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This paper deals with some inertia theorems in Euclidean Jordan

algebras. First, based on the continuity of eigenvalues, we give an

alternate proof of Kaneyuki’s generalization of Sylvester’s law of

inertia in simple Euclidean Jordan algebras. As a consequence, we

show that the cone spectrum of any quadratic representation with

respect to a symmetric cone is finite. Second, we present Ostrow-

ski–Schneider type inertia results in Euclidean Jordan algebras. In

particular, we relate the inertias of objects a and x in a Euclidean

Jordan algebra when La(x) > 0 or Sa(x) > 0, where La and Sa denote

Lyapunov and Stein transformations, respectively.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

For a square matrix A with complex entries, the inertia is defined by

In(A) := (π(A), ν(A), δ(A)),

where π(A), ν(A), and δ(A) are, respectively, the number of eigenvalues of Awith positive, negative, and

zero real parts, counting multiplicities.

In this paper, we consider some well known inertia theorems frommatrix analysis and study their

analogs in Euclidean Jordan algebras.

First, we consider Sylvester’s law of inertia [12, Theorem 4.5.8] which states that for any Hermitian

matrix X and any invertible (complex) matrix C,
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In(CXC∗) = In(X),

where C∗ denotes the conjugate of C. In [18], Ostrowski extends this result by showing that for any

complex matrix C,

π(CXC∗) � π(X) and ν(CXC∗) � ν(X).

Sylvester’s law of inertia has been extended to simple Euclidean Jordan algebras by Kaneyuki [14].

To describe this extension, letHn
denote the set of all n × n (complex) Hermitian matrices andHn

+
denote the closed convex cone of positive semidefinitematrices inHn

. ThenHn
is a Euclidean Jordan

algebra (see Section 2 for the definition) with the inner product and the Jordan product given by

〈X ,Y〉 := trace(XY) and X ◦ Y := XY + YX

2
.

In this setting, consider the linear transformation� : Hn → Hn
defined by�(X) = CXC∗ where C is a

(fixed) invertible complexmatrix. By writing C in the polar form as C = UAwhere A ∈ Hn
is invertible

(actually, positive definite) and U is unitary, we can write � = �PA, where PA (called the quadratic

representation of A) and � (called an algebra automorphism) are invertible linear transformations on

Hn
with the defining properties

PA(X) := 2A ◦ (A ◦ X) − A2 ◦ X and �(X ◦ Y) = �(X) ◦ �(Y)

for all X ,Y ∈ Hn
. (We note that PA(X) = AXA for all X ∈ Hn

.)

Given this, Sylvester’s law of inertia can be stated in the following way: For any invertible A inHn

and an algebra automorphism � onHn
,

In(�PA(X)) = In(X)

for all X ∈ Hn
.

A Euclidean Jordan algebra is a finite dimensional real Hilbert space with a compatible Jordan

product. A Euclidean Jordan algebra is said to be simple if it cannot be decomposed as the product of

two (non-trivial) Euclidean Jordan algebras. In addition to Sn
and Hn

, examples of simple algebras

include the algebra of all n × nHermitianmatrices with quaternion entries, and the algebra of all 3 × 3

Hermitianmatrices with octonion entries. The space Rn(n > 1) with the usual inner product and com-

ponentwise (Jordan) product is an example of a non-simple Euclidean Jordan algebra. In a Euclidean

Jordan algebra, every element has a spectral decomposition which defines the (real) eigenvalues of

that element. As in the case of a Hermitian matrix, we can then define the inertia of an element x by

In(x) := (π(x), ν(x), δ(x)),

where π(x), ν(x), and δ(x) are, respectively, the number of positive, negative, and zero eigenvalues,

counting multiplicities. Similar to Hn
+, each Euclidean Jordan algebra has a corresponding cone of

squares called the symmetric cone. Algebra automorphisms are those invertible linear transformations

on thealgebra thatpreserve the Jordanproduct. Corresponding toanelementa in thealgebra,wedefine

the quadratic representation

Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

Given the above, Kaneyuki’s extension [14] of Sylvester’s law of inertia can now be stated: In a simple

Euclidean Jordan algebra V , for any invertible element a ∈ V and any algebra automorphism � on V ,

we have

In(�Pa(x)) = In(x)

for all x ∈ V . Kaneyuki, in [14], proves this result by using Lie algebraic ideas and results, and in [15]

further extends it to graded Lie algebras. In this paper,we give an alternate proof of Kaneyuki’s result by

relying on the continuity of eigenvalues (which itself comes from themin–max theoremof Hirzebruch

on simple Euclidean Jordan algebras). Then using the continuity arguments again, we show that in any

Euclidean Jordan algebra V , for any element a and any algebra automorphism � on V ,

π(�Pa(x)) � π(x) and ν(�Pa(x)) � ν(x). (1)
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As an application of the above results, we study the finiteness of cone spectrum of algebra automor-

phisms and quadratic representations with respect to the symmetric cone. Given a linear transforma-

tion L on a finite-dimensional real Hilbert space H and a closed convex cone C (with dual C∗) in H,

the cone spectrum [23] of L with respect to C, denoted by σ(L,C), is the set of all real λ for which there

exists x ∈ H such that

0 /= x ∈ C, L(x) − λx ∈ C∗, and 〈x, L(x) − λx〉 = 0.

In [29], Zhou and Gowda proved the finiteness of cone spectrum of quadratic representations by

analyzing the cone spectrum on each of the simple algebras and then using the structure theorem

(see Section 2). In the present paper, we provide a short proof based on the inequalities in (1) and at

the same time extend the Zhou–Gowda result to products of algebra automorphisms and quadratic

representations.

Our next set of results deals with Ostrowski–Schneider type inertia results of matrix theory. The

famous result of Lyapunov [17] states that a real (complex) n × n matrix A is positive stable – which

means that In(A) = (n, 0, 0) – if and only if for some (equivalently, every) symmetric (Hermitian)

positive definite matrixW , the system

LA(X) := 1

2
(AX + XA∗) = W

has a symmetric (Hermitian) positive definite solution X . Ostrowski and Schneider [19], see also Taus-

sky [25], extended this result by showing the following: Given A ∈ Rn×n(Cn×n), there exists an X ∈ Sn

(respectively,Hn
) such that AX + XAT � 0 if and only if δ(A) = 0, in which case

In(A) = In(X).

Carlson and Schneider [3] further extended this result by showing that if δ(A) = 0 and AX + XAT 	 0

for some X ∈ Sn
(Hn

), then

π(X) � π(A) and ν(X) � ν(A).

Analogous results hold for Stein transformations. It is known, see [19,28], that for any real (complex)

n × nmatrix A, the system

SA(X) := X − AXAT � 0

has a solution X ∈ Sn
(Hn

) if and only if A has no eigenvalues on the unit circle in the complex plane,

in which case

In(X) = In0(A),

where In0(A) is the circle inertia of A defined as the triple consisting of eigenvalues of A that lie within

the unit circle, outside the unit circle, and on the unit circle. Analogous to the Carlson–Schneider result

above, Datta [5] extended this to the semidefinite case.

