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For complex square matrices, the Levy–Desplanques theorem as-

serts that a strictly diagonally dominant matrix is invertible. The

well-known Geršgorin theorem on the location of eigenvalues is

equivalent to this. In this article, we extend the Levy–Desplanques

theorem to an object in a Euclidean Jordan algebra when its Peirce

decomposition with respect to a Jordan frame is given. As a con-

sequence, we prove a Geršgorin type theorem for the spectral

eigenvalues of an object in a Euclidean Jordan algebra.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In matrix theory, the well-known Geršgorin theorem [10] asserts that for an n × n complex matrix

A = [aij], the spectrum (consisting of the eigenvalues) of A lies in the union of Geršgorin discs in the

complex plane:

σ(A) ⊆
n⋃

i=1

{z ∈ C : |z − aii| � Ri(A)} ,

where

Ri(A) :=
n∑

j=1,j /=i

∣∣aij∣∣ (1� i � n).
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E-mail addresses:melania1@math.umbc.edu (M.M. Moldovan), gowda@math.umbc.edu (M.S. Gowda).

0024-3795/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2009.02.016



Author's personal copy

M.M. Moldovan, M.S. Gowda / Linear Algebra and its Applications 431 (2009) 148–161 149

This is equivalent to the strict diagonal dominance theorem–knownas the Levy–Desplanques theorem

[10] – which says that if an n × n complex matrix A = [
aij

]
is strictly diagonally dominant, that is,

|aii| > Ri(A) ∀ i = 1, 2, . . . , n, (1)

then A is invertible in Cn×n.

In a recent paper [15], Zhang extends the Geršgorin theorem to quaternionic matrices by stating

two results, one for left eigenvalues and the other one for right eigenvalues (the difference arising

because of non-commutative nature of quaternions). The strict diagonal dominance result extends

to quaternionic matrices, since for a quaternionic square matrix A, the following two conditions are

equivalent [14]:

(a) Ax = 0 ⇒ x = 0.

(b) A is invertible, that is, there is a quaternionic matrix B such that AB = BA = I.

It is easily seen (see Section 4) that Zhang’s two Geršgorin type results carry over to octonionic

matrices. Furthermore, the strict diagonal dominance condition implies condition (a) above and a

modified version of (b).

Our objective in this paper is to prove analogs of the above results in Euclidean Jordan algebras.

More precisely, we show that if (V , ◦, 〈·, ·〉) is a Euclidean Jordan algebra of rank r and

x =
r∑

i=1

xiei +
∑
i< j

xij

is the Peirce decomposition of x ∈ V with respect to a given Jordan frame {e1, . . . , er} (see Section 3

for definitions), then the strict diagonal dominance condition

|xi| > Ri(x) := 1√
2 ‖ei‖

⎛
⎝ i−1∑

k=1

‖xki‖ +
r∑

j=i+1

∥∥xij∥∥
⎞
⎠ ∀i = 1, 2, . . . , r

implies the invertibility of x in V . Moreover, for any x ∈ V , we have

σsp(x) ⊆
r⋃

i=1

{λ ∈ R : |λ − xi| � Ri(x)} ,
where σsp(x) denotes the set of all spectral eigenvalues (coming from the spectral decomposition)

of x in V . As a consequence, we deduce that if each xi is positive and the strict diagonal dominance

condition holds, then x is in the interior of the symmetric cone in V .

Our analysis is as follows. Since the results for real/complex Hermitian matrices are known, we

first prove the strict diagonal dominance result in the matrix algebras of n × n quaternion Hermitian

matrices, 3 × 3 octonion Hermitian matrices, and the Jordan spin algebra. Then we use the structure

theorem – that any Euclidean Jordan algebra is essentially the product of above mentioned algebras –

to cover the general case. From this, we easily deduce the Geršgorin type result mentioned above. As

we shall see, the case of 3 × 3 octonion Hermitian matrices requires special consideration: for such

matrices, the spectral eigenvalues can be different from the real left/right eigenvalues and the strict

diagonal dominance result requires a non-standard proof that avoids left/right eigenvalues.

Ourpaper isorganizedas follows. InSection2,wedescribematricesoverquaternionsandoctonions.

In Section 3, we cover Euclidean Jordan algebra concepts, examples, and all preliminary results. In

Section4,wedescribeGeršgorin type results for left/righteigenvaluesofmatriceswithentries fromreal

numbers/complex numbers/quaternions/octonions. Section 5 covers the strict diagonal dominance

results for matrices. In Section 6, we prove the strict diagonal dominance result in Euclidean Jordan

algebras. Finally, in Section 7, we prove a Geršgorin type theorem in Euclidean Jordan algebras.

2. Square matrices over quaternions and octonions

Throughout this paper, we use the standard notations – R for the set of all real numbers and C for

the set of all complex numbers.
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The linear space of quaternions – denoted byH – is a 4-dimensional linear space over Rwith a basis

{1, i, j, k}. The space H is made into an algebra by means of the conditions

i2 = j2 = k2 = −1 and ijk = −1.

