ordering, we define the linear transformation
DA : V → V and Schur (or Hadamard) products in the following way: for any two elements
x, y ∈ V with Peirce decompositions x = ∑

i≤j xij and y = ∑
i≤j yij,

DA(x) = A · x :=
∑

1≤i≤j≤r

aijxij ∈ V (4)

and

x�y :=
r∑
1

〈xii, yii〉Ei + 1

2

∑
1≤i<j≤r

〈xij, yij〉Eij ∈ Sr . (5)

We immediately note that

〈DA(x), x〉 = 〈A · x, x〉 =
∑
i≤j

aij‖xij‖2 = 〈A, x�x〉, (6)

where the inner product on the far right is taken in Sr .
When V is Sr with the canonical Jordan frame, the above products A · x and x�y coincide with

the well-known Schur (or Hadamard) product of two symmetric matrices. This can be seen as
follows. Consider matrices x = [αij] and y = [βij] in Sr so that x = ∑

i≤j αijEij and y = ∑
i≤j βijEij

are their corresponding Peirce decompositions with respect to the canonical Jordan frame. Then
simple calculations show that

A · x =
∑
i≤j

aijαijEij = [aijαij] and x�y = [αijβij],

where the latter expression is obtained by noting that in Sr , 〈Eij, Eij〉 = trace(E2
ij) = 2.

It is interesting to note that

(A · x)�x = A · (x�x), (7)

where the ‘mid-dot’ product on the right is taken in Sr with respect to the canonical Jordan frame.

Definition 2.1 A linear transformation L on V is said to be Peirce-diagonalizable if there exist
a Jordan frame and a symmetric matrix A such that L = DA.

Remark 1 Note that in Definition 2.1, both L and DA use a specific ordering of the Jordan frame.
Any permutation of the elements of the Jordan frame results in a row and column permutation of
the matrix A.

Remark 2 In Definition 2.1 of DA, we say that an entry aij in A is relevant if Vij 
= {0}. (When
aij is non-relevant, it plays no role in DA.) By replacing all non-relevant entries of A by zero, we
may rewrite DA = DB, where every non-relevant entry of B is zero. We also note that when V is
simple, every Vij is non-trivial [5, Corollary IV.2.4] and thus every entry in A is relevant. We use
the notation rel(A) > 0 to mean that all relevant entries of A are positive.

Remark 3 Suppose V is a product of simple algebras. Then with appropriate grouping of the
given Jordan frame, any element x in V can be decomposed into components so that the Peirce
decomposition of x splits into Peirce decompositions of components in each of the simple algebras.
Because of the uniqueness of the matrix B (of the previous remark), the transformation DB splits
into component transformations of the same form, each of which is defined on a simple algebra.
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Optimization Methods & Software 723

Any such component transformation corresponds to a block submatrix of a matrix obtained by
permuting certain rows and columns of A. This type of decomposition will allow us, in certain
instances, to restrict our analysis to transformations on simple algebras.

Remark 4 Let V be a simple algebra and � : V → V be an algebra automorphism, that is, � is
an invertible linear transformation on V with �(x ◦ y) = �(x) ◦ �(y) for all x, y ∈ V . Since such
a � preserves the inner product in V [5, p. 57], it is easily verified that

�(x)�′�(y) = x�y, (8)

where �(x)�′�(y) is computed via the Peirce decompositions with respect to the Jordan frame
{�(e1), �(e2), . . . , �(er)}.

From now on, unless otherwise specified, Peirce decompositions and DA are considered with
respect to the (fixed, but arbitrary) Jordan frame {e1, e2, . . . , er} in V .

Properties of the products A · x and x�y are described in [18] and [11], respectively. In particular,
we have the following generalization of the classical Schur’s theorem [13, Theorem 5.2.1].

Proposition 2.2 Suppose A � 0 and x, y ≥ 0. Then,

A · x ≥ 0 and x�y � 0.

The following proposition is a key to many of our results. In the earlier versions of the paper,
the conclusion of this proposition was noted for each of the simple algebras and used in the proofs
of several results. The following explicit formulation – suggested by a referee – streamlined and
simplified our proofs. The classification-free proof of the lemma given below is due to this referee;
a rank/classification-dependent proof is outlined in Remark 5.

