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Abstract In a recent article Gowda and Sznajder (Linear Algebra Appl 432:1553–1559,
2010) studied the concept of Schur complement in Euclidean Jordan algebras and described
Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more
results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan
algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any Schur
complement of a strictly diagonally dominant element is strictly diagonally dominant. We
also introduce the concept of Schur product of a real symmetric matrix and an element of a
Euclidean Jordan algebra when its Peirce decomposition with respect to a Jordan frame is
given. An Oppenheim type inequality is proved in this setting.

Keywords Schur complements · Euclidean Jordan algebra · Crabtree-Haynsworth quotient
formula · Carlson-Markham strict diagonal dominance theorem · Schur product ·
Oppenheim inequality

1 Introduction

Consider a complex matrix M given in the block form

M =
[

A B
C D

]
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with A invertible. Then the Schur complement of A in M is given by

M/A = D − C A−1 B.

The Schur complement enjoys numerous properties such as the Schur determinantal formula,
the Haynsworth inertia formula, the Guttman rank formula, etc., and appears in various appli-
cations [3,18,22]. The above definition continues to be valid for quaternion matrices, but does
not make sense for octonion matrices for lack of associative property. In addition, lack of
a nontrivial multiplicative determinant for matrices over quaternions and octonions [2] pre-
vents one from a meaningful study of Schur complements of matrices over such numbers.
However, the concept of Schur complement can be studied for square Hermitian matrices
(of suitable size) over quaternions and octonions, and more generally over Euclidean Jordan
algebras.

Consider a Euclidean Jordan algebra J (which is a finite dimensional real inner product
space with a compatible Jordan product), an idempotent c ∈ J (that is, c2 = c), and the
corresponding Peirce decomposition

J = J (c, 1) ⊕ J (c,
1

2
) ⊕ J (c, 0), (1)

where J (c, γ ) = {x ∈ J : x ◦ c = γ x} and γ ∈ {0, 1
2 , 1}. For any x ∈ J , let

x = u + v + w, (2)

where u ∈ J (c, 1), v ∈ J (c, 1
2 ), and w ∈ J (c, 0). When u is invertible in the Euclidean

Jordan (sub)algebra J (c, 1), let u−1∗ denote the inverse of u in J (c, 1). In this case, the Schur
complement of u in x is defined by

x/u := w − Pv(u
−1∗ ),

where, for any element a ∈ J , the quadratic representation Pa is defined on J by

Pa(z) = 2a ◦ (a ◦ z) − (a ◦ a) ◦ z (z ∈ J ).

This concept was introduced in [16], see also [15], where it was shown that x/u ∈ J (c, 0)

and

det(x) = det(u) det(x/u). (3)

(Here, the determinants det(x), det(u), and det(x/u) are taken in the algebras J , J (c, 1),
and J (c, 0), respectively.) Based on this, Gowda and Sznajder [8] showed that

(i) In(x) = In(u) + In(x/u),

(ii) x > 0(≥ 0) in J if and only if u > 0(≥ 0) in J (c, 1) and x/u > 0(≥ 0) in J (c, 0),
and

(iii) rank(x) = rank(u) + rank(x/u),

where In(x) and rank(x) denote the inertia and rank of an element x , respectively, and x ≥ 0
means that x belongs to the symmetric cone in J .

With appropriate identification, the above results reduce to the familiar results of matrix
theory in the algebras Herm(Rn×n) and Herm(Cn×n) of all n × n Hermitian matrices over
real numbers and complex numbers. The novelty of the results (i)–(iii) lies in the fact that
they continue to hold in Herm(Hn×n) (the algebra of all n × n Hermitian matrices over
quaternions), Herm(O3×3) (the algebra of all 3×3 Hermitian matrices over octonions), and
the Jordan spin algebra Ln .
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The objective of this present paper is to describe some more results on the Schur comple-
ment in the setting of Euclidean Jordan algebras. The motivation for our work comes, once
again, from classical results.

Consider a complex matrix M with an invertible principal submatrix U . Let A be an invert-
ible principal submatrix of U . Then the well-known Crabtree-Haynsworth quotient formula
[4] says that U/A is a nonsingular principal submatrix of M/A and

(M/A)/(U/A) = M/U.