For any x = x0 1 + x1 i + x2 j + x3 k ∈ H, we define the real part and conjugate by

Re(x) := x0 and x̄ := x0 1 − x1 i − x2 j − x3 k.

The linear space of octonions over R – denoted by O – is an 8-dimensional linear space with basis

{1, e1, e2, e3, e4, e5, e6, e7}. The space O becomes an algebra via the following multiplication table on

the non-unit basis elements [13]:

e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −1

For an element

x = x0 1 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

in O, we define the real part and conjugate by Re(x) := x0 and

x̄ = x0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7.

In bothH andO, we define the norm by |x| = √
xx̄. In these spaces, |xy| = |x| |y| for all x and y. It is

well known thatH andO are non-commutative normed division algebras, and whileH is associative,

O is not.

Let F denote the set of all reals/complex numbers/quaternions/octonions.Wewrite Fn for the space

of all n × 1 vectors over F and Fn×n for the space of all n × n matrices over F . For a matrix A ∈ Fn×n,

we define the conjugate A and transpose AT in the usual way. We say that a square matrix A ∈ Fn×n is

Hermitian if A coincides with its conjugate transpose, that is, if A = A∗ := (A)T . We let

Herm(Fn×n) := set of all n × n Hermitian matrices with entries from F.

For a matrix A ∈ Fn×n, an element λ ∈ F is a left (right) eigenvalue of A if there is a nonzero x ∈ Fn

such that Ax = λx (respectively, Ax = xλ). We use the notation σl(A) (σr(A)) for the set of all left

eigenvalues of A (respectively, the right eigenvalues of A).

For discussions on eigenvalues of quaternionic/octonionic matrices, we refer to [2–5,14,15].

Theorem 1. The following statements hold:

(a) Let A ∈ Hn×n. The implication [x ∈ Hn, Ax = 0] ⇒ x = 0 holds if and only if there is a unique

B ∈ Hn×n such that AB = BA = I [14, Theorem 4.3].

(b) Let A ∈ Herm(Hn×n). Then there exist real eigenvalues λ1, λ2, . . . , λn and corresponding eigenvec-

tors v1, v2, . . . , vn in Hn such that

v∗
i vj = δij (∀ i, j),

A =
n∑

m=1

λm vmv
∗
m and I =

n∑
m=1

vmv
∗
m.

(Theorem 1H, [3]).



Author's personal copy

M.M. Moldovan, M.S. Gowda / Linear Algebra and its Applications 431 (2009) 148–161 151

(c) Let A ∈ On×n. The implication [x ∈ On, Ax = 0] ⇒ x = 0 holds if and only if there exist unique B

and C in On×n such that AB = CA = I [13, Lemma 4.4, Theorem 4.13, and Corollary 4.14].

3. Euclidean Jordan algebras

In this section, we briefly recall concepts, properties/results, and examples from Euclidean Jordan

algebra theory. For short introductions, see [8,11]. For complete details, we refer to [6].

A Euclidean Jordan algebra [6] is a triple (V , ◦, 〈., .〉), where (V , 〈·, ·〉) is a finite-dimensional inner

product space over R and (x, y) �→ x ◦ y : V × V → V is a bilinear mapping satisfying the following

conditions for all x, y, and z: x ◦ y = y ◦ x, x ◦
(
x2 ◦ y

)
= x2 ◦ (x ◦ y), and 〈x ◦ y, z〉 = 〈y, x ◦ z〉. In

addition, we assume that there is an element e ∈ V (called the unit element) such that x ◦ e = x, for

all x ∈ V . The so-called symmetric cone of V is given by K := {x ◦ x : x ∈ V}. This is a closed convex

self-dual cone.

A Euclidean Jordan algebra is said to be simple if it is non-trivial and it cannot be written as the

product of two (non-trivial) Euclidean Jordan algebras.

We now state the structure theorem for Euclidean Jordan algebras. In the matrix algebras below,

we define the Jordan and inner product by:

X ◦ Y := 1

2
(XY + YX) and 〈X , Y〉 := Re trace(XY),

where the trace (abbreviated as ‘tr’) of a matrix is the sum of its diagonal entries.

Theorem2 (The structure theorem for Euclidean Jordan algebras [6]). Every non-trivial Euclidean Jordan

algebra is a product of simple Euclidean Jordan algebras and every simple algebra is isomorphic to one of

the following:
(i) The space Herm(Rn×n) of all n × n real symmetric matrices.
(ii) The space Herm(Cn×n) of all n × n complex Hermitian matrices.
(iii) The space Herm(Hn×n) of all n × n quaternionic Hermitian matrices.
(iv) The space Herm(O3×3) of all 3 × 3 octonionic Hermitian matrices.
(v) The Jordan spin algebra Ln for n> 1.