In this paper, we extend the above inertia results to certain linear transformations defined on

Euclidean Jordan algebras, see Theorems 18 and 19. Besides deducing the above results from our

inertia results, we show, in particular, the following:

• Given an element a in a Euclidean Jordan algebra, the system

La(x) := a ◦ x > 0

has a solution x if and only if δ(x) = 0, in which case

In(a) = In(x).

• Given an element a in a Euclidean Jordan algebra, the system

Sa(x) := x − Pa(x) > 0

has a solution x if and only if a has no eigenvalues on the unit circle, in which case,
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In(x) = In0(a)

where In0(a) denotes the circle inertia of a.

Thepaper is organized as follows. In Section2,wedescribe someconcepts from the theoryof Euclid-

ean Jordan algebras. Section 3 deals with the min–max theorem of Hirzebruch and its consequences.

In Section 4, we prove our main inequality (1) for products of quadratic representations and algebra

automorphisms. In Section 5, we present our cone spectrum result. Finally, in Section 6 we describe

Ostrowski–Schneider type inertia theorems.

2. Euclidean Jordan algebras

In this section,wedescribe someconcepts, properties, and results fromtheEuclidean Jordanalgebra

theory that are relevant to our study. Most of these can be found in Faraut and Korányi [6], Schmieta

and Alizadeh [21], and Gowda et al. [9].

A Euclidean Jordan algebra is a triple (V , ◦, 〈·, ·〉) where (V , 〈·, ·〉) is a finite dimensional inner product

space over R and (x, y) 
→ x ◦ y : V × V → V is a bilinear mapping satisfying the following conditions

for all x and y : x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), and 〈x ◦ y, z〉 = 〈y, x ◦ z〉. It is known that in such

an algebra, there is an element e ∈ V (called the unit element) such that x ◦ e = x for all x ∈ V .

Henceforth, V denotes a Euclidean Jordan algebra. In V , the set of squares

K := {x ◦ x : x ∈ V}
is a symmetric cone. This means that K is a self-dual closed convex cone and for any two elements

x, y ∈ interior(K), there exists an invertible linear transformation � : V → V such that �(K) = K and

�(x) = y, see Faraut and Korányi [6, p. 46].

For an element z ∈ V , we write

z � 0(z > 0) if and only if z ∈ K(z ∈ Ko)

where Ko denotes the interior of K .

For x ∈ V , we define

m(x) := min{k > 0 : {e, x, . . . , xk} is linearly dependent}
and rank of V by r = max{m(x) : x ∈ V}. An element c ∈ V is an idempotent if c2 = c; it is a primitive

idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents. We say that a

finite set {e1, e2, . . . , em} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i /= j and

m∑
1

ei = e.

Note that 〈ei, ej〉 = 〈ei ◦ ej , e〉 = 0 whenever i /= j.

Theorem 1 (The spectral decomposition theorem [6]). Let V be a Euclidean Jordan algebra with rank r.

Then for every x ∈ V , there exists a Jordan frame {e1, . . . , er} and real numbers λ1, . . . , λr such that

x = λ1e1 + · · · + λrer . (2)

In (2), the expression λ1e1 + · · · + λrer is the spectral decomposition (or the spectral expansion) of x.

The real numbers λi (also written as λi(x)) are called the eigenvalues of x; these are uniquely defined,

even though the Jordan frame corresponding to x need not be unique. For any x ∈ V given by (2), we

define the trace and spectrum of x by

trace(x) := λ1 + λ2 + · · · + λr

and

σ(x) := {λ1, λ2, . . . , λr}.
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We also define the inertia of x by

In(x) = (π(x), ν(x), δ(x))

where π(x), ν(x), and δ(x) are, respectively, the number of eigenvalues of xwhich are positive, negative,

and zero, counting multiplicities. We note that

π(x) + ν(x) + δ(x) = r

for all x. If x has no zero eigenvalues, then we say that x is invertible; in this case, following (2), we

define the inverse of x by

x−1 = 1

λ1
e1 + · · · + 1

λr
er .

We note that 〈u, v〉t := trace(u ◦ v) defines another inner product on V so that (V , ◦, 〈·, ·〉t) is also a

Euclidean Jordan algebra.

The Peirce decomposition

Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean Jordan algebra V . For i, j ∈ {1, 2, . . . , r}, define the

eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei

and when i /= j,

Vij :=
{
x ∈ V : x ◦ ei = 1

2
x = x ◦ ej

}
.

Then we have the following

Theorem2 ([6, Theorem IV.2.1]). The spaceV is the orthogonal direct sumof spacesVij(i � j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,

Vij ◦ Vjk ⊂ Vik if i /= k, and

Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given a Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =
r∑

i=1

xiei +
∑
i<j�r

xij ,

where xi ∈ R and xij ∈ Vij . This expression is the Peirce decomposition of xwith respect to {e1, e2, . . . , er}.
A Euclidean Jordan algebra is said to be simple if it is not thedirect sumof two (non-trivial) Euclidean

Jordan algebras. The classification theorem (Chapter V, [6]) says that every simple Euclidean Jordan

algebra is isomorphic to one of the following:

(1) The algebraLn = (Rn, ◦, 〈·, ·〉), where Rn = R × Rn−1 (n > 1), 〈·, ·〉 is the usual inner product, and

(x0, x̄) ◦ (y0, ȳ) = (x0y0 + 〈x̄, ȳ〉, x0ȳ + y0x̄).

(2) The algebraSn
of n × n real symmetric matrices with trace inner product and X ◦ Y = 1

2
(XY +

YX).

(3) The algebraHn
of all n × n complex Hermitian matrices with trace inner product and X ◦ Y =

1
2
(XY + YX).

(4) The algebra Qn
of all n × n quaternion Hermitian matrices with (real) trace inner product and

X ◦ Y = 1
2
(XY + YX).

(5) The algebra O3
of all 3 × 3 octonion Hermitian matrices with (real) trace inner product and

X ◦ Y = 1
2
(XY + YX).
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The following result characterizes all Euclidean Jordan algebras.

Theorem 3 ([6, Propositions III.4.4 and III.4.5, Theorem V.3.7]). Any Euclidean Jordan algebra is, in a

unique way, a direct sum of simple Euclidean Jordan algebras. Moreover, the symmetric cone in a given

Euclidean Jordan algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple

Euclidean Jordan algebras.

Suppose V is a direct sum of simple algebras Vi: V = V1 ⊕ V2 ⊕ · · · ⊕ VN . Then any primitive idem-

potent in V is of the form (0, 0, . . . , ei, 0, . . . , 0) for some primitive idempotent ei in Vi. Consequently,

for any x = (x1, x2, . . . , xN) in the direct sum,

(i) The spectrum of x is the union of the spectra of xi,

(ii) x is invertible in V if and only if xi is invertible in Vi, and

(iii) In(x) =
(∑N

i π(xi),
∑N

i ν(xi),
∑N

i δ(xi)
)
.

Index of a simple algebra

For any primitive idempotent c, let

V

(
c,

1

2

)
:=
{
x : x ◦ c = 1

2
x

}
.

