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of a square matrix on Rn. Motivated by the equivalence of P and S

properties for a Z-matrix [2] and a similar result for Lyapunov and
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in this paper, we present two results supporting the conjecture that

P and S properties are equivalent for a Z-transformation on a Euclid-

ean Jordan algebra.We show that the conjecture holds for Lyapunov-

like transformations and Z-transformations satisfying an additional

condition.
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1. Introduction

Consider a Euclidean Jordan algebra (V, ◦, 〈·, ·〉) with the corresponding symmetric cone K [4]. In

the settingof linear complementarityproblemsover symmetric cones, the followingproperties of a lin-

ear transformationareof fundamental importanceandhavebeenwell studied.Theyaregeneralizations

of variousmatrix properties studied in the setting of standard linear complementarity problems [3].

A linear transformation L on V is said to have the

• GUS-property if for every q ∈ V, the symmetric cone linear complementarity problem LCP(L, K, q)
has a unique solution, that is, there is a unique x ∈ V such that

∗ Corresponding author.

E-mail addresses: gowda@math.umbc.edu (M.S. Gowda), jtao@loyola.edu (J. Tao), gravi@hotmail.com (G. Ravindran).

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.10.019

http://dx.doi.org/10.1016/j.laa.2011.10.019
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.10.019


2202 M.S. Gowda et al. / Linear Algebra and its Applications 436 (2012) 2201–2209

x � 0, L(x) + q � 0, and 〈L(x) + q, x〉 = 0,

where x � 0means that x ∈ K;

• P-property if [x and L(x) operator commute, x ◦ L(x) � 0] ⇒ x = 0;
• Q-property if for every q ∈ V, LCP(L, K, q) has a solution;

• S-property if there exists d ∈ V such that d > 0 and L(d) > 0, where d > 0 means that

d ∈ interior(K);
• Z-property if [x � 0, y � 0, and 〈x, y〉 = 0] ⇒ 〈L(x), y〉 � 0;
• Lyapunov-like property if both L and −L have the Z-property;

• Positive stable property if all the eigenvalues of L have positive real parts.

It is known that in any Euclidean Jordan algebra, the following implications hold [8,9]:

GUS-property ⇒ P-property ⇒ Q -property ⇒ S-property

and when L has the Z-property,

Q -property ⇔ S-property ⇔ Positive stable property.

Since GUS , P andQ properties are difficult to characterize for a general linear transformation, as in the

current state of affairs,we limit ourselves to certain special classes of transformations. In this paper,we

consider transformations with the Z-property (in particular, those with the Lyapunov-like property)

and investigate the validity of the following conjecture [9]:

Conjecture. For any linear transformation with the Z-property, P and S properties are equivalent.

The above conjecture is known to hold in the following special cases/settings:

(1) V = Rn and K = Rn+; see [2, Chapter 6, Theorem 2.3, 3, Theorems 3.3.4, 3.3.7, and 3.11.10].

(2) V = Sn (the space of all real n × n symmetric matrices), K = Sn+, and L = LA (Lyapunov

transformation), where for any matrix A ∈ Rn×n, LA(X) := AX + XAT ; see [6]. We note that LA
is Lyapunov-like.

(3) V = Sn, K = Sn+, and L = SA (Stein transformation), where for any matrix A ∈ Rn×n,

SA(X) := X − AXAT ; see [5]. We note that SA has the Z-property.

(4) Rank of V is 2; see [9].

In this paper, going beyond the settings of Items (1) and (2) above, we prove the following results

on a general Euclidean Jordan algebra.

(a) If L has the Z and S properties, then for some c > 0, P−1
c LPc has the P-property, where Pc denotes

the quadratic representation of c.

(b) If L is Lyapunov-like, then P and S properties are equivalent.

These results are novel and significant in the sense that they are valid on any Euclidean Jordan algebra

and for transformationsmoregeneral thanmatrices overRn (of Item(1)) andLyapunov transformations

on Sn (of Item (2)). In addition, our proofs are coordinate and classification free, and the proof of Item

(b) uses the new result (which we shall prove using Lie-algebraic ideas) that a transformation L is

Lyapunov-like on V if and only if L is of the form La + Dwhere a ∈ V , La(x) := a ◦ x and D is a (inner)

derivation on V .