The proof of this result, see e.g., [22], Theorem 1.4, continues to hold for quaternion matrices.
Our first result deals with an analogue of these in Euclidean Jordan algebras:

Theorem 1 Let c and d be two idempotents in a Euclidean Jordan algebra J with d ≤ c.
For any x ∈ J , suppose that u := Pc(x) is invertible in J (c, 1) and a := Pd(u) is invertible
in J (d, 1). Then u/a = Pc−d(x/u) is invertible in J (c − d, 1) and

(x/a)/(u/a) = x/u. (4)

To describe our second result, consider a complex matrix M = [mi j ], which is strictly
diagonally dominant. This means that |mii | >

∑
j �=i |mi j | for all i . The Carlson-Markham

Theorem [1] says that if U is any principal submatrix of M , then U and M/U are strictly
diagonally dominant. Now consider a general Euclidean Jordan algebra J . We say that x
in J is strictly diagonally dominant [17] with respect to a Jordan frame {e1, . . . , er }, if the
corresponding Peirce decomposition

x =
r∑

i=1

xi ei +
∑

1≤i< j≤r

xi j

satisfies the inequalities

|xk | >
1√

2||ek ||

⎛
⎝k−1∑

i=1

||xik || +
r∑

j=k+1

||xk j ||
⎞
⎠ ∀ k = 1, 2, . . . , r.

In this paper, we prove the following generalization:

Theorem 2 Given a Jordan frame {e1, . . . , er } in J and 1 ≤ k ≤ r , let c := e1+e2+· · ·+ek

and x = u + v +w as in (2). If x is strictly diagonally dominant with respect to {e1, . . . , er },
then u ∈ J (c, 1) is strictly diagonally dominant with respect to {e1, . . . , ek} and x/u ∈
J (c, 0) is strictly diagonally dominant with respect to {ek+1, . . . , er }.

Our next set of results deals with analogues of the Schur product (also known as Hadamard
product), Schur’s theorem, and Oppenheim’s inequality in Euclidean Jordan algebras. Given
two real or complex matrices A = [ai j ] and X = [xi j ], the Schur product is given by
A ◦ X = [ai j xi j ]. The well-known Schur’s theorem [13] says that if A and X are both Her-
mitian and positive semidefinite, then so is A ◦ X . In this setting, the Oppenheim inequality
says that,

(a11a22 · · · arr ) det(X) ≤ det(A ◦ X) ≤ (a11a22 · · · arr )(x11x22 · · · xrr ).

Now let A = [ai j ] be an r × r real symmetric matrix and x = ∑
i≤ j xi j be the Peirce

decomposition of an x ∈ J with respect to a Jordan frame {e1, . . . , er }. Then we define the
Schur product of A and x by

A • x :=
∑
i≤ j

ai j xi j .
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We show that if A is positive semidefinite and x ≥ 0 in J , then A • x ≥ 0 in J and satisfies
an Oppenheim type inequality.

Here is an outline of our paper. In Sect. 2, we cover some basic material related to Euclid-
ean Jordan algebras. Section 3 deals with an analogue of the Crabtree-Haynsworth quotient
formula. In Sect. 4, we prove results on strict diagonal dominance and finally in Sect. 5,
present results related to the Schur product.

2 Preliminaries

Throughout this paper, we let (J , 〈·, ·〉, ◦) denote a Euclidean Jordan algebra of rank r
[6,9,20]. The symmetric cone of J is the cone of squares K := {x2 : x ∈ J }. We use the
notation x ≥ 0 (x > 0) when x ∈ K (respectively, x ∈ interior(K )). Let F denote the
set of all real numbers/complex numbers/quaternions/octonions. We write Herm(Fn×n) for
the space of all n × n Hermitian matrices with entries from F . With n = 3 for octonions and
no restriction for others, Herm(Fn×n) becomes a Euclidean Jordan algebra with the Jordan
product given by X ◦ Y = XY+Y X

2 and inner product given by 〈X, Y 〉 = Re tr(XY ). As is
well known, any Euclidean Jordan algebra is a product of simple Euclidean Jordan algebras
and every simple algebra is isomorphic to the Jordan spin algebra Ln or to the algebra of all
n × n real/complex/quaternion Hermitian matrices or to the algebra of all 3 × 3 octonion
Hermitian matrices.

Any element x ∈ J will have a spectral decomposition

x = λ1e1 + λ2e2 + · · · + λr er , (5)

where {e1, e2, . . . , er } is a Jordan frame in J and real numbers λ1, λ2, . . . , λr are the (spec-
tral) eigenvalues of x . Then the determinant and trace are defined by

det(x) := λ1λ2 · · · λr and tr(x) := λ1 + λ2 + · · · + λr . (6)

We remark that for Hermitian matrices over real numbers/complex numbers/quaternions,
these spectral eigenvalues coincide with the real right eigenvalues; they can be different in
the case of octonions [5,17].