(See Example 2 below for a description of Ln.)

An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is nonzero and cannot

be written as a sum of two nonzero idempotents. We say that a finite set {e1, e2, . . . , er} of primitive

idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i /= j and e1 + e2 + · · · + er = e.

For x ∈ V , we define m(x) := min
{
k> 0 : e, x, . . . , xkare linearly dependent

}
and rank of V by r =

max {m(x) : x ∈ V} .

Theorem 3 (Spectral decomposition theorem). Let V be a Euclidean Jordan algebra with rank r. Then for

every x ∈ V , there exist a Jordan frame {e1, e2, . . . , er} and real numbers λ1, . . . , λr such that

x = λ1e1 + · · · + λrer .

The numbers λi are called the spectral eigenvalues of x. (In this paper, we have used the additional

word ‘spectral’ in order to distinguish these eigenvalues from the left/right eigenvalues of matrices.)

Given the spectral eigenvalues of x, we define

σsp(x) := {λ1, λ2, . . . , λr},
trace(x) := λ1 + λ2 + · · · + λr , and det(x) := λ1λ2 · · · λr .
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Corresponding to an x ∈ V , we define the Lyapunov operator Lx on V by Lx(z) := x ◦ z. We say

that two elements x and y in V operator commute if the corresponding Lyapunov operators Lx and Ly
commute (which can happen if and only if x and y have their spectral decompositions with respect to

the same Jordan frame [6]).

We say that an element x is invertible in V if all the spectral eigenvalues of x are nonzero. This

happens if and only if there is a y in V that operator commutes with x and x ◦ y = e.

Given a Euclidean Jordan algebra V , an invertible linear transformation Λ : V → V is said to be an

algebra automorphism if

Λ(x ◦ y) = Λ(x) ◦ Λ(y) ∀x, y ∈ V .

We need the following results for our later use:

• The trace and determinant are invariant under algebra automorphisms.

• In a simple Euclidean Jordan algebra, every algebra automorphism is orthogonal (that is, it

preserves the inner product), see p. 56 [6].

• In a simple algebra, any Jordan frame can be mapped onto any other Jordan frame by an algebra

automorphism, see Theorem IV.2.5 [6].

Let {e1, e2, . . . , er} be a Jordan frame in a Euclidean Jordan algebra V . For i, j ∈ {1, 2, . . . , r}, we

define the Peirce eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei

and when i /= j,

Vij :=
{
x ∈ V : x ◦ ei = 1

2
x = x ◦ ej

}
.

Theorem 4 (Theorem IV.2.1, [6]). The space V is the orthogonal direct sum of spaces Vij (i � j).

Thus, given a Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =
r∑

i=1

xiei +
∑
i< j

xij ,

wherexi ∈ Randxij ∈ Vij.Thisexpression is thePeircedecompositionofxwithrespect to {e1, e2, . . . , er} .
Given the above Peirce decomposition of x, we define the Geršgorin radii of x:

Ri(x) := 1√
2‖ei‖

⎛
⎝ i−1∑

k=1

‖xki‖ +
r∑

j=i+1

‖xij‖
⎞
⎠ , i = 1, 2, . . . , r. (2)

We illustrate this in the following examples.

Example 1. In the matrix algebras Herm(Fn×n) (with n = 3 when F = O), the set {E1, E2,
. . . , En} is a Jordan frame, where Ei is the diagonal matrix with 1 in the (i, i)-slot and zeros elsewhere.

For a matrix X in any one of these algebras, it is easy to write down the Peirce decomposition with

respect to {E1, E2, . . . , En} and compute the Geršgorin radii. For example, in Herm(O3×3),

X =
⎡
⎣p a b

ā q c

b̄ c̄ r

⎤
⎦ = p E1 + q E2 + r E3 + X12 + X13 + X23,

where

X12 =
⎡
⎣0 a 0

ā 0 0

0 0 0

⎤
⎦ , X13 =

⎡
⎣0 0 b

0 0 0

b̄ 0 0

⎤
⎦ , and X23 =

⎡
⎣0 0 0

0 0 c

0 c̄ 0

⎤
⎦ .
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Corresponding to this, we have (the Geršgorin radii of X):

R1(X) = 1√
2 ‖E1‖

(‖X12‖ + ‖X13‖) = |a| + |b|,

R2(X) = 1√
2 ‖E2‖

(‖X12‖ + ‖X23‖) = |a| + |c|,

etc.

More generally, for an object A = [
aij

] ∈ Herm(Fn×n) (with n = 3 when F = O), it is easily seen

that with respect to the Jordan frame {E1, E2, . . . , En},

Ri(A) :=
n∑

j=1,j /=i

|aij| (1� i � n). (3)

Example 2. Consider the Jordan spin algebra Ln whose underlying space is Rn, n> 1. We write any

element x in the form

x =
[
x0
x̄

]
(4)

with x0 ∈ R and x̄ ∈ Rn−1. The inner product inLn is the usual inner product on Rn. The Jordan product

x ◦ y in Ln is defined by

x ◦ y =
[
x0
x̄

]
◦

[
y0
ȳ

]
:=

[ 〈x, y〉
x0ȳ + y0x̄

]
.