2. Preliminaries

Throughout this paper, we let V denote a Euclidean Jordan algebra of rank r and follow the notation

and basic results from [4] or [8]. The symmetric cone of V is denoted by K; the inner product and

Jordan product of two elements x and y in V are denoted, respectively, by 〈x, y〉 and x ◦ y. In V , e
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denotes the unit element. We use the notation x � 0 (x > 0) to indicate that x ∈ K (respectively,

x ∈ interior(K)). In V wewrite x ⊥ y if 〈x, y〉 = 0. The canonical or trace inner product on V is given by

〈x, y〉tr := tr(x ◦ y).

When V is simple, there exists a positive number α such that, 〈x, y〉 = α tr(x◦y) for all x and y (see [4,

Proposition III.4.1]).More generally, if V is a product of simple algebras Vi (i = 1, 2, . . . ,N) (where the

Jordan product is computed componentwise and the inner product is the sum of the inner products

in each Vi), then for two objects x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) in V ,

〈x, y〉 =
N∑
1

〈xi, yi〉 =
N∑
1

αi tr(xi ◦ yi) =
N∑
1

αi 〈xi, yi〉tr . (1)

We also note that

〈x, y〉tr =
N∑
1

〈xi, yi〉tr . (2)

It follows from these that x � 0, y � 0, 〈x, y〉 = 0 ⇔ xi � 0, yi � 0, and 〈xi, yi〉 = 0 ∀ i.
Given any a ∈ V , we let La and Pa denote the corresponding Lyapunov transformation and quadratic

representation of a on V :

La(x) := a ◦ x and Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

We say that elements a and b in V operator commute if LaLb = LbLa (equivalently, a and b have their

spectral decompositions with respect to a common Jordan frame).

Fromnowon,weuse a boldface letter to denote either a class of linear transformations or a property

satisfied by a linear transformation; for example, L ∈ P if and only if L has the P-property.

3. Z-transformations and the P-property

We recall the following from [11,9].

Theorem 1. The following are equivalent:

(i) L has the Z-property.

(ii) For every Jordan frame {e1, e2, . . . , er} in V, it holds that

〈L(ei), ej〉 � 0 for all i 
= j.

(iii) e−tL(K) ⊆ K for all t � 0 in R.

The result below shows that the Z-property is “independent" of the inner product.

Proposition 2. Suppose L has the Z-property on the Euclidean Jordan algebra V which carries the inner

product 〈·, ·〉. Then L has the Z-property with respect to the canonical inner product 〈·, ·〉tr and conversely.

Proof. The result is obvious when V is simple, as any inner product on a simple algebra is a posi-

tive multiple of the trace inner product, see [4, Proposition III.4.1]. Now assume that V is a product

of simple algebras; for simplicity, let V = V1 × V2, where V1 and V2 are simple. Assume that L

has the Z-property with respect to 〈·, ·〉 and consider x = (x1, x2) � 0, y = (y1, y2) � 0 with

0 = 〈x, y〉tr = 〈x1, y1〉tr + 〈x2, y2〉tr . This implies that 〈xi, yi〉tr = 0 for i = 1, 2 and hence (via (1)),

0 � x ⊥ (y1, 0) � 0 with respect to 〈·, ·〉. Hence 〈L(x), (y1, 0)〉 � 0, which yields 〈L(x)1, y1〉tr � 0.

A similar inequality ensues when we replace the subscript 1 by 2. By adding these inequalities and

using (2), we get 〈L(x), y〉tr � 0. This proves that L has the Z-property with respect to the trace inner

product. The converse statement is proved in a similar way. �
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In the result below,without loss of generality,V carries the trace inner product, inwhich case, the norm

of any primitive idempotent is one. Note that changing the inner product has no effect on the P-property.

Theorem 3. If L ∈ Z and L(e) > 0, then L ∈ P. More generally, if L ∈ Z ∩ S, then there is a c > 0 such

that P−1
c LPc ∈ P.

Proof. First suppose that L ∈ Z and L(e) > 0. Let x ∈ V be such that

x and L(x) operator commute with x ◦ L(x) � 0.