It is well known that in J , 〈x, y〉tr := tr(x ◦ y) defines another compatible inner product
(which we call as the trace inner product). In this inner product, the norm of any primitive
idempotent is one.

For any a ∈ J , we define the Lyapunov transformation La by

La(x) = a ◦ x .

Two elements a and b in J are said to operator commute if La Lb = Lb La (which happens
if and only if a and b have their spectral decompositions with respect to a common Jordan
frame).

Let {e1, e2, . . . , er } be a fixed Jordan frame in J . For i, j ∈ {1, 2, . . . , r}, consider the
eigenspaces

Ji i := {x ∈ J : x ◦ ei = x} = R ei

and when i �= j ,

Ji j := {x ∈ J : x ◦ ei = 1

2
x = x ◦ e j }.
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Then the space J is the orthogonal direct sum of spaces Ji j (i ≤ j). Thus, given any Jordan
frame {e1, e2, . . . , er }, we can write any element x ∈ J as

x =
∑

1≤i≤ j≤r

xi j =
r∑

i=1

xi ei +
∑

1≤i< j≤r

xi j , (7)

where xi ∈ R and xi j ∈ Ji j . We refer to this as the Peirce decomposition of x with respect
to the given Jordan frame. When c = e1 + e2 + · · · + ek for k ≤ r , the decompositions (2)
and (7) are related by

x =
∑

1≤i≤ j≤r

xi j = u + v + w, u =
∑

1≤i≤ j≤k

xi j , and w =
∑

k+1≤i≤ j≤r

xi j .

In this case, the quadratic representation Pc is nothing but the projection onto J (c, 1) ([6],
Theorem IV.2.1). In particular, Pc(x) = u.

In the process of proving Theorems 1 and 2, we will need to reduce or replace a general
Euclidean Jordan algebra by a simple algebra, any Jordan frame by a specific Jordan frame,
and the inner product by the trace inner product. We justify this reduction process by means
of the following remarks [6].

Any Euclidean Jordan algebra is a product of simple algebras. In this setting, the Jordan
product is given componentwise and the inner product is the sum of inner products on each
of the simple algebras. Also, all the components of an idempotent in the product algebra
are idempotents; for a primitive idempotent, all these components are zero except for one
component which is a primitive idempotent (in the constituent component algebra). As a con-
sequence, the Peirce spaces Ji j (defined above) corresponding to primitive idempotents ei and
e j coming from different component algebras will be zero. In addition, Schur complements
and Peirce decompositions - whether of the form (1) or (7) - can be computed/described by
working with the components. In each simple algebra, the inner product is a positive multiple
of the trace inner product ([6], Prop. III.4.1) and any Jordan frame can be mapped onto any
other by an algebra automorphism (which preserves the Jordan product as well as the inner
product), see [6], Theorem IV.2.5.

Lemma 1 In J , consider two idempotents c and d with d ≤ c. Then

(i) d ∈ J (c, 1). In addition, d and c operator commute.
(ii) J (d, 1) ⊆ J (c, 1) and J (c, 0) ⊆ J (d, 0).

(iii) J (c, 1) ∩ J (d, 0) = J (c − d, 1).

Proof (i) As d ≤ c, we write c = d + f with f ≥ 0. Since J (c, 1) is a subalgebra and
J (c, 1) ∩ K is a face of K (see [7], Theorem 3.1) with c ∈ J (c, 1), we must have
d, f ∈ J (c, 1). As c is the unit element in J (c, 1), c and d operator commute.

(ii) Let x ∈ J (d, 1) ∩ K . Then x ◦ d = x implies that x ◦ (e − d) = 0. This gives
0 = 〈x, e − d〉 = 〈x, (e − c) + f 〉 = 0. As x ≥ 0 and c ≤ e, this leads to
〈x, e − c〉 = 0 and to x ◦ (e − c) = 0, see [9], Prop. 6. Thus x ◦ c = x . The inclusion
J (d, 1) ⊆ J (c, 1) follows from the observation that in the algebra J (d, 1), any ele-
ment can be written as the difference of two elements in J (d, 1) ∩ K . Finally, d ≤ c
implies that e − c ≤ e − d and J (c, 0) = J (e − c, 1) ⊆ J (e − d, 1) = J (d, 0).

(iii) The proof of (i i) works for f = c − d ≤ c in place of d . Thus, J ( f, 1) ⊆ J (c, 1).
This implies that J ( f, 1) ⊆ J (d, 0). Hence we have one inclusion in the equality of
sets in (i i i). The other inclusion is obvious.