Proposition 2.3 Suppose that V is simple. Then, for any vector u ∈ Rr+, there exists an x ∈ K
such that

x�x = uuT. (9)

Proof Let u ∈ Rr+. We assume without loss of generality that r ≥ 2 and that the inner product
is given by 〈x, y〉 = tr(x ◦ y) so that the norm of any primitive element is one. (This is because,
in a simple algebra, the given inner product is a multiple of the trace inner product [5, Proposi-
tion III.4.1.].) For u ∈ Rr++, the element x constructed in the lemma below will satisfy (9). The
general case follows from a limiting argument. �

Lemma 2.4 (Due to a referee) Let V be a simple Jordan algebra, let {e1, . . . , er} be a Jordan
frame, and let u ∈ Rr++ be a vector and v = √

u. Choose for 1 < i ≤ r an element x1i ∈ V1i of
norm

√
2v1vi. Define xij := 2x1i ◦ x1j/v2

1 for 1 < i < j, xii := v2
i ei for all i, and x := ∑

i≤j xij.
Then, x ∈ K.
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724 M.S. Gowda et al.

Proof We show that x = x2/‖v‖2. In view of the standard properties of elements in Pierce
subspaces Vij, we have when 1 < i < j [5, Lemma IV.2.2]:

xij ∈ Vij, ‖xij‖ = 2‖x1i ◦ x1j‖
v2

1

= 2‖x1i‖ ‖x1j‖√
8v2

1

= √
2vivj, x2

ij = v2
i v2

j (ei + ej).

Also when 1 < i < j < k,

x1j ◦ xjk = x1j ◦
(

2x1j ◦ x1k

v2
1

)
= ‖x1j‖2

4v2
1

x1k = v2
j

2
x1k ,

xik

v4
1v2

j

8
= (x1i ◦ x1j) ◦ (x1j ◦ x1k) = xijv2

1

2
◦ xjkv2

1

2
= xij ◦ xjkv4

1

4
.

The first equality above comes directly from a polarization of Jordan’s axiom:

(a ◦ b) ◦ (c ◦ d) + (a ◦ c) ◦ (b ◦ d) + (a ◦ d) ◦ (b ◦ c)

= (a ◦ (b ◦ c)) ◦ d + b ◦ (a ◦ (c ◦ d)) + c ◦ (a ◦ (b ◦ d)),

with a = d = x1j, b = x1k , and c = x1i. Hence, 2xij ◦ xjk = v2
j xik; obviously, similar relations hold

for other orderings of i, j, k. Now

x2 =
⎛
⎝∑

i≤j

xij

⎞
⎠

2

=
r∑
1

x2
ii +

∑
i<k

x2
ik + 2

∑
i<k

xik ◦ xik + 2
∑
k<i

xii ◦ xki

+ 2
∑

i<j<k

xij ◦ xjk + 2
∑

i<k<j

xij ◦ xkj + 2
∑

k<i<j

xij ◦ xkj

=
r∑
1

v4
i ei +

∑
i<k

v2
i v2

k(ei + ek) +
∑
i<k

v2
i xik +

∑
k<i

v2
i xki

+
∑

i<j<k

v2
j xik +

∑
i<k<j

v2
j xik +

∑
k<i<j

v2
j xki

=
r∑
1

‖v‖2v2
i ei +

∑
i<k

‖v‖2xik = ‖v‖2x.

�

Remark 5 We now outline a rank/classification-dependent proof of Proposition 2.3. We assume
once again that V is simple and carries the trace inner product.

Case 1 Rank of V is 2.
Let y12 ∈ V12 with norm

√
2. Define

y = e1 + e2 + y12 and x := Pa(y) = u1e1 + u2e2 + √
u1u2y12,

where a = √
u1e1 + √

u2e2. It follows from Lemma 1 in [12] that y ∈ K and hence x ∈ K . Now,
a direct verification leads to (9).

We note that (as in the original version of the paper) the verification of the inclusion x ∈ K can
be done by explicit calculations in the Jordan spin algebra Ln.
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Optimization Methods & Software 725

Case 2 Rank of V is more than 2.
In this case, by the classification theorem, V must be isomorphic to a matrix algebra. By

Remark 4, we may take the canonical Jordan frame as the given frame. Let v = √
u and x = vvT.