Now let V be simple. It is known (see Corollary IV.2.6 in [6]) that for any two orthogonal primitive

idempotents c1 and c2, the dimension of the (nonzero) space

V

(
c1,

1

2

)
∩ V

(
c2,

1

2

)

is independent of {c1, c2}. This common dimension will be called the index of V and is denoted by d.

Thus

d := dimV

(
c1,

1

2

)
∩ V

(
c2,

1

2

)
.

We remark that the index ofSn
is one and index ofLn

(n > 2) is n − 2.

Lyapunov transformation and quadratic representations

For a given a ∈ V , we define the corresponding Lyapunov transformation La : V → V by

La(x) = a ◦ x

and the quadratic representation Pa by

Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

We say that elements a and b operator commute if La and Lb commute, i.e.,

LaLb = LbLa.

It is known that a and b operator commute if and only if a and b have their spectral decompositions

with respect to a common Jordan frame (Lemma X.2.2, [6] or Theorem 27, [21]).

We recall the following from Gowda, Sznajder and Tao [9]:

Proposition 4. For x, y ∈ V , the following conditions are equivalent:

(i) x � 0, y � 0, and 〈x, y〉 = 0.
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(ii) x � 0, y � 0, and x ◦ y = 0.

In each case, elements x and y operator commute.

An easy consequence is the following.

Proposition 5. Let the Peirce decomposition of an element x with respect to a Jordan frame {e1, e2, . . . , er}
be given by

x =
r∑

i=1

xiei +
∑
i<j

xij.

If x � 0 and xi = 0 for some i, then xli = xij = 0 for all l, j with l < i and i < j.

This can be easily seen by noting that when x � 0, 0 = 〈x, ei〉 ⇒ x ◦ ei = 0 and 0 = x ◦ ei = xiei +
1
2

(∑
l<i xli +

∑
i<j xij

)
implies xij = 0 for all j due to the orthogonality of the spaces Vij .

The following result describes the effect of La and Pa on any element x.

Proposition 6. Suppose that {e1, e2, . . . , er} is a Jordan frame,

a = a1e1 + a2e2 + · · · + arer

and

x =
r∑

i=1

xiei +
∑
i<j

xij

(with xi ∈ R and xij ∈ Vij) be the Peirce decomposition of x with respect to this Jordan frame. Then

La(x) =
r∑

i=1

aixiei +
∑
i<j

ai + aj

2
xij

and

Pa(x) =
r∑

i=1

ai
2xiei +

∑
i<j

aiajxij.

Thus, when σ(a) = {a1, a2, . . . , ar}, we have

σ(La) ⊆
{
ai + aj

2
: i, j = 1, 2, . . . , r and i � j

}

and

σ(Pa) ⊆ {aiaj : i, j = 1, 2, . . . , r and i � j}
with equality when V is simple.

Proof. From Theorem 2, we have a ◦ ei = aiei and a ◦ xij = ai+aj
2

xij . From these, the stated expressions

for La and Pa follow. The spectrum containments also follow. Finally, when V is simple, Vij (in Theorem

2) is nonzero for each i � j (see Corollary IV.2.4 in [6]) and hence equality holds in the spectrum

inclusions. �

We list below some properties of Pa. These can be found in [6].
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Proposition 7. The following statements hold:

(1) Pa is a self-adjoint linear transformation.

(2) Pa(K) ⊆ K for all a ∈ V , with equality if a is invertible.

(3) Pa is invertible if and only if a is invertible. In this case, (Pa)
−1 = Pa−1 .

(4) PPa(x) = PaPxPa. In particular, if a and x are invertible, then so is Pa(x).

Algebra and cone automorphisms

An invertible linear transformation � on V is an algebra automorphism if

�(x ◦ y) = �(x) ◦ �(y) ∀x, y ∈ V .

Since such an automorphism takes a Jordan frame to a Jordan frame, we see that inertia remains

invariant under an algebra automorphism. It is known [6, Theorem IV.2.5] that in a simple algebra, any

two Jordan frames can be mapped onto each other by an algebra automorphism.

A linear transformation� : V → V is called a cone automorphism if�(K) = K . We denote by Aut(K)

the set of all cone automorphisms of V . It is known that in a simple algebra, any cone automorphism

� can be written as

� = �Pa

(or equivalently, as � = Pa�) where a > 0 and � is an algebra automorphism, see page 56 in [6].

If � is a cone automorphism onHn
, then there exists an invertible matrix C with �(X) = CXC∗ for

all X ∈ Hn
; conversely, each invertible matrix C induces a cone automorphism ofHn

that takes any

X to CXC∗ (see [22]).

3. Min–max theorem of Hirzebruch and its consequences

In this section, we state themin–max theorem of Hirzebruch and derive some consequences. These

results are needed for our subsequent analysis and are also of independent interest.

In a simple Euclidean Jordan algebra V , let

J(V) := {c : c is a primitive idempotent in V}.
ThenJ(V) is a compact set in V (see Exercise 5, p. 78 in [6]). If 〈·, ·〉 is the inner product in V , then there

exists a positive number α such that 〈x, y〉 = αtrace(x ◦ y) (see [6, Prop. III.4.1]. In particular, we have

α = 〈c, e〉 = ‖c‖2 ∀c ∈ J(V).

In what follows, we use the following notation: Given any set of numbers {λ1, λ2, . . . , λk}, we rearrange

the objects and write the set as

{λ↓
1
, λ

↓
2
, . . . , λ

↓
k
}

where λ
↓
1

� λ
↓
2

� · · · � λ
↓
k
. Thus for any x ∈ V , λ

↓
i
(x)(i = 1, 2, . . . , r) denote the eigenvalues of xwritten

in the decreasing order.

We also write

λ↓(x) := (λ
↓
1
(x), λ

↓
2
(x), . . . , λ

↓
r (x).

Theorem 8 (Min–max theorem of Hirzebruch [11]).

Let V be simple. Then for any x ∈ V we have

λ
↓
1
(x) = max

c∈J(V)

〈x, c〉
〈e, c〉 ,

λ
↓
r (x) = min

c∈J(V)

〈x, c〉
〈e, c〉 ,



Author's personal copy

2000 M. Seetharama Gowda et al. / Linear Algebra and its Applications 430 (2009) 1992–2011

and

λ
↓
k+1

(x) = min
{f1,f2,...,fk}⊂J(V)

max
c∈J(V),c⊥{f1,f2,...,fk}

〈x, c〉
〈e, c〉

for k = 1, . . . , r − 2.

This min–max theorem immediately yields the following result on the continuity of eigenvalues.

Theorem 9. Let V be a Euclidean Jordan algebra. Then the following statements hold:

(1) When V is simple, for any two elements a, b ∈ V we have

‖λ↓(a) − λ↓(b)‖∞ := max
1�i�r

|λ↓
i
(a) − λ

↓
i
(b)| � 1

‖c‖‖a − b‖,

where c is any primitive idempotent in V .

(2) When V is not simple, V can be written as a product of simple algebras: V = V1 × · · · × VN . In this

case, there is a positive number � such that for all a = (a1, a2, . . . , aN) and b = (b1, b2, . . . , bN) in

V = V1 × V2 × · · · × VN ,

‖λ↓(al) − λ↓(bl)‖∞ � �‖a − b‖ (l = 1, 2, . . . ,N).