��
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Remark Given d ≤ c as in the above lemma, consider the decompositions J = J (c, 1) +
J (c, 1

2 ) + J (c, 0) and J (c, 1) =: G = G(d, 1) + G(d, 1
2 ) + G(d, 0). The above lemma

implies that

G(d, 1) = J (d, 1) and G(d, 0) + J (c, 0) ⊆ J (d, 0).

We claim that G(d, 0) ⊥ J (c, 0). To see this, let 0 ≤ u ∈ G(d, 0) and 0 ≤ v ∈ J (c, 0).
Then v ◦ c = 0 implies that 〈v, d + f 〉 = 0. This yields, 〈v, f 〉 = 0 and f ◦ v = 0. Now
u ◦ d = 0 implies u ◦ f = u and 〈u, v〉 = 〈 f ◦ u, v〉 = 〈u, f ◦ v〉 = 0.

3 The Crabtree-Haynsworth quotient formula in Euclidean Jordan algebras

The goal of this section is to prove Theorem 1 in a general Euclidean Jordan algebra. In view
of the reduction process described in Sect. 2, it is enough to prove the result in each of the
four matrix algebras and in Ln . The result is vacuously true in Ln , as the rank of Ln is two.
Let J be any one of the matrix algebras Herm(Rn×n), Herm(Cn×n), Herm(Hn×n), and
Herm(O3×3). Consider the nontrivial case of idempotents d and c with d ≤ c, d �= c �= e.
As shown in Lemma 1, d and c commute. In J , there exists a Jordan frame {e1, e2, . . . , er }
such that

d = e1 + e2 + · · · + el and c = e1 + e2 + · · · + el + el+1 + · · · + ek,

where 1 ≤ l < k < r. In these matrix (simple) algebras, we can transform, by means of
an algebra automorphism, the Jordan frame {e1, e2, . . . , er } into the canonical Jordan frame
{E1, E2, . . . , Er }, where Ei denotes a matrix with one in the (i, i) slot and zeros elsewhere.
(From now on, we use capital letters to denote matrices.) Let C := E1 + E2 + · · · + Ek and
D := E1 + E2 + · · · + El . In the algebras Herm(Rn×n), Herm(Cn×n), and Herm(Hn×n),
any quadratic representation is given by PX (Y ) = XY X . Hence for given C and D as above,
with appropriate identification, our Schur complement corresponds to the classical Schur
complement. Now, in the algebras Herm(Rn×n) and Herm(Cn×n), Theorem 1 reduces
to the result of Crabtree and Haynsworth [4]. As mentioned in the Introduction, the proof
given in [22], Theorem 1.4, continues to work for quaternions. Hence Theorem 1 is valid
in Herm(Hn×n). Thus we need only to prove the result for matrices in Herm(O3×3) with
r = 3, k = 2, and l = 1; this is what is presented below.

Proposition 1 Let M ∈ J = Herm(O3×3), C = E1 + E2, D = E1, U = PC (M) be
invertible in J (C, 1), and A = PD(U ) be invertible in J (D, 1). Then U/A = PC−D(M/A)

is invertible in J (C − D, 1) and

(M/A)/(U/A) = M/U.

Proof In a nutshell, the result follows from the observations that U/A and (M/A)/(U/A)

are scalar multiples of E2 and E3, respectively, and these scalars (which are determinants)
are related, via (3), by

det ((M/A)/(U/A)) = det(M/A)

det(U/A)
= det(M)/ det(A)

det(U )/ det(A)
= det(M)

det(U )
= det(M/U ).
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To elaborate, consider the decompositions of the form (2) corresponding to the idempotents
C and D:

M = U + V + W =
⎡
⎣ p a 0

a q 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 0 b

0 0 c
b c 0

⎤
⎦ +

⎡
⎣ 0 0 0

0 0 0
0 0 r

⎤
⎦ , (8)

U = A + B + C =
⎡
⎣ p 0 0

0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 a 0

a 0 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 0 0

0 q 0
0 0 0

⎤
⎦ , (9)

and

M = A + Q + R =
⎡
⎣ p 0 0

0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 a b

a 0 0
b 0 0

⎤
⎦ +

⎡
⎣ 0 0 0

0 q c
0 c r

⎤
⎦ . (10)

(Here, p, q, and r are real numbers, and a, b and c are octonions with overline denoting
the conjugate.)

Now, for any two matrices X and Y in Herm(O3×3),

PX (Y ) = 1

2

[
X (XY ) + X (Y X) + (XY )X + (Y X)X − X2Y − Y X2] .