Then, x�x = uuT.
By taking u to be the vector of ones in Proposition 2.3, and using (7), we get the following.

Corollary 2.5 When V is simple, for any A ∈ Sr , there exists an x ∈ K such that

A = (A · x)�x.

3. Some general properties

Recall that Peirce decompositions and DA are considered with respect to the given Jordan frame
{e1, e2, . . . , er} in V . Our first result describes some general properties of DA.

Theorem 3.1 For any A ∈ Sr , the following statements hold:

(1) DA is self-adjoint.
(2) The spectrum of DA is σ(DA) = {aij : 1 ≤ i ≤ j ≤ r, aij is relevant}.
(3) DA is diagonalizable.
(4) If � is an algebra automorphism of V , then �−1DA� is Peirce-diagonalizable with respect to

the Jordan frame {�−1(e1), �−1(e2), . . . , �−1(er)} and with the same matrix A.
(5) DA is a finite linear combination of quadratic representations corresponding to mutually

orthogonal elements which have their spectral decompositions with respect to {e1, e2, . . . , er}.
(6) If A � 0, then DA = ∑k

1 Pai with 1 ≤ k ≤ r, where ais are mutually orthogonal and have
their spectral decompositions with respect to {e1, e2, . . . , er}. In particular, if A is completely
positive (that is, A is a finite sum of matrices of the form uuT, where u is a non-negative
vector), we may assume that ai ∈ K for all i.

(7) If A � 0, then DA(K) ⊆ K ; converse holds if V is simple.

Proof (1) This follows from the equality 〈DA(x), y〉 = ∑
i≤j aij〈xij, yij〉 = 〈x, DA(y)〉.

(2) When Vij 
= {0}, any non-zero xij ∈ Vij acts as an eigenvector of DA with the corresponding
eigenvalue aij. Hence, all relevant aijs form a subset of σ(DA). Also, if x is an eigenvector of
DA corresponding to an eigenvalue λ, by writing the Peirce decomposition of x with respect
to {e1, e2, . . . , er} and using the orthogonality of the Peirce spaces Vij, we deduce that λ must
be equal to some relevant aij. This proves that the spectrum of DA consists precisely of all
relevant aijs.

(3) DA is a multiple of the identity on each Vij. By choosing a basis in each Vij, we get a basis of
V consisting of eigenvectors of DA. This proves that DA is diagonalizable.

(4) Let � be an algebra automorphism of V ; let �−1(ei) = fi for all i, so that {f1, f2, . . . , fr} is a
Jordan frame in V . Consider the Peirce decomposition y = ∑

i≤j yij of any element y with
respect to {f1, f2, . . . , fr}. Then, �(y) = ∑

i≤j �(yij) is the Peirce decomposition of �(y) with
respect to {e1, e2, . . . , er}. Hence, DA(�(y)) = ∑

i≤j aij�(yij). This implies that

�−1DA�(y) =
∑
i≤j

aijyij.

Thus, �−1DA� is Peirce-diagonalizable with respect to the Jordan frame {f1, f2, . . . , fr} and
with the matrix A.
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726 M.S. Gowda et al.

(5) Since A ∈ Sr , we may write A as a linear combination of matrices of the form uuT, where
u ∈ Rr . From (2), (uuT) · x = ∑

i≤j uiujxij = Pa(x), where a = ∑r
1 uiei. We see that DA is

a linear combination of quadratic representations of the form Pa, where a has its spectral
decomposition with respect to {e1, e2, . . . , er}.

(6) When A � 0, we can write DA = ∑
γkPak = ∑

P√
γkak whenever γk are non-negative. When

A is completely positive, we may assume that u (which appears in the proof of Item (5)) is a
non-negative vector. In this case, the corresponding a belongs to K .

(7) If A � 0, then by Proposition 2.2, DA(K) ⊆ K . For the converse, suppose V is simple. By
Corollary 2.5, A = (A · x)�x for some x ∈ K .When DA(K) ⊆ K , by Proposition 2.2, A · x ≥ 0
and so (A · x)�x � 0. Thus, A � 0.

�

Corollary 3.2 Suppose V is simple and for some a ∈ V , La(K) ⊆ K. Then, a is a non-negative
multiple of the unit element.