Proof. Item (1) follows from the Hirzebruch theorem and the inequality

〈a, c〉
〈e, c〉 � 〈b, c〉

〈e, c〉 + ‖a − b‖
‖c‖

with the observation that ‖c‖ is a constant onJ(V). For Item (2), we decompose (the general) V into

simple algebras (see Theorem 3) as V = V1 × V2 × · · · × VN and apply Item (1). �

Remarks. We note that the inequality in item (1) above is analogous to the Weyl’s perturbation

inequality in matrix theory [2]. Baes [1, Corollary 24] based on a generalization of von Neumann’s

trace inequality, proves a stronger Hoffman–Wielandt type inequality:

‖λ↓(a) − λ↓(b)‖2 � 1

‖c‖‖a − b‖.

As a consequence of the above theorem, we prove the continuity and invariance of Inertia.

Theorem 10. Let V be a Euclidean Jordan algebra with In(x) denoting the inertia of an element x in V . Let

Inv(V) denote the set of all invertible elements in V . Then the following hold:

(a) On Inv(V), inertia (as a function from Inv(V) → {0, 1, 2, . . .}3) is continuous. In fact, if a ∈ Inv(V),

then for any x in some neighborhood of a, we have In(x) = In(a).

(b) On each (connected) component of Inv(V), inertia is a constant.

(c) If H(t) : [0, 1] → V is continuous with H(t) invertible for all t, then In(H(0)) = In(H(1)) = In(H(t)).

(d) π and ν are lower semicontinuous on V ; In fact, if a ∈ V , then for any x in some neighborhood of a,

we have

π(a) � π(x) and ν(a) � ν(x).

Proof. (a) Fix a ∈ Inv(V). Then In(a) = (π(a), ν(a), 0). By Item (2) in Theorem 9, for all x near a,π(x) =
π(a) and ν(x) = ν(a); thus, In(x)= In(a) for all x near a. This gives the continuity of inertia at a.

(b) Let� be a connected component of Inv(V). (Note that Inv(V) is an open set inV .) As π : Inv(V) →
{0, 1, 2, . . .} is continuous, π(�) is connected and hence is a singleton set. Similarly, ν(�) is a singleton

set. Item (b) follows.

(c) As the image ofH is contained in a connected component of Inv(V), the result follows from Item

(b).
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(d) The inequalities in (d) follow immediately from Item (2) in the previous theorem. The lower

semicontinuity properties follow since the sets {x : π(x) > α} and {x : ν(x) > α} are open for any real

number α. �

Remarks. Although we have stated the above theorem in the setting of Euclidean Jordan algebras,

the results are valid (with minor modifications) in some other settings also. For example, we could

replace V in the above theorem by Cn×n (the space of all n × n complex matrices) with In(A) denoting

the inertia of A. In this setting, the continuity of inertia on invertible elements of Cn×n follows from

the continuity of eigenvalues (see [2, Theorem VI.1.2]) or continuity of roots of a complex polynomial

[27].

4. Inertia results for quadratic representations

We come to themain inertia result which generalizes the theorems of Sylvester [12] and Ostrowski

[18]. Asnotedpreviously, the invarianceof inertiawasfirst establishedbyKaneyuki [14] by Lie algebraic

means.

Theorem 11. Let V be any Euclidean Jordan algebra and� be an algebra automorphism of V . Then for any

invertible a ∈ V we have,

In(�Pa(x)) = In(x) for all x ∈ V .

More generally, for all a, x ∈ V ,

π(�Pa(x)) � π(x) and ν(�Pa(x)) � ν(x).

Proof. As� is an algebra automorphismof V , itmaps a Jordan frame onto a Jordan frame; thus, inertia,

π , and ν are invariant under�. Hence it is enough to prove the above statements with� = I (identity).

We first assume that V is simple and a is invertible. We show that In(�Pa(x)) = In(x). Now, Pa(K) = K

and hence we can write Pa as

Pa = �1Pd,

where �1 is an algebra automorphism of V and d > 0. Once again, as inertia is invariant under �1, it

is enough to show that

In(Pd(x)) = In(x)

for all x ∈ V .

Case 1: Let x be invertible. Then (by Prop. 7) for all t ∈ [0, 1],
H(t) := P(1−t)d+te(x)

is invertible. Hence by Theorem 10(c), In(Pd(x)) = In(x).

Case 2: Let x be non-invertible. In this case, x will have zero eigenvalues. Then, by the spectral

decomposition theorem, for all small positive ε,π(x − εe) = π(x) and ν(x + εe) = ν(x). As x + εe and

x − εe are invertible for all small ε, by Theorem 10(d) and Case 1, we have

π(Pd(x)) � π(Pd(x − εe)) = π(x − εe) = π(x)

and

ν(Pd(x)) � ν(Pd(x + εe)) = ν(x + εe) = ν(x).

Now applying these inequalities to d−1, we get

π(x) = π(Pd−1 (Pd(x))) � π(Pd(x))

and
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ν(x) = ν(Pd−1 (Pd(x))) � ν(Pd(x)).

Thus we have π(Pd(x)) = π(x) and ν(Pd(x)) = ν(x). This proves that In(Pa(x)) = In(Pd(x)) = In(x).

Now letV be any Euclidean Jordan algebra and a be invertible in V . Thenwe candecomposeV into a di-

rect sum of simple algebras Vi : V = V1 ⊕ V2 ⊕ · · · ⊕ VN . Writing a = (a1, a2, . . . , aN), Pa = (Pa1 , . . . , PaN )

and x = (x1, x2, . . . , xN)we see that each ai is invertible in Vi. From the previous case, In(Pai (xi)) = In(xi)

for all i.

Since In(x) =
(∑N

i π(xi),
∑N

i ν(xi),
∑N

i δ(xi)
)
,weget In(Pa(x)) = In(x). This concludes theproofwhen

a is invertible.

Now suppose a is not invertible and let

a = a1e1 + a2e2 + · · · + akek + 0ek+1 + · · · + 0er

be the spectral decomposition of awhere ai /= 0 for 1 � i � k < r. For t > 0, define

b := a1e1 + a2e2 + · · · + akek + t(ek+1 + · · · + er).

Then, b is invertible and

In(Pb(x)) = In(x)

for all x. For any given x, pick a small t so that Pb(x) is close to Pa(x) and (hence) by Theorem 10(d),

π(Pa(x)) � π(Pb(x)).

Thus we have π(Pa(x)) � π(x). Now by working with −x, we get ν(Pa(x)) � ν(x).

At this stage, we have proved that for any general V and a ∈ V , π(Pa(x)) � π(x) and ν(Pa(x)) � ν(x)

for all x with In(Pa(x)) = In(x) when a is invertible. This completes the proof. �

Remarks. For an algebra automorphism � and a ∈ V , we note that

Pa(�(x)) = �P�−1
(a)

(x)

and so π(Pa(�(x))) = π(P�−1
(a)

(x)) � π(x). Similarly, ν(Pa(�(x))) = ν(P�−1
(a)

(x)) � ν(x). In addition,

In(Pa(�(x))) = In(x)when a is invertible. It should be remarked thatwhen a is not invertible, π(�Pa(x))

may be different from π(Pa�(x)). This can be seen as follows.