Then Ln is a Euclidean Jordan algebra of rank 2 and for any element x ∈ Ln, see Example 10 in [11],

det(x) = x20 − ‖x̄‖2.

Now consider any Jordan frame {e1, e2} in Ln. Then there exists a unit vector u ∈ Rn−1 such that

e1 := 1

2

[
1

u

]
and e2 := 1

2

[
1

−u

]
.

With respect to this, any x ∈ Ln given by (4) has a Peirce decomposition[
x0
x̄

]
= x1e1 + x2e2 + x12 = x1

1

2

[
1

u

]
+ x2

1

2

[
1

−u

]
+

[
0

v

]
,

where v ∈ Rn−1 with 〈u, v〉 = 0. (This is easy to verify, see e.g., Lemma 2.3.4 [12].) This leads to

x0 = 1

2
(x1 + x2) and x̄ = 1

2
(x1 − x2)u + v.

Thus

det(x) = x20 − ‖x̄‖2 = x1x2 − ‖v‖2 = x1x2 − ‖x12‖2. (5)

We finally note that as ‖e1‖ = ‖e2‖ = 1√
2
, the Geršgorin radii of x are given by

R1(x) = 1√
2 ‖e1‖

‖x12‖ = ‖x12‖ = R2(x). (6)

The algebra Herm(O3×3) is crucial for our analysis. We collect below two important results that

are needed.

For A, B ∈ Herm(O3×3), the so-called Freudenthal product [3] is defined by

A ∗ B := A ◦ B − 1

2
(A tr(B) + B tr(A)) + 1

2
(tr(A)tr(B) − tr(A ◦ B))I,
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where I is the identity matrix. Recall that for a matrix A ∈ Herm(O3×3), det(A) is the product of its

spectral eigenvalues. In the result below (which is essentially in [3]), we express this determinant in

terms of the entries of A.

Lemma 5. Let A ∈ Herm(O3×3) be given by

A :=
⎡
⎣p a b

ā q c

b̄ c̄ r

⎤
⎦ ,

where p, q, r ∈ R and a, b, c ∈ O. Then

det(A) = 1

3
tr ((A ∗ A) ◦ A) = pqr + 2Re(b̄(ac)) − r|a|2 − q|b|2 − p|c|2. (7)

Proof. The second equality comes from direct computation, see [3]. In particular, when A is diagonal,

the middle expression reduces to the product of the diagonal entries of A.

We prove the first equality. By the spectral decomposition theorem, we may write A = λ1 f1 +
λ2 f2 + λ3 f3, where λ1, λ2, λ3 are the spectral eigenvalues of A, and {f1, f2, f3} is a Jordan frame in

Herm(O3×3). As this algebra is simple, there is an algebra automorphismΛ of Herm(O3×3) that maps

{f1, f2, f3} to {E1, E2, E3}, where Ei is a 3 × 3matrix with one in the (i, i) slot and zeros elsewhere. Then

Λ(A) is a diagonal matrix with λ1, λ2, λ3 on the diagonal. Since

Λ(A ◦ B) = Λ(A) ◦ Λ(B), Λ(A ∗ B) = Λ(A) ∗ Λ(B) and trΛ(A) = tr(A),

we have (from the second equality in (7) applied to Λ(A)),

1

3
tr ((Λ(A) ∗ Λ(A)) ◦ Λ(A)) = λ1λ2λ3.

But

1

3
tr ((Λ(A) ∗ Λ(A)) ◦ Λ(A)) = 1

3
tr Λ ((A ∗ A) ◦ A) = 1

3
tr ((A ∗ A) ◦ A) .

Thus,

det(A) = λ1λ2λ3 = 1

3
tr ((A∗A) ◦ A)

proving the first equality in (7). �

For objects a, b, c ∈ O and for the matrix A given above, we let

[a, b] := ab − ba, [a, b, c] := (ab)c − a(bc)

and Φ(a, b, c) := 1
2
Re ([a, b]c). Also, let

s(A) := pq + qr + rp − |a|2 − |b|2 − |c|2.
(Recall that tr(A) = p + q + r.)

Remark 1. It follows from (7) that the spectral eigenvalues of the above A are the roots of

det(λI − A) = λ3 − (trA)λ2 + s(A)λ − det(A) = 0.

We need the following result from [3] which was verified using Mathematica.

Lemma 6 (Lemma 1O3
, [3]). The real eigenvalues of the 3 × 3 octonion Hermitian matrix A satisfy the

modified characteristic equation

det(λI − A) = λ3 − (tr A)λ2 + s(A)λ − det(A) = r,
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where r is either of the two roots of

r2 + 4Φ(a, b, c)r −
∣∣∣[a, b̄, c]∣∣∣2 = 0.