Proof Using the spectral decomposition of a = ∑r
1 aiei, we may assume that La = DA, where

A = [(ai + aj)/2]. Since La(K) ⊆ K , by the previous theorem, A is positive-semidefinite. By
considering the non-negativity of any 2 × 2 principal minor of A, we conclude that all diagonal
elements of A are equal. This gives the stated result. �

4. The copositivity property

In this section, we address the question of when DA is copositive on K . Recall that an n × n
real matrix A (symmetric or not) is a copositive (strictly copositive) matrix if xTAx ≥ 0 (> 0)

for all 0 
= x ∈ Rn+ and DA is copositive (strictly copositive) on K if 〈DA(x), x〉 ≥ 0 (> 0) for all
0 
= x ∈ K . We shall see that copositivity of DA is closely related to the cone of completely positive
matrices. We first recall some definitions and introduce some notation. For any set 
, let cone(
)

denote the convex cone generated by 
 (so that cone(
) is the set of all finite non-negative linear
combinations of elements of 
). Let

COPn := The set of all copositive matrices in Sn,

CPn := cone{uuT : u ∈ Rn
+},

NN n := The set of all non-negative matrices in Sn,

DNN n := Sn
+ ∩ NN n, and

D(K) := cone{x�x : x ∈ K}.
We note that CPn is the cone of completely positive matrices and DNN n is the cone of doubly
non-negative matrices; for information on such matrices, see [1].

Remark 6 When V is simple, D(K) is independent of the Jordan frame used to define x�x. This
follows from (8). It is also independent of the underlying inner product in V . A similar statement
can be made for general algebras (as they are products of simple ones).

It is well known [1, p. 71] that the cones COPn, CPn, and DNN n are closed. We prove a
similar result for D(K).

Proposition 4.1 Let r denote the rank of V and N = r(r + 1)/2. Then,
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Optimization Methods & Software 727

(i) D(K) = {∑N
1 xi�xi : xi ∈ K , 1 ≤ i ≤ N},

(ii) D(K) is closed in Sr , and
(iii) D(K) ⊆ DNN r .
(iv) When V is simple, CPr ⊆ D(K) ⊆ DNN r with equality for r ≤ 4.

Proof (i) This follows from a standard application of Carathéodory’s theorem for cones [1,
p. 46].

(ii) To show that D(K) is closed, we take a sequence {zk} ∈ D(K) ⊆ Sr that converges to z ∈ Sn.
Then, with respect to the canonical Jordan frame in Sr , we have (zk)ij → zij for all i ≤ j.
Now, zk = ∑N

m=1 x(k)
m �x(k)

m with x(k)
m ∈ K for all m and k. Then,

(zk)ij =
N∑

m=1

(x(k)
m �x(k)

m )ij =
N∑

m=1

εij‖(x(k)
m )ij‖2Eij,

where
∑

i≤j(x
(k)
m )ij is the Peirce decomposition of x(k)

m and εij is a positive number that depends
only on the pair (i, j). As (zk)ij converges for each m and (i, j), (x(k)

m )ij is bounded as k → ∞.
We may assume, as Vijs are closed, that (x(k)

m )ij converges to, say, (xm)ij in Vij. Defining
xm := ∑

i≤j(xm)ij, we see that x(k)
m → xm. Then, xm ∈ K and x(k)

m �x(k)
m → xm�xm for each m.

We conclude that z = ∑N
m=1 xm�xm ∈ D(K). Thus, D(K) is closed.

(iii) Every matrix in D(K) is positive-semidefinite (from Proposition 2.2) and has non-negative
entries (from the definition of x�x). Thus, we have the stated inclusion.

(iv) When V is simple, the inclusion CPr ⊆ D(K) follows from Proposition 2.3. When r ≤ 4, it
is known [1, p. 73] that CPr = DNN r .

�

Remark 7 For r ≥ 5, we have the inclusions

CPr ⊆ D(Sr
+) ⊆ D(Hr

+) ⊆ D(Qr
+) ⊆ DNN r .

While CPr 
= DNN r for r ≥ 5 (see the example given below), it is not clear if the other inclusions
are indeed proper. In particular, it is not clear if x�x is completely positive for every x ∈ Sr+.