Let V = S2
,A =

[
1 0
0 0

]
and X =

[
1 0
0 −1

]
. Then PA(X) = AXA =

[
1 0
0 0

]
. Thus π(PA(X)) = 1. Take

U = 1√
2

[
1 −1
1 1

]
. Then B = �−1

(A) = UAUT = 1
2

[
1 1
1 1

]
. Hence PB(X) = BXB =

[
0 0
0 0

]
and π(PB(X)) =

0. Therefore π(PA(X)) /= π(PB(X)).

Corollary 12. Suppose V is simple and � is a cone automorphism of V . Then for any x ∈ V ,

In(�(x)) = In(x).

Proof. For any cone automorphism �, we can write � = Pa� for some a > 0 and an algebra automor-

phism �. In this case, the result follows from the above theorem. �

We now describe a converse of Theorem 11 which can also be found in [14].

Theorem 13. Suppose that V is simple and for two elements x and y, In(x) = In(y). Then there is an invert-

ible a in V and an algebra automorphism � of V such that Pa�(x) = y.

Proof. We write the spectral decompositions

x = (λ1e1 + · · · + λkek) + (0ek+1 + · · · + 0el) + (λl+1el+1 + · · · + λrer)

and

y = (μ1f1 + · · · + μkfk) + (0fk+1 + · · · + 0fl) + (μl+1fl+1 + · · · + μr fr),
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where λi and μi are positive for i = 1, 2, . . . , k and negative for i = l + 1, . . . , r. Since V is simple, there

is an algebra automorphism � of V such that �(ei) = fi for all i. Then

z := �(x) = (λ1f1 + · · · + λkfk) + (0fk+1 + · · · + 0fl) + (λl+1fl+1 + · · · + λr fr).

Let a = a1f1 + a2f2 + · · · + arfr with ai =
√

μi
λi

for i ∈ {1, 2, . . . , k} ∪ {l + 1, . . . , r} and ai = 1 for i ∈ {k +
1, k + 2, . . . , l}. Then a is invertible, and it is easily seen that

Pa(z) = y.

Thus Pa�(x) = y, proving the result. �

Suppose that x and y are elements in a Euclidean Jordan algebra such that Pa�(x) = y for some

algebra automorphism � of V and invertible a ∈ V . Then

In(Px) = In(Py).

This can be seen as follows: Let z := �(x) so that Pa(z) = y. Then by Proposition 7, PaPzPa = Py. As Pa
is invertible, by Sylvester’s law of inertia (applicable to self-adjoint transformation Pz and invertible

transformation Pa), In(Pz) = In(Py). Now Pz(u) = 2z ◦ (z ◦ u) − z2 ◦ u = �Px�
−1

(u) for all u ∈ V implies

that In(Pz) = In(�Px�
−1

) = In(Px). Thus, In(Px) = In(Py).

The following result establishes a relation between the inertias of an object and its corresponding

quadratic representation. Recall that d denotes the index of V .

Proposition 14. Let V be simple. Then the following statements hold:

(i) If In(a) = (k, l, r − k − l), then

In(Pa) = (k̄ + l̄, kld, r̄ − k̄ − l̄ − kld)

where k̄ = k + dk(k−1)
2

, l̄ = l + dl(l−1)
2

, and r̄ = r + dr(r−1)
2

.

(ii) In(x) = In(±y) if and only if In(Px) = In(Py).

Proof. Item (i) follows from the expression for Pa(x) in Proposition 6 and the fact that on Vij , Pa has the

eigenvalue aiaj that is repeated d(= dimVij) times.

(ii) Suppose In(x) = In(y) = (k, l, r − k − l). Then Item (i) gives the equality of inertias of Px and Py.

When In(x) = In(−y), we have In(Px) = In(P−y) = In(Py) as Py = P−y.

Now suppose In(Px) = In(Py). Let In(x) = (k, l, r − k − l) and In(y) = (k′, l′, r − k′ − l′). Then, using
Item (i) for x and y,

k + dk(k − 1)

2
+ l + dl(l − 1)

2
= k′ + dk′(k′ − 1)

2
+ l′ + dl′(l′ − 1)

2

and

kld = k′l′d.

This leads to

k(k + 1) + (d − 1)k(k − 1) + l(l + 1) + (d − 1)l(l − 1)

= k′(k′ + 1) + (d − 1)k′(k′ − 1) + l′(l′ + 1) + (d − 1)l′(l′ − 1)

and kl = k′l′. From these we get

(k + l)2 + (k + l) + (d − 1)[(k + l)2 − (k + l)]
= (k′ + l′)2 + (k′ + l′) + (d − 1)[(k′ + l′)2 − (k′ + l′)].

Further simplification leads to
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[k + l − (k′ + l′)][d(k + l + k′ + l′ − 1) + 2] = 0.

If both x and y are zero, then In(x) = In(±y). When one of them is nonzero, (k + l + k′ + l′ − 1) � 0 and

hence k + l = k′ + l′. Now, k + l = k′ + l′ and kl = k′l′ imply (k − l)2 = (k′ − l′)2 and k − l = ±(k′ − l′). It
follows that either k = k′ and l = l′ or k = l′ and l = k′. Hence In(x) = In(±y). �

The following example shows that Theorem 13 need not hold for a non-simple algebra.

Example 1. InLn
(n > 2), take objects x1, x2, y1, and y2 with

In(x1) = (1, 1, 0), In(x2) = (1, 0, 1), In(y1) = (2, 0, 0) and In(y2) = (0, 1, 1).

Define V := Ln ⊕Ln
, x = (x1, x2), y = (y1, y2). Then Px = (Px1 , Px2 ) and Py = (Py1 , Py2 ). From Section 2,

In(x) = (π(x1) + π(x2), ν(x1) + ν(x2), δ(x1) + δ(x2))

and

In(Px) = (π(Px1 ) + π(Px2 ), ν(Px1 ) + ν(Px2 ), δ(Px1 ) + δ(Px2 )).

As the index of Ln
is n − 2, we have In(x) = (2, 1, 1) = In(y), In(Px1 ) = (2,n − 2, ∗), In(Px2 ) = (1, 0, ∗),

In(Py1 ) = (n, 0, ∗), and In(Py2 ) = (1, 0, ∗). Thus we have In(Px) = (3,n − 2, ∗) and In(Py) = (n + 1, 0, ∗),

hence In(Px) /= In(Py).

5. Cone spectrum results

As an application of the results of the previous section, we consider the finiteness of cone spectrum

of quadratic representations.

In the definition below, H denotes a finite dimensional real Hilbert space and C denotes a closed

convex cone in H with dual C∗.

Definition 15 [23]. Given a linear transformation L : H → H, the cone spectrum of L with respect to C

is the set of all λ ∈ R for which there exists x ∈ H such that

0 /= x ∈ C, L(x) − λx ∈ C∗, and 〈x, L(x) − λx〉 = 0.

We denote the cone spectrum of L with respect to C by σ(L,C) and its cardinality by |σ(L,C)|.
In [24], Seeger and Torki discuss the nonemptyness, continuity, and finiteness of the cone spectrum.