Then a straightforward computation shows that

M/U = W − PV (U−1∗ ) =
⎡
⎣ 0 0 0

0 0 0
0 0 λ

⎤
⎦ ,

where λ = det(M)

det(U )
(thanks to (3)). Similarly,

M/A = R − PQ(A−1∗ ) =
⎡
⎣ 0 0 0

0 q − p−1|a|2 c − p−1(āb)

0 c̄ − p−1(b̄a) r − p−1|b|2

⎤
⎦

and

U/A = C − PB(A−1∗ ) =
⎡
⎣ 0 0 0

0 q − p−1|a|2 0
0 0 0

⎤
⎦ .

We note that U/A is invertible in J (C − D, 1) = J (E2, 1) (which is the algebra gen-
erated by E2) as its determinant (in this algebra) is det(U )/ det(A) �= 0. A straightforward
computation shows that all entries of (M/A)/(U/A) are zero except the (3, 3) entry which is

det ((M/A)/(U/A)) = det(M/A)

det(U/A)
= det(M)/ det(A)

det(U )/ det(A)
= det(M)

det(U )
= det(M/U ).

It follows that (M/A)/(U/A) = M/U . This completes the proof of the proposition. ��
Remark In the above proof, we used (3) at various stages. Alternatively, one can use the
Freudenthal determinant [17] given by

det(M) = pqr + 2Re(b(ac)) − r |a|2 − q|b|2 − p|c|2.
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In matrix theory, a real square matrix is said to be a P-matrix if all its principal minors are
positive. A result of Parsons [19] says that a (real square) matrix M is a P-matrix if and only
if every principal pivotal transform of M has positive diagonal. If A is a nonsingular principal
submatrix of M , then the principal pivotal transform of M with respect to A has two principal
blocks A−1 and M/A. Since a symmetric P-matrix is positive definite, we may specialize
Parsons’ result as follows: A real symmetric matrix M is positive definite if and only if for
every principal submatrix A of M , A−1 and M/A have positive diagonals. An analogue of
this result is given below for Euclidean Jordan algebras. In what follows, when the Peirce
decomposition

∑r
1 xi ei + ∑

i< j xi j of an x with respect to the Jordan frame {e1, e2, . . . , er }
is given, we say that xi s are the diagonal entries of x .

Corollary 1 Let J be simple and let {e1, e2, . . . , er } be a Jordan frame. For an x ∈ J , con-
sider the corresponding Peirce decomposition. Put ck := e1 + e2 + · · · + ek . The following
conditions are necessary and sufficient for x > 0:

(i) x has positive diagonal entries with respect to {e1, e2, . . . , er }.
(ii) For all k = 1, 2, . . . , r , u(k) := Pck (x) is invertible in J (ck, 1).

(iii) For all k = 1, 2, . . . , r − 1, x/u(k) > 0 has positive diagonal entries with respect to
{ek+1, ek+2, . . . , er }.

Proof Clearly, conditions (i) − (i i i) are necessary for x > 0. Now, suppose that these con-
ditions are in place. By Theorem 1, for each k = 2, 3, . . . , r , u(k)/u(k−1) = Pek (x/u(k−1)) is
invertible in J (ek, 1). Now, u(k)/u(k−1) is of the form αk ek and so αk is a diagonal element
of x/u(k−1). By assumption, αk > 0. Since

αk = det(u(k)/u(k−1)) = det(u(k))

det(u(k−1))
,

we see that for all k = 1, 2, 3, . . . , r, det(u(k)) have the same sign. Now, u(1) is of the form
λe1, where λ is a diagonal entry of x . By our assumption, λ > 0, as λ = det(u(1)), we see that
the determinants det(u(k)) are all positive for k = 1, 2, . . . , r . Since these are the “leading
principal minors” of x , by Problem 5, VI.4 in [6] or Corollary 4.5 in [10], x > 0. ��

4 Strict diagonal dominance of Schur complements

In this section, we prove Theorem 2. We recall the Carlson-Markham theorem [1]: If M is
a complex strictly diagonally dominant matrix, then the Schur complement of any principal
submatrix of M in M is also strictly diagonally dominant. In view of the Crabtree-Hayns-
worth quotient formula for matrices over quaternions (mentioned in the Introduction), the
above result extends to matrices over quaternions with essentially the same proof.