4. Geršgorin type theorems for matrices in Fn×n

Let F denote any one of the spaces R, C, H, and O. For A = [
aij

] ∈ Fn×n, we let

Ri(A) :=
n∑

j=1,j /=i

∣∣aij∣∣ .

The following two results are routine generalizations of classical Geršgorin theorem and the Geršgorin

type theorems of Zhang [15]. We state them for completeness.

Theorem 7 (Geršgorin type theorem for left eigenvalues). For A = [aij] ∈ Fn×n, we have

σl(A) ⊆
n⋃

i=1

{λ ∈ F : |λ − aii| � Ri(A)} .

Inwhat follows,we say that elementsμ andλ in F are similar (andwriteμ ∼ λ) if there is a nonzero
z ∈ F such that μ = zλz−1. (Note that zλz−1 is well defined even in O because of the alternative

property that the (sub)algebra generated by any two elements in O is associative.)

Theorem 8 (Geršgorin theorem for right eigenvalues). Let A = [aij] ∈ Fn×n. Then for every right eigen-

value λ of A there exists μ ∈ F , μ ∼ λ such that

μ ∈
n⋃

i=1

{γ ∈ F : |γ − aii| � Ri(A)} .

5. Strict diagonal dominance in Fn×n

Let F be as in the previous section. For a matrix A = [aij] ∈ Fn×n, we say that A is strictly diagonally

dominant if

|aii| > Ri(A) ∀ i = 1, 2, . . . , n.

Theorem 9. For A = [
aij

] ∈ Fn×n, consider the following statements:

(1) A is strictly diagonally dominant.
(2) The implication [x ∈ Fn, Ax = 0] ⇒ x = 0 holds.
(3) There exist unique matrices B and C in Fn×n (which are equal when A is defined over F ⊆ H) such

that AB = I = CA.
(4) A is invertible in the Euclidean Jordan algebra Herm(Hn×n).
(5) A is invertible in the Euclidean Jordan algebra Herm(O3×3).

Then we have the following implications:

(1) ⇒ (2) ⇔ (3),

(3) ⇔ (4) when A ∈ Herm(Hn×n)

and

(1) ⇒ (5) when A ∈ Herm(O3×3).
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Proof. The implication (1) ⇒ (2) follows immediately from Theorem 7.

The equivalence of (2) and (3) is obvious when F is R or C, follows from Theorem 1 when F is H or

O.

Now assume that A belongs to Herm(Hn×n).
(3) ⇒ (4): When (3) holds, there exists a unique matrix B ∈ Hn×n such that AB = BA = I. By

uniqueness of B, we see that B∗ = B, which means that B is Hermitian. To prove that B is the inverse

of A in the algebra Herm(Hn×n), we need only to show that A and B operator commute, that is,

LALB = LBLA,

where LA(X) := AX+XA
2

and LB(X) := BX+XB
2

for all X ∈ Herm(Hn×n). This easily follows due to the

associativity in H.

(4) ⇒ (3): As A ∈ Herm(Hn×n), by Theorem 1, A can be expanded as

A =
n∑

m=1

λmvmv
∗
m, (8)

where {vm : m = 1, . . . , n} is an orthonormal basis of eigenvectors of A, with real eigenvalues λm. In
view of the properties of vm, the set

{v1v∗
1 , . . . , vnv

∗
n} is a Jordan frame inHerm(Hn×n). Thismeans that (8) is the spectral decomposition

of A in Herm(Hn×n). Now suppose condition (4) holds. Then each λm is nonzero. Now define

B :=
n∑

m=1

1

λm

vmv
∗
m.

Then, due to properties of vm and associativity in H, we have AB = BA = I. Moreover, due to the

associativity in H, for C,D ∈ Hn×n, AC = DA = I ⇒ C = B = D. Hence (3) holds.

We remark that it is possible to prove the implication (4) ⇒ (3)without using (8). For example,we

can show that AB = BA = I when B is the inverse of A in Herm(Hn×n), i.e, when B operator commutes

with A and A ◦ B = I.

Finally, assume that A ∈ Herm(O3×3).
(1) ⇒ (5): Let A be strictly diagonally dominant. As O is non-associative, the argument of (3) ⇒

(4) cannot be used here. So, we offer a different proof. Let

A =
⎡
⎣p a b

ā q c

b̄ c̄ r

⎤
⎦ ,

where p, q, r ∈ R and a, b, c ∈ O. Next, suppose that A is not invertible in Herm(O3×3) which means

that one of the spectral eigenvalues of A is zero, that is, det(A) = 0. Thus, from (7),

0 = det A = pqr + 2Re(b̄(ac)) − r|a|2 − q|b|2 − p|c|2.
This implies that

|pqr| =
∣∣∣−2Re(b̄(ac)) + r|a|2 + q|b|2 + p|c|2

∣∣∣ � 2|a‖b‖c| + |r‖a|2 + |q‖b|2 + |p‖c|2,
hence

|p‖q‖r| − 2|a‖b‖c| −
(
|r‖a|2 + |q‖b|2 + |p‖c|2|

)
� 0.