Then for some Jordan frame {e1, e2, . . . , er} in V we have the spectral decompositions,

x =
r∑
1

xiei and L(x) =
r∑
1

yiei,

where xiyi � 0 for all i = 1, 2, . . . , r. Hence,

r∑
1

xiL(ei) = L(x) =
r∑
1

yiei,

which leads to

r∑
1

xi〈L(ei), ej〉 = yj ∀ j = 1, 2, . . . , r (3)

as eis are orthogonal and ||ej|| = 1 for all j. Now, in view of Theorem 1(ii), the matrix A := [aij] with

aij = 〈L(ei), ej〉 is a Z-matrix and ATp = q, where p (q) is the column vector in Rr whose components

are xi (respectively, yi). As xiyi � 0 for all i = 1, 2, . . . , r, we see that p ∗ ATp � 0, where ‘∗’ denotes
the componentwise product. Now the assumption L(e) > 0 implies that

r∑
i=1

〈L(ei), ej〉 = 〈L(e), ej〉 > 0 ∀ j = 1, 2, . . . , r.

This leads to

AT1 > 0 (in Rr),

where 1 is the vector in Rr with all components equal to one. This means that the Z-matrix AT is also

an S-matrix. It follows that, see [3, Theorem 3.11.10], AT is a P-matrix and hence p∗ATp � 0 ⇒ p = 0.

This proves that xi = 0 for all i. Hence L has the P-property.

Now for the general case, assume that L ∈ Z and that there is a d > 0 such that L(d) > 0.

Put c := √
d > 0 and consider the quadratic representation Pc . Then Pc is self-adjoint, invertible,

(Pc)
−1 = Pc−1 , Pc(K) = K, and Pc(e) = c2 = d. It is easily seen that

L̃ := P−1
c LPc

is aZ-transformationwith L̃(e) = (Pc)
−1(L(d)) > 0. By the first part of the proof, L̃ has theP-property.

This completes the proof. �

4. Lyapunov-like transformations

In this section, we give a characterization of Lyapunov-like transformations on Euclidean Jordan al-

gebras by using Lie-algebraic results. LetAut(K) denote the set of all (invertible) linear transformations

which map K onto K . We recall that the corresponding Lie algebra is given by [1]

Lie(Aut(K)) = {L ∈ B(V) : etL ∈ Aut(K), ∀ t ∈ R},
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where B(V) is the set of all linear transformations on V . A linear transformation D on V is said to be a

derivation if for all x, y ∈ V ,

D(x ◦ y) = D(x) ◦ y + x ◦ D(y).

It is said to be an inner derivation if it is a linear combination of commutators of the form

[La, Lb] := LaLb − LbLa

for some a, b in V .

Theorem 4. The following are equivalent:

(i) L is Lyapunov-like on V.

(ii) For any Jordan frame {e1, e2, . . . , er}, 〈L(ei), ej〉 = 0 ∀ i 
= j.

(iii) etL ∈ Aut(K) for all t ∈ R.

(iv) L ∈ Lie(Aut(K)).
(v) L = La + D, where a ∈ V and D is an inner derivation.

Proof. The equivalence of (i) and (ii) comes from Theorem 1 applied to L and −L. Since the condition

etL(K) ⊆ K ∀ t ∈ R can be written as etL(K) = K for all t ∈ R, it follows that (i) and (iii) are

equivalent, once again, by Theorem 1. The equivalence of (iii) and (iv) is just the definition. Finally,

the equivalence of (iv) and (v) follows from [4, Proposition VIII.2.6] and the fact that on a Euclidean

Jordan algebra, every derivation is inner, see [4, Proposition VI.1.2] or [10, Theorem 8, p. 87]. �

It follows from the above theorem that every derivation is Lyapunov-like and (since derivations are

skew-symmetric, see [4, Proposition VIII.2.6]) every symmetric Lyapunov-like transformation on V is

of the form La for some a ∈ V . In addition, every Lyapunov-like transformation on Sn is of the form

LA for some A ∈ Rn×n (with similar statements in the matrix algebras over complex numbers and

quaternions).

5. The P-property of Lyapunov-like transformations

In this section, we show that P and S properties are equivalent for Lyapunov-like transformations.

