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Abstract. This article deals with linear complementarity problems over symmetric cones. Our objective here
is to characterize global uniqueness and solvability properties for linear transformations that leave the symmetric
cone invariant. Specifically, we show that for algebra automorphisms on the Lorentz space £™ and for quadratic
representations on any Euclidean Jordan algebra, global uniqueness, global solability, and the Ro-properties are
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transformation being positive stable and positive semidefinite.
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1. Introduction. Given a finite dimensional real inner product space H, a closed convex set
K in H, a continuous function f : K — H, and a vector ¢ € H, the variational inequality problem
VI(f, K,q) is to find an z* € K such that

(fz*)+ ¢z —2*) >0V z € K.

There is an extensive literature associated with this problem covering theory, applications, and
computation of solutions, see e.g., [7]. When K is a closed convex cone, this problem reduces to the
cone complementarity problem CP(f, K, q) which further reduces to linear complementarity problem
LCP(f, K, q) when f is linear. In particular, when H = R™ (with the usual inner product), f (= M)
is linear, and K = R, this reduces to the standard linear complementarity problem LCP(M, R%, q)
[3].

An unsolved problem in the variational inequality theory is the characterization of the global
uniqueness property: given H and K, find a necessary and sufficient condition on f so that for
all ¢ € H, VI(f, K, q) has a unique solution. This is related to the question of global invertibility
of the normal map F(z) := f(Ilx(x)) + * — Ik (z) on H, see [7]. When K is polyhedral and f
is linear, there is a well-known result of Robinson [21] that describes the invertibility of this map
in terms of the determinants of a certain collection of matrices. This result, when specialized to
the standard linear complementarity problem, says that for a square real matrix M, the standard
linear complementarity problem LCP(M, R?,q) has a unique solution for all ¢ if and only if M
is a P-matrix (which means that all principal minors of M are positive). The result of Robinson
motivated researchers to consider (the more general) question of global invertibility of piecewise
affine functions; see [25] and [8] for necessary and sufficient conditions.

Moving away from the polyhedral settings (where the underlying cone is the nonnegative orthant
in R™) and inspired by the recent interest in conic programming, various researchers have started
looking at cone linear complementarity problems, particularly on semidefinite and second order
cones, and more generally on symmetric cones. While symmetric cones are, in general, nonpolyhe-
dral, they have a lot of structure. In spite of this, even in this special case (of a linear transformation
on a symmetric cone) the global uniqueness problem remains unsolved. At present, various authors
have studied this problem by restricting the symmetric cone and the linear transformation to specific
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classes. Here are some such results:

(1) Given a matrix A € R"*", consider the Lyapunov transformation L4 defined on the space
S™ of all n x n real symmetric matrices by,

La(X):= AX + XA”.

Then it has been shown by Gowda and Song [10] that L4 has the global uniqueness property on the
semidefinite cone St (i.e., for all ¢ € 8™, LCP(L4, 8%, ¢q) has a unique solution) if and only if A is
both positive stable (i.e., all its eigenvalues have positive real parts) and positive semidefinite.

(2) Given a matrix A € R™*™, define the multiplication transformation M4 defined on 8™ by
Ma(X):= AXAT.

Then it has been shown by Bhimasankaram et al. [2] and Gowda, Song, and Ravindran [11] that
M 4 has the global uniqueness property on the semidefinite cone if and only if + A is positive definite.

(3) On the Lorentz space L™ (see Section 2 for the definition), consider the quadratic represen-
tation P, of an element a € L™:

Py(z):=2a0(aoz)—a’ou.

In this setting, Malik and Mohan [18] have shown that P, has the global uniqueness property on
the Lorentz cone if and only if +a is in the interior of that cone.

Another issue in the variational inequality /complementarity theory is the global solvability:
given H and K, find a necessary and sufficient condition on f so that VI(f, K, ¢) has a solution for
all ¢ € H. We note that this remains unsolved even in the setting of standard linear complementarity
problem. So, as in the uniqueness issue, one has to work within a class of cones/transformations to
get meaningful results. Our motivation for this part comes from the following:

(a) For a nonnegative matrix M, Murty [19] has shown that M has the global solvability prop-
erty with respect to the nonnegative orthant R} (i.e., LCP(M, R, q) has a solution for all ¢ € R™)
if and only if the diagonal of M is positive.

(b) The Lyapunov transformation L4 (defined earlier) has the global solvability property with
respect to ST if and only if A is positive stable [10].