We first prove the following

Lemma 2 Let the conditions of Theorem 2 be in place. Assume that J is simple and carries
the trace inner product, and k = 1. Then x/u is strictly diagonally dominant with respect to
{e2, . . . , er }.
Proof In our setting,

x = u + v + w = x1e1 +
∑

1< j≤r

x1 j +
∑

2≤i≤ j≤r

xi j..
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The result is vacuously true for r = 1. When r = 2, we have u = x1e1 with x1 �= 0 and
x/u = λe2, where λ = det(x/u) = det(x)

det(u)
�= 0 by (3). Hence, in this case, x/u is strictly diag-

onally dominant. From now on, we assume that r ≥ 3. We compute x/u = w − Pv(x−1
1 e1).

Using the relations x1 j ◦ e1 = 1
2 x1 j and x2

i j = ||xi j ||2
2 (ei + e j ) for i �= j (see, [6], Prop.

IV.1.4) we have

2v ◦ (v ◦ e1) = v2 =
[

r∑
k=2

||x1k ||2
2

]
e1 +

[
r∑

k=2

||x1k ||2
2

ek

]
+ 2

∑
2≤i< j≤r

x1i ◦ x1 j .

Using the fact that x1i ◦ x1 j ∈ Ji j and the orthogonality of the Peirce spaces Ji j ’s, we get

Pv(e1) = 2v ◦ (v ◦ e1) − v2 ◦ e1 =
[

r∑
k=2

||x1k ||2
2

ek

]
+ 2

∑
2≤i< j≤r

x1i ◦ x1 j .

Thus,

x/u =
r∑

k=2

zkek +
∑

2≤i< j≤r

zi j ,

where

zk := xk − ||x1k ||2
2x1

and zi j := xi j − 2

x1
x1i ◦ x1 j .

Therefore, proving the strict diagonal dominance of x/u reduces to proving the inequalities
∣∣∣∣ xk − ||x1k ||2

2x1

∣∣∣∣ >
1√
2

∑
�k

||xi j − 2

x1
x1i ◦ x1 j || (11)

for all k = 2, 3, . . . , r , where �k := {(i, j) : 2 ≤ i < j ≤ r, i = k or j = k}. Now
consider the real symmetric matrix M = [mi j ] in Rr×r , where

mi j :=
{ √

2|xi | i = j
−||xi j || i �= j.

By the strict diagonal dominance of x , we see that M is a strictly diagonally dominant matrix.
By the Carlson-Markham theorem (applied to real matrices), we see that the Schur comple-
ment M/[√2|x1|] is strictly diagonally dominant. Explicit computation of this matrix leads
to the inequalities

∣∣∣∣
√

2|xk | − ||x1k ||2√
2|x1|

∣∣∣∣ >
∑
�k

[
||xi j || + 1√

2x1
||x1i || ||x1 j ||

]
(12)

for all k = 2, 3, . . . , r. Now ||x1i ◦ x1 j ||2 = 1
8 ||x1i ||2 ||x1 j ||2 (which is valid in any simple

algebra of rank greater than or equal to 3, see [6]), Lemma V.3.1). By using triangle and
reverse triangle inequalities, (12) leads to (11). Thus we have proved the lemma. ��
Proof of Theorem 2 In view of the reduction process, see Sect. 2, it is enough to prove the
result for simple algebras. In a simple algebra, we can replace the given inner product by
a positive multiple of the trace inner product. This will not result in any change in the Pei-
rce decomposition of an object with respect to a Jordan frame. However, the strict diagonal
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dominance conditions simplify with ||ek || = 1 for all k. From now on, we assume that J is
simple and carries the trace inner product.

We are given that x = u + v + w is strictly diagonally dominant with respect to
{e1, e2, . . . , er }, where u = ∑

1≤i≤ j≤k xi j , etc. Clearly, u is strictly diagonally dominant with
respect to {e1, e2, . . . , ek}. We now show that x/u is strictly diagonally dominant with respect
to {ek+1, ek+2, . . . , er }. We prove the result by induction on r . In view of the above Lemma,
we may assume that 1 < k < r . Let a := x1e1. By applying the formula (4) with d = e1

and c = e1 + e2 + · · · + ek , we have (x/a)/(u/a) = x/u. Now by the above Lemma, x/a
is strictly diagonally dominant with respect to {e2, e3, . . . , er } and u/a is strictly diagonally
dominant with respect to {e2, e3, . . . , ek}. By the induction hypothesis, x/u = (x/a)/(u/a)

is strictly diagonally dominant with respect to {ek+1, ek+2, . . . , er }. This completes the
proof. ��

5 Schur product and a determinantal inequality

Let J be any Euclidean Jordan algebra and {e1, e2, . . . , er } be a Jordan frame in J . For any
x ∈ J , consider the Peirce decomposition of x with respect to this Jordan frame:

x =
∑
i≤ j

xi j .