Henceforth, we assume that the inner product is given by the trace inner product. Given any idempotent

c ∈ V , we let

V(c, 1) := {x ∈ V : x ◦ c = x}.
Theorem 5. For a Lyapunov-like transformation, the P and S properties are equivalent.

Since the proof is somewhat involved, we first give a sketch of the proof. Assume that L is Lyapunov-

like with the S-property, but not the P-property. Then there is a nonzero element x and a Jordan frame

{e1, e2, . . . , er} such that x = ∑k
1 xiei with xi 
= 0 for all i = 1, 2, . . . , k, L(x) = ∑k

1 yiei with xiyi � 0

for all i. With W := V(e1 + e2 + · · · + ek, 1), we show that L(W) ⊆ W . As L is positive stable, it

turns out that the restriction L′ of L to W is also positive stable, hence has positive trace. From the

inequalities xiyi � 0 we show that the trace of L′ is non-positive, leading to a contradiction. Thus the

S-property implies the P-property when L is Lyapunov-like. The other implication is always true.

Before giving a detailed proof of this result, we prove several lemmas leading up to Proposition 12

which deals with the inclusion L(W) ⊆ W (mentioned above). In these lemmas, we fix a Jordan frame

{e1, e2, . . . , er} in V and consider the corresponding Peirce decomposition V = ∑
i�j Vij and properties

of Vij given in [4, Theorem IV.2.1]. Furthermore, in each of these lemmas, we assume that V has appropriate

rank to make the lemma non-vacuous. Throughout, we assume that L is Lyapunov-like.
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Lemma 6. For i 
= j, let xij ∈ Vij with ||xij|| = 1. Then

(a) x := ei + ej +
√

2xij � 0,

(b) y := ei + ej −
√

2xij � 0, and

(c) 〈x, y〉 = 0.

Proof. (a) In V , consider any d = ∑
diei + ∑

dij � 0. We note that 2didj � ||dij||2 for all i 
= j, see [4,

Exercise 7, p. 80]. Then,

〈x, d〉 = di + dj +
√

2〈xij, dij〉 � di + dj −
√

2||xij||||dij||
= di + dj −

√
2||dij|| � di + dj − 2

√
di

√
dj = (

√
di −

√
dj)

2 � 0.

As K is self-dual, x � 0. The proof of (b) is similar, and (c) is obvious. �

Lemma 7. The following hold:

(a) i 
= j, xij ∈ Vij, ||xij|| = 1 ⇒ 〈L(xij), xij〉 = 1
2
(〈L(ei), ei〉 + 〈L(ej), ej〉).

(b) 〈L(ei), ei〉 � 0 ∀ i = 1, 2, . . . , r ⇒ Tr(L) � 0, where Tr(L) denotes the trace of the linear

transformation L on V.

Proof. (a) For a given xij , let x and y be as in the previous lemma. Since L is Lyapunov-like, we have

〈L(x), y〉 = 0 = 〈L(y), x〉. Now,

〈L(x), y〉 = 0 ⇒ 〈L(ei), ei〉 + 〈L(ej), ej〉 − 2〈L(xij), xij〉
= −√

2〈L(xij), ei + ej〉 + √
2〈L(ei) + L(ej), xij〉. (4)

〈L(y), x〉 = 0 ⇒ 〈L(ei), ei〉 + 〈L(ej), ej〉 − 2〈L(xij), xij〉
= √

2〈L(xij), ei + ej〉 − √
2〈L(ei) + L(ej), xij〉. (5)

Adding these equations, we get the desired result.

(b) Now suppose 〈L(ei), ei〉 � 0 for all i = 1, 2, . . . , r. Recall that the trace of the linear transfor-

mation L on the (real) Hilbert space V is the sum of numbers of the form 〈L(u), u〉, as u varies over any

orthonormal basis in V . (This can be seen by writing the matrix representation of L with respect to

an orthonormal basis and adding the diagonal elements of that matrix.) As V is an orthogonal direct

sum of spaces Vij for i � j, the union of orthonormal bases in various Vijs is an orthonormal basis

in V . By our assumption and Item (a), the sum of numbers of the form 〈L(u), u〉 as u varies over an

orthonormal basis in any Vij is non-positive. Thus, the sum of these, namely, Tr(L), is also non-positive.