(c) For matrix A € R™*"™, consider the Stein transformation S defined on the space S™ by,
SA(X):=X — AX AT,

Then, S4 has the global solvability property on S? if and only if A is Schur stable (that is, all
eigenvalues of A lie in the open unit disk of the complex plane) [9].

(d) Given a real matrix A, consider the multiplication transformation M4 (defined earlier) on
S™. In [22], Sampangi Raman has shown that when A is symmetric, M4 has the global solvability
property with respect to the semidefinite cone in S¥ if and only if +A is positive definite.
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(e) In [18], Malik and Mohan have shown that P, on £™ has the global solvability property with
respect to the Lorentz cone if and only if +a is in the interior of the Lorentz cone.

In keeping with the above global uniqueness/solvability issues, we consider linear complementar-
ity problems over symmetric cones in Euclidean Jordan algebras. With the observation (elaborated
in various sections of the paper) that all the transformations considered in items (1)-(3) and (a)-(e)
either leave the symmetric cone invariant or related to one such, we characterize global unique-
ness/solvability properties for algebra automorphisms, quadratic representations, and Lyapunov-like
transformations.

Here is a brief description/outline of our paper. Let V be a Euclidean Jordan algebra V with
the corresponding symmetric cone K. For a linear transformation L : V' — V and a ¢ € V, we define
the (cone) linear complementarity problem LCP(L, K, q) as the problem of finding x € V such that

zeK, L(x) +q€ K, and (L(z)+q,z)=0.

Given L, we consider the following statements:

(a) For all ¢ € V, LCP(L, K, ¢) has a unique solution.

(B) For all g € V, LCP(L, K, q) has a solution.

(v) LCP(L, K,0) has zero as the only solution.

e In Section 4, we show that for algebra automorphisms on L™ (these are invertible linear
transformations satisfying L(zoy) = L(z) o L(y) V z,y) the above three properties are equivalent;
this result may be regarded as an analog of item (2) above for algebra automorphisms on £™.

e In Section 5, we show that the above three properties are equivalent for any quadratic repre-
sentation (given by P,(z) = 2ac(aoz) —a?ox) on any Euclidean Jordan algebra, thereby extending
Malik-Mohan’s result (items (3) and (e) above) to arbitrary Euclidean Jordan algebras.

e In Section 6, we show that if L is Lyapunov-like, that is, if it satisfies the condition

z,y € K, and (z,y) =0 = (L(z),y) =0,

then the global uniqueness property («) holds if and only if L is positive stable and positive semidef-
inite, thereby extending result of item (1) above to general Euclidean Jordan algebras.

2. Preliminaries.

2.1. Euclidean Jordan algebras. In this paper we deal with Euclidean Jordan algebras. For
the sake of completeness, we provide a short introduction; for full details, see [6].

A Euclidean Jordan algebra is a triple (V, o, (-,-)), where (V,(-,-)) is a finite dimensional inner
product space over R and (z,y) — zoy:V XV — V is a bilinear mapping satisfying the following
conditions:

(i) zoy=yozforal z,y e V,

(ii) zo(z?oy) =z 0 (zoy) for all 7,y € V where 2% := x oz, and

(iii) (xoy,z) = (y,zoz) forall z,y,z € V.

We also assume that there is an element e € V' (called the unit element) such that z oe = z for
allz e V.

In a Fuclidean Jordan algebra V', the set of squares

K:={zoz:zeV}

is a symmetric cone (see Page 46, Faraut and Kordnyi [6]). This means that K is a self-dual
closed convex cone (i.e., K = K* := {x € V : (z,y) > 0Vy € K}) and for any two elements
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z,y € K°(= interior(K)), there exists an invertible linear transformation I' : V' — V such that
I'(K) = K and I'(x) = y. We use the notation

>0 and z>0

when z € K and z € K°, respectively.

An element ¢ € V is an idempotent if ¢? = c; it is a primitive idempotent if it is nonzero and
cannot be written as a sum of two nonzero idempotents.

We say that a finite set {e1, ea,...,en} of idempotents in V' is a a complete system of orthogonal
idempotents if

m
e;0e; =0 for i # j, and Zeize.
1

(Note that (e;,e;) = (e; o ej,e) = 0 whenever i # j.) Further, if each e; is also primitive, we say
that the system is a Jordan frame.

THEOREM 2.1. (The Spectral decomposition theorem) (Faraut and Kordnyi [6], Thm.
III1.1 and Thm. II1.1.2) Let V be o Euclidean Jordan algebra. Then there is a number r (called

the rank of V') such that for every x € V', there exists a Jordan frame {e1,...,e.} and real numbers
)\1,.. -7)‘7" with

(2.1) T =Me1+-+ Nep.