Remark 8 Consider the following matrices:

M =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

⎤
⎥⎥⎥⎥⎦ and N =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
1 2 1 0 0
0 1 3 1 0
0 0 1 4 1
1 0 0 1 5

⎤
⎥⎥⎥⎥⎦ .

It is known that M and N are doubly non-negative, while N is completely positive, M not com-
pletely positive [1, p. 63 and 79]. It can be easily shown that M and N are not of the form x�x for
any x ∈ S5+. (If M = x�x for some x ∈ S5+, then the entries of x are the square roots of entries of
M. The leading 3 × 3 principal minor of any such x is negative.) It may be interesting to see if M
belongs to D(S5+) or not.

Theorem 4.2 Suppose V is simple and DA is copositive on K. Then, A is a copositive matrix.
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728 M.S. Gowda et al.

Proof Since V is simple, we can apply Proposition 2.3: for any u ∈ Rr+, there is an x ∈ K such
that x�x = uuT. Then, by (6),

0 ≤ 〈DA(x), x〉 = 〈A, x�x〉 = 〈A, uuT〉 = uTAu.

Thus, A is a copositive matrix. �

Remark 9 It is clear that the converse of the above result depends on whether the equality
CPr = D(K) holds or not.

5. The Z-property

A linear transformation L on V is said to be a Z-transformation if

x ≥ 0, y ≥ 0, and 〈x, y〉 = 0 =⇒ 〈L(x), y〉 ≤ 0.

Being a generalization of a Z-matrix, such a transformation has numerous eigenvalue and
complementarity properties [10,12]. In this section, we characterize the Z-property of a
Peirce-diagonalizable transformation.

Corresponding to a Jordan frame {e1, e2, . . . , er}, we define two sets in Sr :

C := {x�y : x ≥ 0, y ≥ 0}

and

Ĉ := {x�y : 0 ≤ x ⊥ y ≥ 0}.
Now, define the linear transformation � : Sr → Sr by �(Z) := EZE = δ(Z)E, where Z = [zij],
δ(Z) = ∑

i,j zij, and E denotes the matrix of ones. It is clear that � is self-adjoint on Sr .

Lemma 5.1 When V is simple with rank r, we have C = Sr+ and Ĉ = Sr+ ∩ Ker(�).

Proof From Proposition 2.2, C ⊆ Sr+. To see the reverse inclusion, let A ∈ Sr+. By Corollary 2.5,
there is an x ∈ K such that A = (A · x)�x. By Proposition 2.2, y := A · x ≥ 0 and so A = y�x,
where x, y ∈ K . Thus, Sr+ ⊆ C and the required equality holds.

Now, let B = x�y ∈ Ĉ. Then, δ(B) = ∑
i,j bij = ∑

i≤j〈xij, yij〉 = 〈x, y〉 = 0 and so B ∈ Ker(�).
Since B ∈ C = Sr+, we have B ∈ Sr+ ∩ Ker(�). For the reverse inclusion, let B ∈ Sr+ ∩ Ker(�).
As C = Sr+, we can write B = x�y, where x, y ∈ K . Then, 〈x, y〉 = δ(B) = 0 and so B ∈ Ĉ. This
completes the proof. �

Theorem 5.2 Let V be simple and A ∈ Sr . Then, DA has the Z-property if and only if there exist
Bk ∈ Sr+ and a sequence αk ∈ R for which A = limk→∞(αkE − Bk). In this case,

DA = lim
k→∞

(αkI − DBk ).
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Proof From the previous lemma, Ĉ = Sr+ ∩ Ker(�). Then, the dual of Ĉ is given by [1, p. 48]

(Ĉ)∗ = Sr+ + Ran(�),

where the overline denotes the closure. Now, DA has the Z-property if and only if

0 ≤ x ⊥ y ≥ 0 =⇒ 〈DA(x), y〉 ≤ 0.

Writing 〈DA(x), y〉 = ∑
i≤j aij〈xij, yij〉 = trace(AZ), where Z = x�y ∈ Ĉ, we see that DA has the

Z-property if and only if

Z ∈ Ĉ =⇒ 〈A, Z〉 ≤ 0.