This completes the proof. �

Lemma 8. Suppose i, k, and l are distinct and xkl ∈ Vkl. Then 〈L(ei), xkl〉 = 0 and 〈L(xkl), ei〉 = 0.

Proof. Without loss of generality, we assume that ||xkl|| = 1. Then ek + el −
√

2xkl � 0 by Lemma 6,

and 〈ei, ek + el −
√

2xkl〉 = 0 for i 
∈ {k, l}. Since L is a Lyapunov-like transformation, we have 〈L(ei),
ek+el−

√
2xkl〉 = 0 ⇒ 〈L(ei), xkl〉 = 0. Similarly, 〈L(ek+el−

√
2xkl), ei〉 = 0 ⇒ 〈L(xkl), ei〉 = 0. �

Lemma 9. Suppose i, j, k, and l are all distinct, xij ∈ Vij, and xkl ∈ Vkl. Then 〈L(xij), xkl〉 = 0.

Proof. Following Theorem 4, we let L = La + D, where a ∈ V and D is a derivation on V .

Then 〈La(xij), xkl〉 = 〈a, xij ◦ xkl〉 = 0. Further, 〈D(xij), xkl〉 = 2〈D(ei ◦ xij), xkl〉 = 2 [ei ◦ D(xij)+ D(ei) ◦ xij, xkl〉 = 2 [〈D(xij), ei ◦ xkl〉 + 〈D(ei), xij ◦ xkl〉] = 0. Thus, 〈L(xij), xkl〉 = 〈La(xij), xkl〉 +
〈D(xij), xkl〉 = 0. �
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Lemma 10. Suppose there exists x = ∑k
1 xiei such that xi 
= 0 for all i = 1, 2, . . . , k and

y = L(x) = ∑k
1 yiei. Then

〈L(ei), zij〉 = 0, ∀ i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , r}, zij ∈ Vij.

Proof. Fix i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , r} and zij ∈ Vij. Since the spaces Vij are mutually

orthogonal and zij ∈ Vij , we have 〈L(x), zij〉 = 〈y, zij〉 = 0. On expanding, we get

x1〈L(e1), zij〉+ x2〈L(e2), zij〉+ · · ·+ xi〈L(ei), zij〉+ xi+1〈L(ei+1), zij〉+ · · ·+ xk〈L(ek), zij〉 = 0.

By Lemma 8, 〈L(el), zij〉 = 0 for all l 
= i. For l = i, xi 
= 0 and so 〈L(ei), zij〉 = 0. �

By writing L = La + D and using ei ◦ zij = 1
2
zij , we may write the conclusion in the above lemma

as:

1

2
〈a, zij〉 + 〈D(ei), zij〉 = 0, ∀ i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , r}, zij ∈ Vij. (6)

Lemma 11. Suppose that the conditions of the previous lemma are in place. Then 〈L(xij), yil〉 = 0, for all

i 
= j ∈ {1, 2, . . . , k}, l ∈ {k + 1, k + 2, . . . , r}, xij ∈ Vij, and yil ∈ Vil.

Proof. We write L = La + D and let zjl := xij ◦ yil ∈ Vjl. Then

〈La(xij), yjl〉 = 〈a, xij ◦ yjl〉 = 〈a, zjl〉.
Also, using D(xij) = 2D(ej ◦ xij) = 2 [ej ◦ D(xij) + D(ej) ◦ xij], we have

〈D(xij), yil〉 = 2 [〈ej ◦ D(xij), yil〉 + 〈D(ej) ◦ xij, yil〉 = 2〈D(ej) ◦ xij, yil〉
since 〈ej ◦ D(xij), yil〉 = 〈D(xij), ej ◦ yil〉 = 0. Adding these two expressions, we get

〈L(xij), yil〉 = 2 [ 1

2
〈a, zjl〉 + 〈D(ej), zjl〉] = 0

by (6). This completes the proof. �

The above lemmas lead to the following result which may be of independent interest.