Now, as A is strictly diagonally dominant, the matrix

B :=
⎡
⎣ |p| −|a| |b|
−|a| |q| |c|
|b| |c| |r|

⎤
⎦

is a real symmetric strictly diagonally dominant matrix with a positive diagonal. By a well-known

matrix theory result (see [10, Theorem 6.1.10]) B is positive definite and hence

det B> 0.
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Therefore,

|p||q||r| − 2|a‖b‖c| −
(
|r‖a|2 + |q‖b|2 + |p‖c|2|

)
> 0,

which is clearly a contradiction. Hence A is invertible in Herm(O3×3). �

Remark 2. The following example shows that the implication (2) ⇒ (5) fails for octonion matrices.

In Herm(O3×3), let

A =
⎡
⎢⎣

√
3 e2 e6

−e2
√

3 e1

−e6 −e1
√

3

⎤
⎥⎦ .

Then, using (7) and the multiplication table for O, det(A) = 0, and so zero is a spectral eigenvalue

ofA. Thismeans thatA is not invertible in the algebraHerm(O3×3).We claim that zero is not a left/right

eigenvalue of A. Assuming the contrary, by Lemma 6, λ = 0 must satisfy

det(λI − A) = λ3 − (tr(A))λ2 + s(A)λ − det A = r,

where r is either of the two roots of

r2 + 4Φ(e2, e6, e1)r − |[e2,−e6, e1]|2 = 0

with s(A) and Φ previously defined. Thus, 0 = −det(A) = r. Now,

|[e2,−e6, e1]|2 = | − 2e5|2 = 4 /= 0;
hence r /= 0, leading to a contradiction.

Thus, zero is not a real eigenvalue of A, even though, it is a spectral eigenvalue of A. In particular,

we have Ax = 0 ⇒ x = 0.

Remark 3. In the context of Herm(Rn×n) or Herm(Cn×n), it is well known that if X and Y are positive

semidefinite matrices (that is, they belong to the symmetric cone), then

X ◦ Y = 0 ⇔ 〈X , Y〉 = 0 ⇔ XY = 0. (9)

In this remark, we will demonstrate that these equivalences continue to hold in Herm(Hn×n), but that
the second equivalence fails in Herm(O3×3).

It is known that in any Euclidean Jordan algebra V with corresponding symmetric cone K , the

following two statements are equivalent, see [8, Proposition 6]:

(i) x ∈ K , y ∈ K , and x ◦ y = 0.

(ii) x ∈ K , y ∈ K , and 〈x, y〉 = 0.

Moreover, in each case, the objects x and y operator commute. Thus, to see (9) in Herm(Hn×n) (or for
that matter, in Herm(Rn×n) or Herm(Cn×n)), it is enough to show that

X and Y positive semidefinite in Herm(Hn×n), 〈X , Y〉 = 0 ⇒ XY = 0.
In view of the operator commutativity and the spectral decomposition theorem, this reduces to

showing:

If F1 and F2 are two primitive idempotents in Herm(Hn×n) with Re tr(F1F2) = 0, then F1F2 = 0.

Now if F1 and F2 are two primitive idempotents in Herm(Hn×n), then as in (8) we can expand F1
and F2 using their eigenvalues and eigenvectors:

F1 = vv∗ and F2 = ww∗,
where v and w are unit quaternion vectors. If Re tr(F1F2) = 0, then Re tr(vv∗ww∗) = 0. Putting c :=
v∗w, expanding Re tr(vv∗ww∗) as a sum and using the fact that Re(ab − ba) = 0 for any two quater-

nions, we see that Re tr(vv∗ww∗) = Re(cc̄). Thus, 0 = Re(cc̄) and so v∗w = c = 0. From this, we get
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F1F2 = vv∗ww∗ = 0. Thus we have (9) for quaternion Hermitian matrices. Now we claim that the

second equivalence in (9) fails for octonions.

Consider the matrix A given in the previous example. We write the spectral decomposition for this

A:

A = 0 F1 + λ2F2 + λ3F3,

where {F1, F2, F3} is a Jordan frame in Herm(O3×3) and σsp(A) = {0, λ2, λ3}. We claim that both F2F1
and F3F1 cannot be zero simultaneously. Assuming the contrary,wehave F2F1 = 0and F3F1 = 0;hence

AF1 = 0.

Now if u is any column of F1, then Au = 0. By the knownproperty of A (see the end of previous remark),

we must have u = 0 proving F1 = 0. But this is a contradiction as F1 is a primitive idempotent and

hence cannot be zero.