This means that DA has the Z-property if and only if −A ∈ (Ĉ)∗ = Sr+ + Ran(�). The stated
conclusions follows. �

Remark 10 It is known [17] that any Z-transformation is of the form limk→∞(αkI − Sk), where
the linear transformation Sk keeps the cone K invariant. Our theorem above reinforces this
statement with an additional information that Peirce-diagonalizability is preserved.

6. Complementarity properties

In this section, we present some complementarity properties of DA.

Theorem 6.1 For any A ∈ Sr , the following statements are equivalent:

(i) DA is strictly (=strongly) monotone on V : 〈DA(x), x〉 > 0 for all x 
= 0.
(ii) DA has the GUS-property: for all q ∈ V , LCP(DA, K , q) has a unique solution.

(iii) DA has the P-property: for any x, if x and DA(x) operator commute with x ◦ DA(x) ≤ 0, then
x = 0.

(iv) rel(A) > 0, that is, all relevant entries of A are positive.

Proof The implications (i) ⇒ (ii) ⇒ (iii) are well known and true for any linear transformation
[9, Theorem 11].

Now suppose (iii) holds. Since DA is self-adjoint and satisfies the P-property, all its eigenvalues
are positive in view of Theorem 11 in [9]. Item (iv) now follows from Theorem 3.1, item (2). Now
suppose that rel(A) > 0. Then, we have

〈DA(x), x〉 =
∑
i≤j

aij‖xij‖2 > 0 ∀x 
= 0.

(Note that when some aij is not relevant, the corresponding xij is zero.) This proves that (iv) ⇒ (i).
�

Corollary 6.2 Suppose that DA has the Z-property. Then,

strict monotonicity ⇐⇒ GUS ⇐⇒ P ⇐⇒ Q ⇐⇒ S ⇐⇒ diag(A) > 0.

Proof The implications

strict monotonicity =⇒ GUS =⇒ P =⇒ Q =⇒ S

always hold for any linear transformation [9]. Suppose that DA has the S-property. Then for some
d > 0 in V , A · d = DA(d) > 0. By writing the Peirce decompositions of d and A · d, we see that
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730 M.S. Gowda et al.

diag(A) > 0. Now suppose that diag(A) > 0. Then, DA(e) > 0, where e is the unit element in V .
This, together with the Z-property of DA, implies the P-property of DA (see Theorem 4 in [12]).
We can now apply the previous theorem to get the strict monotonicity of DA. �

Remark 11 Consider an element a in V whose spectral decomposition is given by a =
a1e2 + a2e2 + · · · + arer . Since La = DA, where A = [(ai + aj)/2], and La has the Z-property,
Corollary 6.2 gives the equivalence of various properties of La mentioned in Section 1. Sim-
ple examples can be constructed (via Theorem 5.2) to see that Corollary 6.2 goes beyond
transformations of the form La.

With a given above, we can apply the previous theorem to Pa = DB, where B = [aiaj] to get
the equivalence of strict monotonicity, GUS-, and P-properties [8].

In what follows, we use the notation A ∈ R0 to mean that A has the R0-property, that is,
LCP(A, Rn+, 0) has a unique solution (namely zero). A similar notation is used for DA in relation
to LCP(DA, K , 0).

Theorem 6.3 Suppose A � 0. If A ∈ R0, then DA ∈ R0. Converse holds when V is simple.

Proof Assume that A ∈ R0, but DA 
∈ R0. Then, there is a non-zero x ∈ V such that x ≥ 0,
DA(x) ≥ 0, and 〈DA(x), x〉 = 0. We have from (6)

0 = 〈DA(x), x〉 = 〈A, x�x〉.
As x ≥ 0 in V , X := x�x � 0 (by Proposition 2.2). Now in Sr

X � 0, A � 0, and 〈A, X〉 = 0 =⇒ AX = 0.

Since X, which is non-zero, consists of non-negative entries, for any non-zero column u in X, we
have Au = 0. This u is a non-zero solution of the problem LCP(A, Rr+, 0), yielding a contradiction.
Hence, DA ∈ R0.

For the converse, suppose that V is simple and DA ∈ R0. Assume, if possible, that A 
∈ R0.
Then, there exists a non-zero u ∈ Rr such that

u ≥ 0, Au ≥ 0, and 〈Au, u〉 = 0.