In particular, they show that the cone spectrum is nonempty for any proper cone C (that is, when

C ∩ (−C) = {0}) and that it is finite for any polyhedral cone. They also show that every symmetric linear

transformation on the Lorentz cone (this is the symmetric cone ofLn
) has finite cone spectrum.Moti-

vatedby this, they raise theproblemof describing cones forwhich every symmetric transformationhas

finite cone spectrum. In a recent paper, Iusem and Seeger [13] construct an example of a symmetric

transformation on a cone which has infinite cone spectrum. Influenced by these, Zhou and Gowda

[29] studied this finite cone spectrum problem for some special linear transformations on symmetric

cones. They showed that for Z-transformations (see Section 6 for the definition) the cone spectrum

with respect to the symmetric cone is always finite. In addition, by studying quadratic representations

on each of the simple algebras and then by using the structure theorem they showed that on any

Euclidean Jordan algebra, quadratic representations have finite cone spectrum. In what follows, we

present a proof of this result that avoids case by case analysis and that allows a generalization to

transformations which are products of algebra automorphisms and quadratic representations.

In what follows, for any linear transformation L : V → V , σ(L) denotes the spectrum of L.

Theorem 16. Let V be any Euclidean Jordan algebra. Then for any algebra automorphism � of V and any

a ∈ V , we have



Author's personal copy

M. Seetharama Gowda et al. / Linear Algebra and its Applications 430 (2009) 1992–2011 2005

σ(�Pa,K) ⊆ σ(�Pa) ∪ {0}.
Hence |σ(�Pa,K)| < ∞. In particular, on any simple algebra, every cone automorphism has finite cone

spectrum.

Note: A similar result holds for Pa�.

Proof. Let � be an algebra automorphism of V and a ∈ V . Without loss of generality, let a /= 0 and

0 /= λ ∈ σ(�Pa,K). Then there exists a nonzero x in K , y in K∗ = K with �Pa(x) = λx + y and 〈x, y〉 = 0.

Note that �Pa(x) � 0 and so λ is positive. In view of Prop. 4, there exists Jordan frame {e1, e2, . . . , er}
such that

x = x1e1 + x2e2 + · · · + xkek and y = yk+1ek+1 + · · · + yrer ,

where each xi is positive and each yi is nonnegative. Therefore,

π(λx + y) = π(x) + π(y) = k + π(y).

From Theorem 11,

π(�Pa(x)) � π(x) = k.

As �Pa(x) = λx + y, we see that k � k + π(y). This yields π(y) = 0. Since y � 0, we must have y = 0

and �Pa(x) = λx. The inclusion relation between the cone spectrum and the spectrum follows. The

finiteness of the cone spectrum is obvious. Finally, when V is simple, every cone automorphism can

be written as a product of a quadratic representation and an algebra automorphism. The finiteness of

cone spectrum for such an automorphism follows. �

6. Ostrowski–Schneider type inertia theorems

In this section, we extend Ostrowski–Schneider type inertia results mentioned in Section 1 to

certain linear transformations on Euclidean Jordan algebras. Throughout this section, we assume that

V denotes a general Euclidean Jordan algebra.

First, we provide an alternate description of the existence of element x̄ in V such that L(x̄) > 0.

Proposition 17. Let L : V → V be linear. Then the following statements are equivalent:

(i) There exists an x̄ in V such that L(x̄) > 0.

(ii) The implication [u � 0, LT (u) = 0] ⇒ u = 0 holds.

Proof. Suppose there exist x̄ in V such that L(x̄) > 0 and a nonzero u � 0 with LT (u) = 0. Then

0 < 〈L(x̄),u〉 = 〈x̄, LT (u)〉 = 0

gives a contradiction. Hence (i) ⇒ (ii). Now suppose that (i) does not hold. Then the convex sets L(V)

and Ko are disjoint. By a separation theorem (see e.g., Theorem 3.4 in [20]), there exists a nonzero u

and a number α such that

〈L(v),u〉 � α � 〈z,u〉
for all v ∈ V and z ∈ Ko. This leads to u � 0 and LT (u) = 0. Thus negation of (i) implies the negation of

(ii). This proves (ii) ⇒ (i). �

We now state our inertia theorem.

Theorem 18. Suppose L : V → V is linear with the following properties:

(1) There exists an x̄ in V such that L(x̄) > 0.
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(2) Every x with L(x) > 0 is invertible.

Then for any z with L(z) � 0, we have

π(z) � π(x̄) and ν(z) � ν(x̄).

In particular, for any invertible z with L(z) � 0, we have In(z) = In(x̄); Also, for any y with L(y) > 0, we

have In(y) = In(x̄).

Proof. Let L(z) � 0. As L(x̄) > 0, we see that L((1 − t)z + tx̄) > 0 for all 0 < t � 1. By Property (2),

(1 − t)z + tx̄ is invertible for all 0 < t � 1. For all such t, by Theorem 10(c), In(x̄) = In((1 − t)z + tx̄).

For t close to zero, (1 − t)z + tx̄ is close to z, and by Theorem 10(d), π(z) � π((1 − t)z + tx̄) = π(x̄). A

similar inequality holds for ν(z). Now when z is invertible,

r = π(z) + ν(z) � π(x̄) + ν(x̄) � r

implies that π(z) = π(x̄) and ν(z) = ν(x̄). This proves that z and x̄ have the same inertia. Finally, when

L(y) > 0, y will be invertible (by our assumption) and so In(y) = In(x̄). �

In what follows, we say that a linear transformation Q : V → V is Lyapunov-like [8] if

x, y ∈ K , 〈x, y〉 = 0 ⇒ 〈Q (x), y〉 = 0.

In view of the spectral decomposition theorem, the above condition can be stated as: for any Jordan

frame {e1, e2 . . . , er}, the equality 〈Q (ei), ej〉 = 0 holds for all i /= j. Examples of such transformations

include

(a) LA onSn
for any A ∈ Rn×n (see Section 1),

(b) LA onHn
for any A ∈ Cn×n,

(c) La on any Euclidean Jordan algebra V with a ∈ V , and

(d) any matrix of the form Q =
[
a bT

b D

]
with D + DT = 2aI onLn

.

Remarks. Recently, Damm [4] has proved that every Lyapunov-like transformation on Sn
or Hn

is

of the form LA for some square matrix A. Tao [26] has shown that on Ln
, matrices given in (d) are

the only Lyapunov-like transformations. However, the form of a Lyapunov-like transformation on a

general Euclidean Jordan algebra is not known.

Theorem 19. Suppose L : V → V is linear with the following properties:

(a) There exists x̄ in V such that L(x̄) > 0;
(b) L = PQ where P : V → V is an invertible linear transformation with P−1(Ko) ⊆ Ko and Q : V → V

is Lyapunov-like.

Then the conclusions of the previous theorem hold.

Proof. In order to apply the previous theorem, we need only to show that Item (b) implies condition

(2) of the theorem. To this end, let L(x) > 0. Then PQ (x) > 0. By the imposed condition on P, we have

Q (x) > 0. Assume, if possible, x is not invertible so that the spectral decomposition of x is given by

x = 0e1 + x2e2 + · · · + xrer .