Also, for each x € V, there exists a unique set of distinct real numbers {uy, pio, - . ., ik} and a unique

complete system of orthogonal idempotents {f1, fa,..., fr} such that

x = pfi+ pafo+ o+ ppfi.

For an z given by (2.1), the numbers A1, A2, ..., A\, are called the eigenvalues of x. We say that
x is invertible if every ); is nonzero. Corresponding to (2.1), we define

trace(z) == A+ X+ -+ + A

In addition, when = > 0 (or equivalently, every ); is nonnegative), we define
\/_:: VAter + -+ Ve

In a Euclidean Jordan algebra V, for a given x € V, we define the corresponding Lyapunov
transformation L, : V — V by

Ly(2) =z 02

We say that elements = and y operator commute if Ly L, = L,L,. It is known that = and y operator
commute if and only if z and y have their spectral decompositions with respect to a common Jordan
frame (Lemma X.2.2, Faraut and Korényi [6]).

Here are some standard examples.
Example 1. R"™ is a Euclidean Jordan algebra with inner product and Jordan product defined
respectively by

(@y)=> zyi and zoy:= ().

i=1
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Here R? is the corresponding symmetric cone.
Example 2. 87, the set of all n x n real symmetric matrices, is a Euclidean Jordan algebra with
the inner and Jordan product given by

1
(X,Y) :=trace(XY) and X oY := 5(XY+YX).

In this setting, the symmetric cone S? is the set of all positive semidefinite matrices in S™. Also, X
and Y operator commute if and only if XY =Y X.
Example 3. Consider R™ (n > 1) where any element z is written as

[z

with g € R and T € R"!. The inner product in R" is the usual inner product. The Jordan
product x oy in R™ is defined by

_ Zo Yo — <$a y>
o[ 2] [5] 2]
We shall denote this Euclidean Jordan algebra (R™,o,(:,-)) by £™. In this algebra, the cone of
squares, denoted by L%, is called the Lorentz cone (or the second-order cone). It is given by

Y=Az:mo > |2}

in which case, interior(L}) = {z : 2o > |[Z||}.

We note the spectral decomposition of any x with Z # 0:

T = Aie1 + Aaeq
where
A1 := o + [|Z]], A2 := w0 — ||Z]|

and
1 1
61:=1|:i:|,and€2:=1|:_i:|.
21 man

In L™, elements z and y operator commute if and only if either T is a multiple of 5 or 7 is a
multiple of Z.

We recall the following from Gowda, Sznajder and Tao [12] (with the notation z > 0 when
z € K):
PROPOSITION 2.2. For z, y € V, the following conditions are equivalent:
1. >0,y >0, and (z,y) = 0.
2.2>0,y>0, and zoy =0.
In each case, elements x and y operator commute.

The Peirce decomposition. Fix a Jordan frame {ej,e2,...,e,} in a Euclidean Jordan algebra
V. For i,j € {1,2,...,r}, define the eigenspaces

Vii={z€V:zoe;, =2} =Re;
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and when i # j,
1
Viji={reV:zoe = §ac=3:oej}.

Then we have the following result.
THEOREM 2.3. (Theorem IV.2.1, Faraut and Kordnyi [6]) The space V is the orthogonal direct
sum of spaces Vi; (i < j). Furthermore,

Vij o Vig C Vi + Vj;
VijoVik CVik if i # k
Vig o Vi = {0} if {i,j} N {k, 1} = 0.

Thus, given any Jordan frame {ej, es,...,e,}, we have the Peirce decomposition of z € V:
T T
sc:E xn--i-g .’,Uij:E :ciei+z Ty5
i=1 i<j =1 i<j

where z; € R and z;; € V;;.

A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two Euclidean Jordan
algebras. The classification theorem (Chapter V, Faraut and Korédnyi [6]) says that every simple
Euclidean Jordan algebra is isomorphic to one of the following:

(1) The algebra 8™ of n x n real symmetric matrices.

(2) The algebra L.

(3) The algebra H,, of all n x n complex Hermitian matrices with trace inner product and

XoY = 3(XY +YX).

(4) The algebra Q,, of all n x n quaternion Hermitian matrices with (real) trace inner product

and X oY = L(XY +YX).

(5) The algebra O3 of all 3 x 3 octonion Hermitian matrices with (real) trace inner product and

XoY = (XY +YX).
The following result characterizes all Euclidean Jordan algebras.