Remark 4. The following example shows that the implication (5) ⇒ (2) in Theorem 9 need not be

true.

Let

A :=
⎡
⎣ 1 e2 e6−e2 1 e1−e6 −e1 1

⎤
⎦ ,

x1 := 1 + e1 + e2 + e3 + e4 − e5 − e6 − e7, x2 := 0, and

x3 := 1 + e1 − e2 − e3 + e4 − e5 + e6 + e7.

Then

A

⎡
⎣x1
x2
x3

⎤
⎦ = 0,

hence 0 is a left/right eigenvalue of A. By the modified characteristic equation in Lemma 6, we get

−det(A) = r. Solving for r from

r2 + 4Φ(e2, e6, e1)r − |[e2,−e6, e1]|2 = 0,

we get r = ±2 and so det(A) /= 0. Hence 0 is a not a spectral eigenvalue of A.

Examples in Remarks 2 and 4 show that for matrices in Herm(O3×3), the spectral eigenvalues and

real left/right eigenvalues of A can be different.

6. Strict diagonal dominance in Euclidean Jordan algebras

Theorem 10. Let (V , ◦, 〈·, ·〉) be any Euclidean Jordan algebra of rank r and

x =
r∑

i=1

xiei +
∑
i< j

xij

be the Peirce decomposition of x ∈ V with respect to a given Jordan frame {e1, . . . , er} . If x is strictly

diagonally dominant, that is, if

|xi| > Ri(x) := 1√
2‖ei‖

⎛
⎝ i−1∑

k=1

‖xki‖ +
r∑

j=i+1

‖xij‖
⎞
⎠ ∀i = 1, 2, . . . , r,

then x is invertible in V .
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Proof. We first suppose that V is simple.

Case 1: Let V be one of the matrix algebras. We note that if the Peirce decomposition of x is

strictly diagonally dominant with respect to the Jordan frame {e1, e2, . . . , er}, then for any algebra

automorphism Λ on V , the Peirce decomposition of Λ(x) is strictly diagonally dominant with respect

to {Λ(e1),Λ(e2), . . . ,Λ(er)} (as any algebra automorphism on a simple algebra is orthogonal, see

Section 3). As V is simple, any Jordan frame can be mapped onto another (see Section 3). Hence we

assume, without loss of generality, that the Jordan frame is the canonical one given by {E1, E2, . . . , Er}
where Ei is the matrix with one in the (i, i) slot and zeros elsewhere. Now if x is strictly diagonally

dominant with respect to this Jordan frame, we can apply Theorem 9 and get the invertibility.

Case 2: Now assume that V = Ln. Let x = x1e1 + x2e2 + x12 be the Peirce decomposition of xwith

respect to a Jordan frame {e1, e2} . Given

|x1| > R1(x), |x2| > R2(x),

we have to show that x is invertible in Ln. Now (6) shows that R1(x) = ‖x12‖ = R2(x). Also, from (5),

det(x) = x1x2 − ‖x12‖2.

We see that det(x) /= 0 proving the invertibility of x. Thus, we have proved the invertibility of xwhen

V is one of the standard simple algebras.

Note that the result continues to hold in each of these standard algebras when we change the inner

product to a constant multiple of the trace inner product. (The reason being that the Peirce decom-

position remains the same except that the norms of objects get multiplied by a constant factor.) Now,

using the structure theorem (see Section 3) and the fact that in any simple algebra, the inner product is

a multiple of the trace product (see Prop. III.4.1 in [6]), we can prove our result in any simple Euclidean

Jordan algebra.

Now let V be any Euclidean Jordan algebra. By the structure theorem, we canwrite V = V1 × V2 ×
· · · × Vk where each Vi is simple. For notational simplicity, we let k = 2 and put r1 = rank(V1), r2 =
rank(V2). We regard any element of V as a column vector with two components, the first component

belonging to V1 and the second component belonging to V2. If c is any primitive idempotent in V , then

exactly one component of c is nonzero and this nonzero component is a primitive idempotent in the

corresponding component algebra. By rearranging the elements, we may write

{e1, e2, . . . , er} =
{[

g1
0

]
,

[
g2
0

]
, . . . ,

[
gr1
0

]
,

[
0

h1

]
, . . . ,

[
0

hr2

]}
,

where {g1, g2, . . . , gr1} is a Jordan frame in V1 and {h1, h2, . . . , hr2} is a Jordan frame in V2. Nowwriting

the given element x as a column vector with two components u ∈ V1 and v ∈ V2, we may write the

Peirce decomposition of x in the form

x =
r1∑
i=1

ui

[
gi
0

]
+ ∑

i< j � r1

[
uij
0

]
+

r2∑
i=1

vi

[
0

hi

]
+ ∑

i< j � r2

[
0

vij

]
,

where we have used the fact that the Peirce space Vij with respect to any pair

{[
gi
0

]
,

[
0

hj

]}
is zero. The

strict diagonal dominance of x now implies that u and v are strictly diagonally dominant with respect

to {g1, g2, . . . , gr1} in V1 and {h1, h2, . . . , hr2} in V2. By our previous arguments, u and v are invertible in