We note that xii = xi ei and xi j = x ji ∈ Ji j for all indices i, j ∈ {1, 2, . . . , r}. For any
A = [ai j ] ∈ Herm(Rr×r ), we define the Schur product of A and x by:

A • x :=
∑
i≤ j

ai j xi j .

This induces a transformation on J :

WA(x) = A • x .

Given A, B ∈ Herm(Rr×r ) and real λ, the following are obvious:

(i) The mapping (A, x) → A • x is bilinear,
(ii) WA : J → J is linear, and

(iii) WA+B = WA + WB and WλA = λWA.

Here are some examples.

Example 1 LetJ =Herm(Rn×n) and consider the canonical Jordan frame {E1, E2, . . . , En}.
With respect to this Jordan frame, any matrix in J will have its usual matrix representation.
Then for A, X ∈ Herm(Rn×n), A • X is the usual Schur product of two real symmetric
matrices.

Example 2 Given r real numbers a1, a2, . . . , ar , let A = [ai j ] with ai j := ai +a j
2 for all i, j .

Then

A • x =
∑
i≤ j

ai + a j

2
xi j = La(x) := a ◦ x,

where a = ∑r
1 ai ei and La is the Lyapunov transformation corresponding to a.
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Example 3 Given r real numbers a1, a2, . . . , ar , let A = [ai j ] with ai j := ai a j for all i, j .
Then

A • x =
∑
i≤ j

ai a j xi j = Pa(x),

where a = ∑r
1 ai ei and Pa is the quadratic representation corresponding to a.

Example 4 Given a real valued differentiable function φ : R → R, consider the correspond-
ing Löwner function Φ : J → J defined by (the spectral decompositions)

a = λ1e1 + λ2e2 + · · · + λr er and Φ(a) = φ(λ1)e1 + φ(λ2)e2 + · · · + φ(λr )er .

Then the directional derivative of Φ at a = ∑
λi ei in the direction of x = ∑

xi j (Peirce
decomposition written with respect to {e1, e2, . . . , er }) is given by

Φ ′(a; x) :=
∑
i≤ j

ai j xi j ,

where ai j := φ(λi )−φ(λ j )

λi −λ j
(which, by convention, is the derivative of φ when λi = λ j ). We

now note that Φ ′(a; x) = A • x , where A = [ai j ].

Theorem 3 If A is a nonnegative matrix, then WA is monotone. The converse holds if J is
simple.

Proof If A is a nonnegative matrix, the expression

〈WA(x), x〉 =
∑
i≤ j

ai j ||xi j ||2

is nonnegative for all x . This shows that WA is monotone. Now assume that WA is monotone.
Then, because J is simple, for any i ≤ j , Peirce space Ji j is nonzero (see [6], Prop. IV.2.3).
Taking a nonzero xi j ∈ Ji j , the inequality 0 ≤ 〈WA(xi j ), xi j 〉 = ai j ||xi j ||2 shows that
ai j ≥ 0. This implies that all entries of A are nonnegative. ��

The following result generalizes Schur’s classical theorem on Schur products [13] to the
setting of Euclidean Jordan algebras. Its proof is essentially given in [14]. In what follows,
we use the notation A � 0 to mean that A is Hermitian and positive semidefinite.

Theorem 4 Suppose that A � 0 in Herm(Rr×r ) and x ≥ 0 in J . Then A • x ≥ 0 in J .

Proof As A is symmetric and positive semidefinite, it can be written as a nonnegative linear
combination of finite number of matrices of the form ssT , where s is a (column) vector in
Rr . Our result follows once we show that ssT • x ≥ 0 in J . Now, if si (i = 1, 2, . . . , r) are
the components of s, then

ssT • x =
∑
i≤ j

si s j xi j = Pa(x),

where a := ∑r
1 si ei . Since Pa (more generally, any quadratic representation) keeps the

symmetric cone K invariant and x ≥ 0, we see that Pa(x) ≥ 0. This completes the proof. ��
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In the context of real symmetric positive semidefinite matrix A = [ai j ], the well-known
Hadamard inequality states that

det(A) ≤ a11a22 · · · arr .

An analogous result holds in any Euclidean Jordan algebra [10]: If x ≥ 0 in J with Peirce
decomposition x = ∑

i≤ j xi j with respect to any Jordan frame {e1, e2, . . . , er }, then

det(x) ≤ x1x2 · · · xr , (13)

where xii = xi ei , etc. The following inequality, which generalizes the so-called Oppenheim
inequality of matrix theory (see [21], Theorem 6.25), gives a lower bound on the determinant
of A • x .