THEOREM 2.4. (Prop. III.4.4, Prop. IIL4.5, Thm. V.3.7, Faraut and Kordnyi [6]) Any
Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean Jordan algebras.
Moreover, the symmetric cone in a given Euclidean Jordan algebra is, in a unique way, a direct sum
of symmetric cones in the constituent simple Euclidean Jordan algebras.

2.2. Complementarity concepts. Let V be a Euclidean Jordan algebra with the correspond-
ing symmetric cone K. Recall that for a linear transformation L : V' — V and q € V, the linear
complementarity problem LCP(L, K, q) is to find an x € V such that

z€K, L(zx)+¢qe K, and (L(z)+gq,z)=0.

As mentioned previously, this is a particular instance of a variational inequality problem. The
standard linear complementarity problem (over the nonnegative orthant in R™), the semidefinite
linear complementarity problem, and the Lorentz cone (also known as the second order cone) linear
complementarity problem are some of the special cases and have been well studied in the literature.
Given L on V, we say that L has the

(i) positive definite property if (L(x),z) > 0 for all z # 0;

(i) GUS (globally uniquely solvable)-property if for all ¢ € V, LCP(L, K, q) has a unique

solution;
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(7i7) P-property if
x and L(x) operator commute and z o L(z) <0 = x = 0;
(iv) Rg-property if zero is the only solution of LCP(L, K, 0);
(v) Q-property if for all ¢ € V, LCP(L, K, ¢) has a solution;
(vi) S-property if there exists a d > 0 such that L(d) > 0.
Henceforth, we will use P, Ry, Q, S, etc., to denote the set of maps L that satisfy the respective

property.

The above properties have been well studied. In particular (see [12], Theorems 17, 14, and 12),
we always have the implications (i) = (i4) = (¢ii) = (iv). That (v) = (vi) follows from perturbing
a solution of LCP(L, K, —e) where e is the unit element of V.

The following well-known result shows that an under an additional assumption, (iv) = (v).

THEOREM 2.5. (Karamardian [16]) Suppose that L : V — V is a linear transformation such
that for some d > 0, zero is the only solution of the problems LCP(L, K,0) and LCP(L,K,d). Then
L has the Q-property with respect to K.

2.3. Automorphisms. Let V be a Euclidean Jordan algebra and K be the corresponding cone
of squares. We consider the following sets of transformations:
o Aut(V)—set of all invertible linear transformations L : V' — V such that

L(zoy) = L(z) o L(y) Vz,y €V,

o Aut(K)—set of all (invertible) linear transformations L : V' — V such that L(K) = K,
o Aut(K)—closure of Aut(K) (with respect to the operator norm),
e II(K)—set of all linear transformations L : V' — V such that L(K) C K.

We note that

Aut(V) C Aut(K) C Aut(K) C II(K).

Also, if V' is simple or if the inner product in V' is given by (z,y) = ctrace(zoy) (for some fixed
c), then every L in Aut(V') is orthogonal (that is, it preserves the inner product), see pp. 57, [6].

3. Cone invariant transformations. Recall that II(K) is the set of all linear transformations
on V that leave K invariant. We begin by describing some complementarity properties of II( K') and
Aut(K).

PROPOSITION 3.1. For L € I(K), the following are equivalent:

(a) L has the Ro-property.

(b) For any primitive idempotent v € V, (L(u),u) > 0.

(¢) L is strictly copositive on K, i.e., (L(x),x) >0 for all0# x > 0.

In particular, if L has the Ro-property, then it has the Q-property.

Proof. From L € II(K), we see that L is copositive on K, that is, (L(z),z) > 0 for all z > 0.
Now assume (a). For any primitive idempotent u, we have L(u) € K and so (L(u),u) > 0. If
(L(u),u) = 0, then u will be a nonzero solution of LCP(L, K, 0) contradicting condition (a). Hence
(b) holds. Now suppose (b) holds. We know that L is copositive on K. Suppose if possible,
(L(z),z) = 0 for some nonzero z € K. Let x = )_ \;e; be the spectral decomposition of z with some
eigenvalue, say, Ap # 0. As A; > 0 for all 4, (L(z),x) = >, ; i Aj(L(e:), e5) > A2 (L(ek),ex) > 0 by
condition (b). This is a contradiction. Hence (c) holds. Finally, the implication (¢) = (a) is obvious.