Proposition 12. Let L be Lyapunov-like on V and suppose that corresponding to a Jordan frame

{e1, e2, . . . , er}, there exists x = ∑k
1 xiei such that xi 
= 0 for all i = 1, 2, . . . , k, andy = L(x) = ∑k

1 yiei.

Let W := V(e1 + e2 + · · · + ek, 1). Then L(W) ⊆ W.

Proof. The result is obvious if k = 1 (as V(e1, 1) = Re1) or k = r. We assume that 1 < k < r.

This implies that r � 3 and Lemma 11 is applicable. Consider the Peirce decomposition of any x ∈ W

with respect to the Jordan frame {e1, e2, . . . , ek}: x = ∑k
1 xiei + ∑

1�i<j�k xij. We write the Peirce

decomposition of z := L(x) with respect to the Jordan frame {e1, e2, . . . , er} in V :

k∑
1

xiL(ei) + ∑
1�i<j�k

L(xij) =
⎛
⎝ k∑

1

ziei +
∑

1�i<j�k

zij

⎞
⎠ +

⎛
⎝ ∑

1�i�k<k+1�l�r

zil

⎞
⎠

+
⎛
⎝ r∑

k+1

ziei +
∑

k+1�i<l�r

zil

⎞
⎠ .

(Note that the last summation is vacuous when r = 3.) Now, taking the inner product of any term on

the left-hand side of the above expression with zil for 1 � i � k < k + 1 � l � r or with ziei for

i � k + 1, or with zil for k + 1 � i < l � r, and using the previous lemmas, we deduce that the last
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two (grouped) terms on the right-hand side of the above expression are both zero. Thus,

L(x) =
k∑
1

ziei +
∑

1�i<j�k

zij ∈ W .

This completes the proof. �

Proof of Theorem 5. Since the P-property always implies the S-property, we (only) prove the reverse

implication by assuming that L is Lyapunov-like on V and L ∈ S. Assume, if possible, there is a nonzero

x such that

x and y := L(x) operator commute, and x ◦ y � 0.

Then for some Jordan frame {e1, e2, . . . , er} in V ,

x =
r∑
1

xiei and L(x) =
r∑
1

yiei,

where xiyi � 0 for all i = 1, 2, . . . , r. As x 
= 0, we may assume that xi 
= 0 for 1 � i � k and xi = 0

for i > k, where k � r. Then x = ∑k
1 xiei and

k∑
1

xiL(ei) = L(x) =
r∑
1

yiei,

which leads to

k∑
1

xi〈L(ei), ej〉 = yj ∀j = 1, 2, . . . , r, (7)

as ||ej|| = 1 for all j. Since L is Lyapunov-like, these yield yj = 0 for j � k + 1 so that

L(x) = L

⎛
⎝ k∑

1

xiei

⎞
⎠ =

k∑
1

yiei.

Moreover,

〈L(ei), ei〉 = yi

xi
� 0 ∀ i = 1, 2, . . . , k. (8)

Let W := V(e1 + e2 + · · · + ek, 1). Then by Proposition 12, L(W) ⊆ W . Denote the restriction of

L to W by L′. Then L′ is Lyapunov-like on the (subalgebra) W . Also, the matrix representation of L on

V = W
⊕

W⊥ is of the form

⎡
⎣ A B

0 C

⎤
⎦ ,

whereA is thematrix representation of L′ onW . Since L is Lyapunov-like and hence a Z-transformation,

the S-property is equivalent to the positive stable property, see [9, Theorems 6 and 7]. This implies,

from the abovematrix representation, that L′ also has the positive stable property and so its tracemust

be positive. However, (8) implies that 〈L′(ei), ei〉 � 0 for all i = 1, 2, . . . , k and by Lemma 7, applied

to L′ and W , Tr(L′) � 0. This is a contradiction. Hence no x exists, proving the P-property of L. This

completes the proof of the theorem. �



M.S. Gowda et al. / Linear Algebra and its Applications 436 (2012) 2201–2209 2209

6. Concluding remarks

In this paper, we have presented two results in support of the conjecture that P and S properties

are equivalent for a Z-transformation. Regarding the GUS-property, it is known that a Lyapunov-like

transformation has the GUS-property if and only if it is positive stable and monotone [7]. However, a

characterization of the GUS-property for a general Z-transformation is still open.
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