As V is simple, for this u, by Proposition 2.3, there is an x ∈ K such that x�x = uuT. Since u is
non-zero, x is also non-zero. Now

〈DA(x), x〉 = 〈A, x�x〉 = 〈A, uuT〉 = uTAu = 0.

We also have DA(x) = A · x ≥ 0. Thus, even in this case, DA 
∈ R0. Hence, when V is simple,
DA ∈ R0 ⇒ A ∈ R0. �

Remark 12 Theorem 6.3 may not hold if A is not positive-semidefinite. For example, consider
the matrices

A =
[

0 −1
−1 1

]
and C =

[−1 1
1 −1

]
,

with the corresponding transformations DA(x) = A · x and DC(x) = C · x on S2. It is easily seen
that A is in R0 while DA 
∈ R0 and DC is in R0 while C 
∈ R0.

Before formulating our next result, we recall some definitions. Given a linear transformation
L on V , its principal subtransformations are obtained in the following way: take any non-zero
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idempotent c in V . Then, the transformation Tc := PcL : V(c, 1) → V(c, 1) is called a principal
subtransformation of L, where V(c, 1) = {x ∈ V : x ◦ c = x}. (We note here that V(c, 1) is a
subalgebra of V .) We say that L has the completely Q-property if for every non-zero idempotent
c, the subtransformation Tc has the Q-property on V(c, 1). The transformation L is said to have the
S-property if there exists a d > 0 in V such that L(d) > 0. The completely S-property is defined
by requiring that all principal subtransformations have the S-property.

It is well known [6] that for a symmetric positive-semidefinite matrix A, the R0- and Q-
properties are equivalent to the strict copositivity property on Rn. A related result, given by Malik
[16] for linear transformations on Euclidean Jordan algebras, says that for a self-adjoint, cone-
invariant transformation, R0-, completely Q-, and completely S-properties are equivalent to the
strict copositivity property. These two results yield the following.

Theorem 6.4 With A � 0, consider the following statements:

(a) A has the Q-property.
(b) A is strictly copositive.
(c) A has the R0-property.
(d) DA has the R0-property.
(e) DA has the completely S-property.
(f) DA has the completely Q-property.
(g) DA is strictly copositive.
(h) DA has the Q-property.

Then,

(a) ⇐⇒ (b) ⇐⇒ (c) =⇒ (d) ⇐⇒ (e) ⇐⇒ (f) ⇐⇒ (g) =⇒ (h).

Proof As A is symmetric and positive-semidefinite, the equivalence of (a)–(c) is given in [6];
the implication (c) ⇒ (d) is given in the previous result. As A is positive-semidefinite, DA (which
is self-adjoint) keeps the cone-invariant. The equivalence of (d)–(g) now follows from Malik
[16, Theorem 3.3.2 and Corollary 3.3.2]. Finally, the implication (g) ⇒ (h) follows from the
well-known theorem of Karamardian [14]. �

Remark 13 One may ask if the reverse implications hold in Theorem 6.4. Since DA involves
only the relevant entries of A, easy examples (e.g. V = R2 = S1 × S1) can be constructed in the
non-simple case to show that (h) need not imply (a). While we do not have an answer to this
question in the simple algebra case, in the result below we state some necessary conditions for
DA to have the Q-property.

Proposition 6.5 Suppose DA has the Q-property. Then, the following statements hold:

(i) The diagonal elements of A are positive.
(ii) When V is simple, no positive linear combination of two rows of A can be zero.

(iii) If V has rank 2 and A � 0, then DA has the R0-property.

Proof (i) Since DA has the Q-property, it has the S-property, that is, there is a u > 0 in V such
that DA(u) > 0. Writing the Peirce decompositions u = ∑

i≤j uij and DA(u) = ∑
i≤j aijuij, we see

that ui > 0 and aiiui > 0 for all i, where uii = uiei. Thus, the diagonal of A is positive. Now, let
b := ∑r

1(a
−1
ii )1/4ei and consider D̂A = PbDAPb. It is easily seen that D̂A has the Q-property and

Peirce-diagonalizable with the matrix whose entries are aij/
√

aiiajj.
Note that the diagonal elements of this latter matrix are one.
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732 M.S. Gowda et al.