Now assume that (a) holds. Then L is strictly copositive on K and so the problems LCP(L, K, 0)
and LCP(L, K, e) have zero as the only solution. By Karamardian’s theorem, LCP(L, K, q) has a
solution for all ¢ € V. Thus L has the Q-property. O
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PrOPOSITION 3.2. If L € Aut(K) is invertible, then L € Aut(K).

Proof. Let Ly € Aut(K) such that Ly — L (with respect to the operator norm) on V with L
invertible. From Li(K) C K, we get L(K) C K. Also, L,' — L~'. From (L) (K) C K, we get
L~1(K) C K. Thus we have L(K) = K. O

PROPOSITION 3.3. Aut(K) NS = Aut(K).

Proof. Recall that L € S if there exists a p > 0 such that L(p) > 0. Then, clearly, Aut(K) is
contained in Aut(K)NS. Now suppose that L € Aut(K)NS. Let L =lim Ly where Ly, € Aut(K).
As LT € Aut(K) (See Proposition 1.1.7, [6]) and LT = lim LT, we have LT € Aut(K). We show
that LT is invertible (or equivalently, L is invertible) and then conclude (thanks to the previous
proposition) that L € Aut(K). Now to show that LT is invertible, we show that for each d > 0,
there is an x € K such that LT (z) = d. This then shows that the range of LT contains the open
set K° thus proving the invertibility of LY. Now fix a d > 0. Since L} € Aut(K) for each k, there
exists a sequence xx € K such that Lf(:ck) = d for all k. Assume, if possible, that the sequence z
is unbounded, say ||zx|| — c0. As zj is nonzero, we can let T — ¥ € K with LT(y) = 0. Now
because L has the S-property, there exists a p > 0 such that L(p) > 0. If u is a suitable multiple of
p, then u > 0 and v = L(u) —d > 0. Then,

0< <y,U> = <y’L(u) - d> = <LT(y)’u> - <y’ d> = _<y’ d> <0.

Thus, (y,d) = 0. Since y > 0 and d > 0, we must have y = 0 which is a contradiction. Hence the
sequence x, is bounded. Letting x;, — x € K, we have LT (z) = d. 0
COROLLARY 3.4.

Aut(K) N Ry C Aut(K) N Q C Aut(K) NS = Aut(K).

Proof. The first inclusion comes from Proposition 3.1. The second inclusion follows from the
fact that the Q-property implies the S-property, see Section 2.2. The last equality comes from the
previous proposition. 0

This corollary shows that

Aut(K) N Q = Aut(K) N Rg = Aut(K) N Q = Aut(K) N Ry.

This means that to show the equivalence of Ry and Q-properties in Aut(K), it is enough to prove
such an equivalence in Aut(K).

Motivated by Murty’s result - item (a) in the Introduction - we may ask if Ry and Q properties
are equivalent when L € II(K). While the resolution of this question is our ultimate goal (or a
road map), for lack of results describing objects of II(K), in the next two sections we deal with a
subset of TI(K), namely, Aut(K). In particular, we deal with algebra automorphisms and quadratic
representations.

4. Algebra automorphisms. Recall that L is an algebra automorphism on V if L is invertible
and

L(z oy) = L(x) o L(y)

for all z and y. In this section, we describe complementarity properties of such transformations.
To motivate our results, we first consider some examples.
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Example 4. Consider V' = R™ with the usual inner product and Jordan product (= component-
wise product). In this setting, every algebra automorphism of V' is given by a permutation matrix.
Then Murty’s result (see item (a) of the Introduction), shows that such an automorphism has the
Ry-property if and only if the matrix is the identity matrix; thus GUS, Q, and Ry properties are
equivalent for algebra automorphisms on R™.

Example 5. Consider V = 8™ with trace inner product and the usual Jordan product. Then it
is known (as a consequence of Schneider’s result in [24]) that every algebra automorphism on S™ is
given by

L(X)=UXxU"T

where U is a (real) orthogonal matrix. In this setting it is known ([2], [11]) that GUS, Q, and Ry
properties are equivalent (to £U being positive definite).

Example 6. Consider the Lorentz space £™. Since the underlying space is R™, we think of a
transformation L on L™ as given by a matrix

a b7
=[5

where a € R, b,c € R* ! and D € R(»=Dx(n—1),
Now suppose that L € Aut(L™). Since L preserves the unit element in £™, we must have

a bT 1] _[1

c D 0ol |0
proving a = 1 and ¢ = 0. As L € Aut(L™) C Aut(L?}), by a result of Loewy and Schneider [17],
there exists a p > 0 such that

LYJ,L =pJ,
where J,, = diag(1,—1,—1,...,—1). A direct calculation shows that b = 0, u = 1 and DTD =T
and so
10
» L=[1 9]

where D is an orthogonal matrix. (We note that D = I and D = —1I are likely candidates.) In this
section, we show that for such an automorphism, GUS, Q, and Ry properties are equivalent.