Theorem 5 Suppose A = [ai j ] � 0 in Herm(Rr×r ) and x ≥ 0 in J . Then

(a11a22 · · · arr ) det(x) ≤ det(A • x) ≤ (a11a22 · · · arr )(x1x2 · · · xr ).

Proof The inequality on the right comes from the generalized Hadamard inequality (13)
applied to A • x ; we prove only the inequality on the left. Also, by a continuity argument,
it is enough to prove the result when A is positive definite and x > 0 in J . Our proof is
by induction on the rank r of J . There is nothing to prove when r = 1, so assume r > 1.
Let c = e1, where {e1, e2, . . . , er } is the given Jordan frame with respect to which A • x is
defined. Corresponding to this, consider the Peirce decomposition (2):

x = u + v + w,

where u = x1e1; Analogously, we write the Peirce decomposition of A with respect to the
idempotent E1 in Herm(Rr×r ):

A = A11 + A12 + A22,

where A11 = a11 E1. Now consider

y := u + v + Pv

(
u−1∗

)
.

Since u > 0 in V (c, 1) and y/u = Pv(u−1∗ )− Pv(u−1∗ ) = 0, by Item (i i) of the Introduction,
y ≥ 0. By the previous theorem, A • y ≥ 0 in J . We write the Peirce decomposition

A • y = p + q + r,

where p = A11 • u, q = A12 • v, and r = A22 • Pv(u−1∗ ). As p = a11x1e1 is invertible in
V (c, 1) by Item (i i) of the Introduction,

r − Pq
(

p−1∗
) = (A • y)/p ≥ 0.

This implies, as r = A22 • Pv(u−1∗ ) = A22 • (w − x/u),

A22 • w − Pq
(

p−1∗
) ≥ A22 • x/u. (14)

Now,

0 < A • x = A11 • u + A12 • v + A22 • w = p + q + A22 • w

implies (A • x)/p = A22 • w − Pq(p−1∗ ). Thus (14) becomes

(A • x)/p ≥ A22 • (x/u).
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Now using the well-known inequality in Euclidean Jordan algebra theory, namely, u ≥ v ≥
0 ⇒ det(u) ≥ det(v) (see [6], Exercise 4, Page 59), we get

det((A • x)/p) ≥ det(A22 • (x/u)).

By the induction hypothesis, det(A22 • (x/u)) ≥ (a22a33 · · · arr ) det(x/u). By the determi-
nantal formula (3) applied to (A•x)/p and x/u, and the observation det(p) = det(a11x1e1) =
a11x1, we have

det(A • x) ≥ a11x1(a22a33 · · · arr ) det(x)/ det(u).

As det(u) = x1, this simplifies to

det(A • x) ≥ a11a22a33 · · · arr det(x).

This completes the proof. ��
The following result is immediate in view of the Hadamard inequality.

Corollary 2 If A � 0 and x ≥ 0, then det(A) det(x) ≤ det(A • x).

Our next result is an interesting consequence of Theorem 4, although it is not related
to Schur complements. In this result, for any given set of numbers {b1, b2, . . . , br }, we
denote the decreasing rearrangement by {b↓

1 , b↓
2 , . . . , b↓

r }; in particular, for z ∈ J , λ
↓
i (z)

(i = 1, 2, . . . , r) denote the eigenvalues of z written in the decreasing order. We use the
familiar notation λ

↓
1 (z) = λmax (z) and λ

↓
r (z) = λmin(z).

Theorem 6 Let J be simple. Let A = [ai j ] � 0 in Herm(Rr×r ) and x ≥ 0 in J . Then for
all i = 1, 2, . . . , r ,

a↓
i i λmin(x) ≤ λ

↓
i (A • x) ≤ a↓

i i λmax (x).

Proof For notational simplicity, let α := λmin(x) and β := λmax (x). Then x − α e ≥ 0 and
β e − x ≥ 0 in J . By Theorem 4, A • (x − α e) ≥ 0 and A • (β e − x) ≥ 0. These two yield

αA • e ≤ A • x ≤ β A • e.

Now, e = ∑r
1 ei (where {e1, e2, . . . , er } is the Jordan frame with respect to which A • x

is defined) and so α (A • e) = ∑r
1 α aii ei ; a similar expression holds for β (A • e). Since

β ≥ α ≥ 0, using the well-known fact that y ≤ z in J implies λ
↓
i (y) ≤ λ

↓
i (z) for all i

(which follows immediately from Hirzebruch’s theorem, see [12]), we have

α a↓
i i ≤ λ

↓
i (A • x) ≤ β a↓

i i .

This completes the proof. ��
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