(ii) Suppose V is simple and let, without loss of generality, λA1 + μA2 = 0, where λ and
μ are positive numbers, and A1 and A2, respectively, denote the first and second rows of A.
Let a = √

λe1 + √
μe2 + e3 + e4 + · · · + er and consider D̂A := PaDAPa. Then, D̂A has the Q-

property and is Peirce-diagonalizable with a matrix in which the sum of the first two rows is zero.
Thus, we may assume without loss of generality that in the given matrix A, the sum of first two
rows is zero. As V is simple, the space V12 is non-zero. Let q12 be any non-zero element in V12. We
claim that LCP(DA, K , q12) does not have a solution. Assuming the contrary, let x be a solution
to this problem and let y = DA(x) + q12. Then, x ≥ 0, y ≥ 0, and x ◦ y = 0. Writing the Peirce
decompositions of x and y and using the properties of the spaces Vij [5, Theorem IV.2.1], we see
that

0 = (x ◦ y)12 = 1

2
(a11 + a12)x1x12 + 1

2
(a12 + a22)x2x12

+
∑
2<i

(a1i + a2i)x1i ◦ x2i + 1

2
(x1 + x2)q12,

where x11 = x1e1 and x22 = x2e2. Since the sum of first two rows of A is zero, the above expression
reduces to 0 = 1

2 (x1 + x2)q12. As q12 is non-zero, we get x1 + x2 = 0. Now, since x ≥ 0, we must
have x1 ≥ 0 and x2 ≥ 0. Thus, we have x1 = 0 = x2. This leads, from x ≥ 0, to x1j = 0 = x2j for
all j [7, Proposition 3.2]. But then y ≥ 0 together with y11 = a11x11 = 0 leads to y1j = 0 for all j,
and, in particular, to y12 = 0. Now we see that 0 = y12 = a12x12 + q12 = q12, which contradicts
our assumption that q12 is non-zero. Hence, DA does not have the Q-property, contrary to our
assumption. This proves the stated assertion.

(iii) Now assume that V has rank 2. In this case, A is a 2 × 2 matrix. Without loss of generality
(see the proof of Item (i)), assume that the diagonal of A consists of ones. Given that DA has
the Q-property, we claim that A has the R0-property and (via the previous theorem) DA has the
R0-property. Assume, if possible, that there is a non-zero vector d ∈ R2 such that d ≥ 0, Ad ≥ 0,
and 〈d, Ad〉 = 0. As A is symmetric and positive semidefinite, these conditions lead to Ad = 0.
Since each diagonal element of A is one, d cannot have just one non-zero component. Thus, both
components of d are non-zero. In this case, a positive linear combination of rows of A would be
zero. This implies, see Item (ii), that V must be non-simple. In this case, V is isomorphic to R2

and we may write for any x, x = x1e1 + x2e2, DA(x) = a11x1e1 + a22x2e2. Thus, we may regard
DA as a diagonal matrix acting on R2. Now, it is easy to show (from the Q-property) that DA has
the R0-property. This completes the proof. �

Remark 14 From Remark 11, Theorem 6.4, and the well-known implication that P ⇒ R0 always
holds for any linear transformation, we see that for Pa

strict monotonicity =⇒ GUS =⇒ P =⇒ R0 =⇒ Q.

We now prove the reverse implications. Suppose, for some a ∈ V , DA = Pa has the Q-property.
We show that Pa is strictly monotone. Suppose first that V is simple. By writing the spectral
decomposition a = a1e1 + a2e2 + · · · + arer we may let A = [aiaj]. Then, ai 
= 0 for all i, by item
(i) in Proposition 6.5. If some ai and aj have opposite signs, then a positive linear combination of
the rows of A corresponding to i and j would be zero, contradicting item (ii). Thus, all ai have the
same sign. This means that ±a > 0 and A = [aiaj] is a matrix with positive entries; consequently,
by Theorem 6.1, DA is strictly monotone. Now suppose that V is a product of simple algebras Vi,
i = 1, 2, . . . , m. Then, we can write Pa as a product of transformations Pa(i) , where a(i) ∈ Vi for all
i. Since Pa has the Q-property, it follows that every Pa(i) has the Q-property on Vi. By our earlier
argument, Pa(i) is strictly monotone on Vi and so Pa will also be strictly monotone on V .

We thus see the equivalence of various complementarity properties of Pa mentioned in Section 1.
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