First we describe the real eigenvalues of an algebra automorphisms and a necessary condition
for the Ro-property. In what follows, o(L) denotes the spectrum of a linear transformation L.
PROPOSITION 4.1. Let V be a Euclidean Jordan algebra. If L € Aut(V), then

o(LyNR C{-1,1}.

In particular, o(L) N R = {1} if and only if —1 & o(L).

Proof. As L(zx oy) = L(x) o L(y) for all z,y € V, we have L(e) = e where e is the unit element
in V. Thus 1 € (L) N R. Now suppose that X is a real eigenvalue of L (which is nonzero since
L is invertible), so that for some nonzero z € V, L(z) = Az. It follows that L(z?) = A\2z?, and
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more generally, L(z*) = A 2* for all natural numbers k. Since x # 0 = z* # 0 (this can be seen
by considering the spectral decomposition of ), A\* is an eigenvalue of L for all k. As V is finite
dimensional, o(L) is finite, and so two distinct powers of A are equal, that is, A™ = 1 for some
natural number m. As X is real, we must have A = +£1. Thus we have o(L) N R C {—1,1}. The
second statement in the proposition is obvious. 0

Remark. The above proposition can also be seen as follows. Given any Euclidean Jordan algebra
(V,{,-),0), it is well known that [z,y] := trace(z o y) induces another inner product on V that is
compatible with the Jordan product. With respect to this inner product, any algebra automorphism
is an orthogonal (i.e., LTL = I). Working with the complexifications of (V, (-,-)), (V,[-,]), and L,
we see that the spectrum of L (which is independent of the inner product on V) is contained in the
unit circle. The above proposition follows immediately from this.

THEOREM 4.2. Let V be a Euclidean Jordan algebra, L € Aut(V), and L € Ry. Then —1 ¢
o(L).
Proof. Suppose —1 € o(L). Then there exists a vector 0 # x € V such that L(z) = —z. By

Theorem 2.1, there exist unique real numbers uq, ..., ug, all distinct, and a unique complete system
of orthogonal idempotents fi,..., fi such that

z=p1fr+ -+ kS

Without loss of generality assume that pu; # 0. Then

—(pfr+ -+ prfi) = —x = L(z) = p L(f1) + - - + peL(fr)-

Because L € Aut(V), {L(f1),-..,L(fx)} is also a complete system of orthogonal idempotents. Since
u1 # —u1, by the uniqueness property, —u; = p; and f; = L(f;) for some 1 < ¢ < k. Then f; is a
solution of LCP(L, K, 0), contradicting the Rg-property of L. This completes the proof. d

COROLLARY 4.3. Let L € Aut(V), L€ Ry, and L =LT. Then L = I.
Proof. Since L = LT, o(L) C R. As {1} C o(L)N R C {-1,1} and —1 ¢ o(L), we have
o(L) = {1}. By the spectral theorem (for operators), L = I. a

The following examples show that the converse in the above theorem need not hold.

Example 7. Consider the Euclidean Jordan algebra R? with the usual inner product and Jordan
product. Define L : R® — R3 by the matrix

t~
I
_= O O
OO =
O = O

2mi

Certainly, L € Aut(R3) and o(L) = {1, ,e %}, so o(L) N R = {1}. For z = (1,0,0)7,
L(z) = (0,0,1)T, and (L(x),z) = 0, thus L ¢ Ro. Note that R® is not a simple Jordan algebra.

Example 8. On the simple algebra S3, let

U=

- o O
OO =
o = O
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and define the transformation L on S by L(X) = UXU?. As U is orthogonal, a simple argument
shows that UX + XU = 0 = X = 0. Hence —1 is not an eigenvalue of L. By Proposition 4.1,
o(LYN R = {1}. As +U is not positive definite, a result of Bhimasankaram et al. [2] (see also [11])
shows that L cannot have the Rg-property.

5. A characterization of the global uniqueness property of an algebra automorphism
on L". In this section, we establish the equivalence of the global uniqueness property and the Ryp-
property for an automorphism on £™.

THEOREM 5.1. For L € Aut(L™), the following are equivalent:

(i) L has the GUS-property.