Then Q (x) = 0Q (e1) + x2Q (e2) + · · · + xrQ (er) > 0. We have

0 < 〈Q (x), e1〉 = 0〈Q (e1), e1〉 + x2〈Q (e2), e1〉 + · · · + xr〈Q (er), e1〉 = 0

where the last equality comes from the defining property of the Lyapunov-like transformation Q . This

contradiction proves that x is invertible. The conclusion follows. �
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Remarks. Lyapunov-like transformations are special cases of Z-transformations defined by

x, y ∈ K , 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0.

The negative of a Z-transformation is known in the literature as a cross-positive transformation. Exam-

ples of Z-transformations include Z-matrices, Lyapunov and Stein transformations LA and SA on Sn

(or Hn
), the transformations La and Sa on any Euclidean Jordan algebra, see [10] for further details.

The result below generalizes the theorems of Lyapunov and Stein to Z-transformations:

Proposition 20 [10]. The following are equivalent for a Z-transformation on any Euclidean Jordan algebra:

(i) There exists an x̄ > 0 with L(x̄) > 0.

(ii) L−1 exists and L−1(K) ⊆ K .

(iii) L is positive stable.

Motivated by this result, we may ask if a Ostrowski–Schneider type inertia result holds for Z-

transformations. The following example shows that this is not the case.

Example 2. On the Euclidean Jordan algebra R2, let

L =
[
0 −1

−1 −1

]

be an invertible Z-matrix.

For this matrix, L(x̄) > 0 and L(z) > 0 where

x̄ =
[−1

−1

]
and z =

[
1

−2

]

yet In(z) /= In(x̄).

We now show that the Ostrowski–Schneider type results mentioned earlier are special cases of

Theorem 19. In addition, we state two new results in general Euclidean Jordan algebras.

Corollary 21 [3]. Let A ∈ Cn×n and LA(X) = 1
2
(AX + XA∗) on Hn

. Then there exists X ∈ Hn
such that

LA(X) � 0 if and only if δ(A) = 0. If δ(A) = 0, then for any Z with LA(Z) 	 0, we have π(Z) � π(X) = π(A)

and ν(Z) � ν(X) = ν(A).

Proof. The first part of the corollary is well-known. For completeness, we provide a proof in

Appendix I.

Nowassume that δ(A) = 0 so that there exists anXwith LA(X) � 0. Let LA(Z) 	 0.We can apply Theo-

rem19 to the Lypaunov-like transformation LA in the Euclidean Jordan algebraHn
andgetπ(Z) � π(X)

etc. To complete the proof, we show that In(X) = In(A). Firstly, we extend LA : Cn×n → Cn×n by

LA(B) = 1

2
(AB + B∗A∗).

Secondly, if LA(B) � 0, then AB is positive definite on Cn, and hence B is invertible. Finally, putting

H(t) := tX + (1 − t)A−1 : Cn×n → Cn×n and applying the remark following Theorem 10, we get In(X) =
In(A−1). Since In(A−1) = In(A), the result follows. �

Corollary 22. Consider a Euclidean Jordan algebra V and let a ∈ V . Then we have the following:

(1) There exists x̄ ∈ V such that a ◦ x̄ > 0 if and only if a (also x̄) is invertible (that is, δ(a) = 0).

(2) Let a be invertible. Then for any z with a ◦ z � 0,we have π(z) � π(a) and ν(z) � ν(a). In particular,

if z is invertible, then In(z) = In(a).

Proof. The Lyapunov transformation La, defined by La(x) = a ◦ x on V , is Lyapunov-like: For any two

elements u, v � 0 with 〈u, v〉 = 0, we have u ◦ v = 0 and so 〈a ◦ u, v〉 = 〈a,u ◦ v〉 = 0.
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(1) If a is invertible, then a ◦ a−1 = e > 0. Conversely, suppose a ◦ x̄ = w > 0. If a not invertible, then

there exists a Jordan frame {e1, e2, . . . , er} such that

a = 0e1 + a2e2 + · · · + arer .

Then

0 < 〈w, e1〉 = 〈a ◦ x̄, e1〉 = 〈x̄, a ◦ e1〉 = 0

is a contradiction. Hence a is invertible. Similarly, x̄ is also invertible. Thus we have item (1). Now Item

(2) follows from Theorem 19 by taking P = I (identity), Q = La, x̄ = a−1 and noting In(a−1) = In(a). �

As an application of the above corollary, we describe the inertia of an element when its Peirce

decomposition has a particular form. For the matrix case (in Sn
and Hn

), the result was proved by

Wimmer [28]. In what follows, for any Jordan frame {e1, e2, . . . , er} and 1 � k � r, we let

Ve1+e2+···+ek := {x ∈ V : x ◦ (e1 + e2 + · · · + ek) = x}.
It is known [7] that this is a subalgebra ofV . Also, for any y ∈ V with Peirce decomposition y = ∑r

1 yiei +∑
i<j�r yij , the object y

′ := ∑k
1 yiei +

∑
i<j�k yij belongs to Ve1+e2+···+ek . Furthermore, if y � 0 in V , then

y′ � 0 in Ve1+e2+···+ek . Similarly, one can define Vek+1+···+er and the corresponding element y′′.

Corollary 23. Corresponding to a Jordan frame {e1, e2, . . . , er}, let the Peirce decomposition of x be given

by

x =
r∑
1

xiei +
∑
i<j�r

xij.

If x′ := ∑k
1 xiei +

∑
i<j�k xij > 0 in Ve1+e2+···+ek and x

′′ := ∑r
k+1 xiei +

∑
k+1�i<j xij < 0 in Vek+1+···+er , then

In(x) = (k, r − k, 0).

Proof. Let a = ∑k
1 ei −

∑r
k+1 ei. Then

a ◦ x =
k∑
1

xiei −
r∑

k+1

xiei + 1

2

∑
i<j

(ai + aj)xij

=
⎛
⎝ k∑

1

xiei +
∑
i<j�k

xij

⎞
⎠−

⎛
⎝ r∑

k+1

xiei +
∑

k+1�i<j

xij

⎞
⎠

= x′ − x′′.

For any nonzero y � 0 consider y′ and y′′ which are nonnegative in their respective (sub) algebras.

Because of Proposition 5, we note that at least one of them is nonzero. Because of the orthogonality of

the Peirce spaces, it is easily verified that

〈a ◦ x, y〉 = 〈x′ − x′′, y′ + y′′〉 = 〈x′, y′〉 + 〈−x′′, y′′〉 > 0.

Since the symmetric cone K in V is self-dual, we see that a ◦ x > 0. By the previous inertia theorem,

In(x) = In(a) = (k, r − k, 0). �

Corollary 24. Let A ∈ Cn×n and SA(X) = X − AXA∗ onHn
. Then there exists X ∈ Hn

such that SA(X) � 0 if

and only if δ0(A) = 0. If δ0(A) = 0, then for any Z with SA(Z) 	 0,we have π(Z) � π0(A) and ν(Z) � ν0(A);
In particular, when Z is invertible In(Z) = In0(A).