V1 and V2 respectively. It follows that x is invertible in V . This concludes the proof of the theorem. �

7. A Geršgorin type theorem in Euclidean Jordan algebras

Theorem 11. Let V be a Euclidean Jordan algebra of rank r and

x =
r∑

i=1

xiei +
∑
i< j

xij

be the Peirce decomposition of x ∈ V with respect to a given Jordan frame {e1, . . . , er} . Then
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σsp(x) ⊆
r⋃

i=1

{λ ∈ R : |λ − xi| � Ri(x)} ,

where Ri(x) is given by (2). Moreover, if a union of k Geršgorin intervals forms an interval that is disjoint

from the remaining n − k Geršgorin intervals, then there are precisely k spectral eigenvalues of x in this

interval.

Note. It is possible to say preciselywhich k spectral eigenvalues lie in the union of kGeršgorin intervals,

see the proof below.

Proof. Suppose that thestated inclusion fails, so that thereexistsaλ ∈ σsp(x) such that |λ − xi| > Ri(x),
for all i = 1, . . . , r. Then y := x − λe has the Peirce decomposition

y =
r∑

i=1

(xi − λ)ei +
∑
i< j

xij

and hence is a strictly diagonally dominant element of V . By Theorem 10, y is invertible. Now let

x = λ1f1 + · · · + λr fr

be the spectral decomposition of x, where {f1, . . . , fr} is a Jordan frame.

Then

y = (λ1 − λ)f1 + · · · + (λr − λ)fr

is the spectral decomposition of y. As λ ∈ σsp(x) = {λ1, λ2, . . . , λr}, λi = λ, for some i. It follows that

zero is a spectral eigenvalue of y which means that y is not invertible. This is a contradiction. Hence

we have the spectral inclusion.

Now for the second part of the theorem. Its proof, as in the classical case of complex matrices (see

[10, p. 345]), relies on continuity of eigenvalues.

First suppose that V is simple. Define

x(ε) :=
r∑

i=1

xiei + ε
∑
i< j

xij

with ε ∈ [0, 1]. Note that x(1) = x and x(0) = ∑r
i=1 xiei. Also,

Ri(x(ε)) � Ri(x)

for each i and so the spectrum of x(ε) is contained in the union of Geršgorin intervals of x.

Now we consider the decreasing rearrangement of spectral eigenvalues of x(ε):

λ↓(x(ε)) :=
[
λ

↓
1 (x(ε)) λ

↓
2 (x(ε)) · · · λ↓

r (x(ε))
]T

,

where λ
↓
1 (x(ε)) � λ

↓
2 (x(ε)) � · · · � λ

↓
r (x(ε)). In particular, for ε = 0,

λ↓(x(0)) =
[
x
↓
1 x

↓
2 · · · x↓

r

]T
.

In view of the continuity of λ↓(x(ε)) in ε (see e.g., Theorem 9 in [9]) each of the spectral eigenvalue

curves joining x
↓
i and λ

↓
i (x) lies in the union of all Geršgorin intervals of x. Now consider the union of

k Geršgorin intervals that form an interval (i.e., a connected set) which is disjoint from other Geršgorin

intervals of x. Corresponding to the center, say, x
↓
i of a Geršgorin interval that is contained in this

union, the other end of the spectral eigenvalue curve, namely, λ
↓
i (x) must also be in this union. Even

the converse statement holds. Thus there are exactly k eigenvalues of x that lie in this union.

Now let V be a general Euclidean Jordan algebra and let k Geršgorin intervals of x form an interval

that is disjoint fromotherGeršgorin intervals of x. Define x(ε) as in the previous case. Suppose,without
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loss of generality, x1 is the center of one of the Geršgorin intervals in this union. Then the associated

primitive idempotent e1 (in the Peirce decomposition of x with respect to {e1, e2, . . . , er}) belongs to
a unique factor (simple) algebra, say, V1 of V . Using the continuity of spectral eigenvalues in simple

algebras (as observed above), we can conclude that the spectral eigenvalue curve joining x1 and one of

the spectral eigenvalues of x lies in this union. Conversely, each spectral eigenvalue of x that lies in this

union connects to one of the centers that lies in the union. Because of this one-to-one correspondence,

we see that there are exactly k spectral eigenvalues of x lying in the union. This completes the proof. �

It is well known that an object x of V belongs to K (interior of K) if and only if all the spectral eigen-

values of x are nonnegative (respectively, positive). The following result is an immediate consequence

of the above theorem.

Corollary 12. If in the above theorem, x is strictly diagonally dominant with respect to some Jordan frame

and the diagonal elements xi are positive, then x is in the interior of the symmetric cone.
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