(i) L has the P-property.

(#ii) L has the Ro-property.

(iv) L has the Q-property.

(v) =1 & a(L) (or equivalently, —1 ¢ o(D) with D given in (4.1)).

Proof. The implications (i) = (i7) = (ii¢) follow from Theorem 14 in [12] and the definitions.
The implication (#i¢) = (iv) follows from Proposition 3.1. We show that (iv) = (v). Now write L
as in (4.1). Suppose L has the Q-property and —1 is an eigenvalue of L (as well as that of D) so
that for some nonzero u € R* 1,

Du = —u.

Now let x be a solution of LCP(L, £, q) where

Then
zeLll, L(z)+qe L, and (z,L(z) +¢) =0
and so
zo > ||Z||, zo > ||DZ + ul|, and z} + (T, DT + u) = 0.
Now, in view of Cauchy-Schwarz inequality, we have
g = (=T, DT + u) < ||z]||| DT + u|| < 5.
As q ¢ L7, x cannot be zero; hence xq, T, and DT + u are all nonzero. Consequently,
DT +u = —-0%, z9 = ||Z||, and o = || DT + ul|
for some positive 6. From these, we get § = 1 and
Dz +u=-T.
As D is orthogonal, Du = —u = DTu = —u. Thus,
—(T,u) = (DT +u,u) = (DT, u) + ||ul|* = (@, DTu) + [[u]|* = (@, u) + [ |ul|.

This leads to ||u||> = 0, which is a contradiction. Hence L satisfies (v).
Now for the last implication (v) = (7).
First we show that (v) implies (i¢). So assume (v).
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Let x be a vector such that z and L(z) operator commute, with = o L(z) < 0. For

SHETRF

we have
2 JEE—
| x5+ (Dz,%)
ro L(.’E) o [ o DT + x0T <0.
22
Case (i): DZ =0 or equivalently, Z = 0 (as D is nonsingular). Then [ 00 ] <0,s0 z=0.

Case (ii): Dz # 0. Hence, T # 0 and by the operator commutativity, DZ = pZ for some u. Since
p€o(L)NR={1}, u=1, thus DZ = z. Consequently, 3 + ||Z||?> <0, so = = 0.
Hence, L has the P-property.

Now to show (7). Take any q € £™ and let = and u be two solutions of LCP(L, L, q) so that
x>0, y=L(z)+¢>0, and (z,y) =0
and
u>0, v=L(u)+qg>0, and (u,v) =0.

We know that = and y operator commute, and u and v operator commute (see Proposition 2.2). If
we can show that x and v operator commute, and u and y operator commute, then x — u operator
commutes with y — v. In this situation,

(z—u)oL{w—u) = (@ —u)o(y—v) = —(zov+uoy) <0

where the last inequality follows from the fact that if two vectors in K operator commute, then their
Jordan product is also in K. At this stage, we can apply the P-property (item (ii)) and get z = u.
Thus (4) is proved provided the following claim can be proved:

Claim: vy and y, as well as = and v, operator commute. (Equivalently, @ and 7 are proportional
and T and 7 are proportional.) We now proceed to prove the claim. Let

_ | o _ | wo _ | To+qo _ | wo+qo
x—[a_c],u—[a],L(z)+q—[Dj+q],andL(u)+q—[Da+q].

We have

zo > ||Z||, wo = ||@]], zo + qo > ||DZ + q||, and ug + qo > || D + q||
and moreover,
zo(z0 + q0) + (DT + ,%) = 0 = ug(uo + qo) + (D + q,a).

If both = and u are positive, then L(z) + ¢ = 0 = L(u) + ¢, and by invertibility of L, x = u. In
this case, the claim is true (because z and y operator commute).
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Suppose that (exactly) one of = or v is on the boundary of L%, say, x > 0 and u € 0L”}. Then
2o >0and 0 =y = L(z) + q. If v > 0, then u = 0 in which case, ¢ > 0. But then,

[g%]ﬂ(m):—qd

implies that zo < 0 which is a contradiction.
On the other hand, if v € 9L}, then

uo + qo = |[Da+ gl = ||D(a —2)|| = ||u — 2| > ||u]| - ||Z[]-

As, g = —qo we have ug —zo > ||@|| — ||Z||- Thus, ug — ||8|| > 2o —||Z|| > 0, so u > 0 contradicting
our assumption that u € 9L .

Hence we may assume that both x and v are on the boundary of L. Similarly, by considering
L~1, we may assume that both y and v are on the boundary of £7. (Note that L' € Aut(L"), y
and v are solutions of LCP(L™!, K, L 1q).)