Proof. Suppose that SA(X) � 0 for someX ∈ Hn
. IfA∗ has an eigenvalue λwith |λ| = 1 and correspond-

ing eigenvector u, then 〈SA(X)u,u〉 = 0 gives a contradiction. Hence δ0(A) = δ0(A
∗) = 0.

Now suppose that δ0(A) = 0. Then I + A is invertible. Let
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B := (I + A)−1(I − A).

Then In(B) = In0(A) and

1

2
(I + A)(BX + XB∗)(I + A∗) = X − AXA∗

holds for all X ∈ Hn
. This shows that SA is of the form PQ where P, defined by P(Y) := (I + A)Y(I + A∗),

is invertible with P−1(Hn
+) ⊆ Hn

+ and Q (X) := LB(X) is Lyapunov-like. As δ(B) = 0, there is an X with

LB(X) � 0. This implies that SA(X) � 0. Now, if SA(Z) 	 0, then LB(Z) � 0. The result follows by applying

Corollary 21 to B. (Note that we can also apply Theorem 19.) �

Now we state an analog of this result in Euclidean Jordan algebras. First we have a definition.

Definition 25. Let a ∈ V . The unit circle inertia In0(a) is defined by

In0(a) = (π0(a), ν0(a), δ0(a)),

where π0(a), ν0(a), and δ0(a) are, respectively, the number of eigenvalues of a inside, outside, and on

the unit circle, counting multiplicities.

Corollary 26. For an element a ∈ V , we define the Stein transformation Sa by

Sa = I − Pa.

Then we have the following statements:

(i) There exists an x̄ such that Sa(x̄) > 0 if and only if ±1 /∈ σ(a) (that is, δ0(a) = 0).

(ii) Let δ0(a) = 0. Then for any z with Sa(z) � 0 we have

π(z) � π0(a) and ν(z) � ν0(a).

In particular, when z is invertible, we have In(z) = In0(a).

Proof. (i) Suppose that Sa(x̄) = w > 0 and ε = ±1 ∈ σ(a). Without loss of generality, let a = εe1 +∑r
2 aiei. Then

0 < 〈w, e1〉 = 〈x̄, e1〉 − 〈Pa(x̄), e1〉
= 〈x̄, e1〉 − 〈x̄, PTa (e1)〉
= 〈x̄, e1〉 − 〈x̄, Pa(e1)〉
= 〈x̄, e1〉 − 〈x̄, e1〉 = 0.

This is a contradiction. Thus ε /∈ σ(a).

Conversely, suppose that σ(a) does not contain +1 and −1. Given a = ∑r
1 aiei (with ai �= 1 for all

i), we choose real numbers x̄i so that x̄i and 1 − ai
2 keep the same sign and define x̄ := ∑r

1 x̄iei. Then

Pa(x̄) = ∑r
1 ai

2x̄iei and x̄ − Pa(x̄) = ∑r
1(1 − ai

2)x̄iei > 0.

(ii) Now let ±1 /∈ σ(a) so that Sa(x̄) > 0 for some x̄. Then from the Lemma in Appendix II, we have

Pe+a(b ◦ x) = x − Pa(x) = Sa(x) where b := (e + a)−1 ◦ (e − a) and In(b) = In0(a). As Pe+a invertible with

P−1
e+a(K

o) ⊆ Ko, we see that Sa(x̄) > 0 implies b ◦ x̄ > 0 and Sa(z) � 0 implies b ◦ z � 0. Applying Corol-

lary 22 to b and noting In(b) = In0(a), we get the required conclusions. �

Appendix I

Here we prove the first part of Corollary 21.

Suppose δ(A) /= 0. Then there exists λ, an eigenvalue of A, such that λ + λ̄ = 0. Let y /= 0 in Cn be an

eigenvector of A∗ corresponding to λ̄ and let U := yy∗. Then
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LTA(U) = LA∗ (U) = A∗U + UA = λyy∗ + λ̄yy∗ = 0.

As 0 /= U 	 0, Proposition 17 shows that there cannot be any X ∈ Hn such that LA(X) � 0.

For the converse, suppose that δ(A) = 0. To prove the existence of X ∈ Hn such that LA(X) � 0, it

is enough to verify condition (2) in Proposition 17. Suppose there exists U /= 0 such that U 	 0 and

LT
A
(U) = LA∗ (U) = 0. Then without loss of generality

A∗D + DA = 0, where D is diagonal.

Let

A∗ =
(
A1 A2

A3 A4

)
and D =

(
D1 0

0 0

)
,

where D10 is positive definite and diagonal. Then

A1D1 + (A1D1)
∗ = 0 and A3D1 = 0,

hence A3 = 0.

Next, multiplying both sides of A1D1 + (A1D1)
∗ = 0 by

(√
D1

)−1
and letting

E1 =
(√

D1

)−1
A1

√
D1,

we get E1 + E∗
1

= 0. This implies δ(E1) /= 0.

Now, σ(E1) = σ(A1) ⊆ σ(A∗) implies that δ(A) = δ(A∗) /= 0 leading to a contradiction.

Appendix II

Lemma 27. For a ∈ V ,with±1 /∈ σ(a), define b := (e + a)−1 ◦ (e − a). Then Pe+a(b ◦ x) = x − Pa(x).More-

over, In(b) = In0(a).

Proof. Let the spectral decomposition of a be given by a = ∑r
1 aiei and let x = ∑r

1 xiei +
∑

i<j xij denote

the corresponding Peirce decomposition of x. Then e + a = ∑r
1(1 + ai)ei, (e + a)2 = ∑r

1(1 + ai)
2ei, (e +

a)−1 = ∑r
1(1 + ai)

−1ei, and e − a = ∑r
1(1 − ai)ei.

Since

e + a =
r∑
1

(1 + ai)ei,

b =
r∑
1

1 − ai
1 + ai

ei, and

y = b ◦ x =
r∑
1

1 − ai
1 + ai

xiei + 1

2

∑
i<j

(
1 − ai
1 + ai

+ 1 − aj

1 + aj

)
xij ,

we have (via Proposition 6),

Pe+a(y) =
r∑
1

(1 − ai
2)xiei +

∑
ij

(1 − aiaj)xij

= x − Pa(x) = Sa(x).

The equality In(b) = In0(a) follows from the observations that if λ is an eigenvalue of a, then 1−λ
1+λ

is an

eigenvalue of b and that −1 < λ < 1 if and only if 1−λ
1+λ

> 0. �

Concluding remarks. In this paper, we gave an alternate proof of Kaneyuki’s generalization of Sylves-

ter’s law of inertia in simple Euclidean Jordan algebras.We considered the finiteness of cone spectrum
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of quadratic representations and presented Ostroski–Schneider type inertia results in Euclidean Jor-

dan algebras. We conclude this paper by mentioning a result of Loewy [16]: For A ∈ Cn×n, let X be a

Hermitian matrix such that AX + XA∗ = M 	 0. Then

|π(A) − π(X)| � n − l and |ν(A) − ν(X)| � n − l,

where l is the dimension of the column space of the matrix

[M AM A2M · · ·An−1M].
It will certainly be interesting to see if this result can be extended to the Euclidean Jordan algebra

setting.
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