So at this stage, z,u,y,v € 0L’ . Thus,

zo = ||2], w0+ qo =Dz +qll, uo = ||ull, and uo+go = [[Du +ql.

Case 1: Z=0. Then z =0 and g9 = ||q||.
Subcase 1.1: @ =0. Then u =0, so z = u = 0 and the claim holds.

Subcase 1.2: 4 # 0. Since u and v operator commute,
(5.1) v =Du+q=pu, for some € R.

Also, ug+qo = ||Du+ q|| < ||a|| + go < uo + go- The equality in the triangle inequality gives, along
with © # 0,

(5.2) Du =60g, for some 6 > 0.

Now, by (5.2),
_ | uwotaq | _ | w+]lgll
”_L(“)+q_[Du+q]_[ 0q+q

and

yZL(w)+q=0+q:[qqo]_

1
Combining (5.1) and (5.2), we get 67+ g = Ba. Hence, § = 0-&-—1611 (6 > 0), so g and @ are
proportional, and u and g operator commute. Thus, u and y (= ¢) operator commute. Also, x = 0
and v operator commute. Therefore, in Case 1, the claim holds.
Case 2: 7 #0.
Subcase 2.1: 4 = 0. This is analogous to Subcase 1.2.

Subcase 2.2: 4 # 0. Now we have, z,u,y,v € 0L}, and T # 0, @& # 0. Again, complementarity
property, hence operator commutativity, gives

Dz +g=ar and Du+q=~u
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for some a, v € R. Also,

zo + qo = ||[DZ +ql| = |af - [|Z]| and wo+qo = |[Du+ ][ = ]| - [|u]].
: _ _ 930+Q0 _ _ —112 .
Since y = L(z) + q = oF and 0= (z,y) = xo(xo + Qo) + ¢||Z||?, we have a < 0. Similarly,
v < 0. Since o +qo = |a| - [|Z|| and z € 0L, q = |af - [|Z|| — zo = (o] — 1)||Z]; likewise,
g0 = (|v] — 1)||@]|. Also, § = aZ — DT = vt — Da. Then,

D(z — a) = aZ — va.

Since D is orthogonal, ||z — | = [laz — va|| and g0 = (o — D)2l| = (1] = Dllall, @,y < 0.
Put A := —a and p:= —v,s0 A\, u >0,

D(@ —u) = pu — A7, ||z — 4| = ||pa — AZ[| and (X —1)[|z]| = (u—1)||g]]-

If T and @ are proportional, then so are ¥ (= aZ) and u, and T and 7 (= ~u). In this setting, the
claim holds. Suppose T and = are not proportional. Then, as the signs of A — 1 and u — 1 are
the same, two-dimensional (Euclidean) geometric considerations show that the quadrilateral with
vertices T, AZ, puti, and @ (which is part of a triangle) can be a parallelogram only when A = 1 and
1 =1 (see the Appendix for an algebraic proof). In this situation,

violating the condition (v) that —1 ¢ o(D). Thus we have the claim in Subcase 2.2. This shows
that the claim is proved for Case 2. Hence (v) = (7). 0

Remark. One may wonder if the above result (Theorem 5.1) is true for algebra automorphisms
on a direct sum of £L™s. To address this, let V := L™ @ L™ @ --- D L™ and L € Aut(V). If L is
“diagonal”, that is, if L = L1 ® Lo ® -- - ® Lg, where L; : L™ — L™ then L; € Aut(L™) for all 4. In
this situation, Theorem 5.1 extends to L on V. On the other hand, if L is not “diagonal”, Theorem
5.1 may not extend to L. This can be seen by modifying Example 7:

Put V=L@ Lt L™ and L(z,y, 2) = (y, 2,x). It is easily seen that L € Aut(V) and —1 & o(L),
yet L € Ry (because (e, 0,0) is a solution of LCP(L, K, 0)).

6. Quadratic representations. The algebra automorphisms of a Euclidean Jordan algebra,
studied in the previous section, form an important subclass of Aut(K). In this section, we consider
another important subclass of Aut(K), namely, quadratic representations. Given any element a in
the Euclidean Jordan algebra V', the quadratic representation of a is defined by

P,(z) :=2a0(aocx) —a’ouw.

It is known that P, is a self-adjoint linear transformation on V, and belongs to Aut(K) when a is
invertible. Our main result below establishes the equivalence of global uniqueness, global solvability,
and the R properties for such transformations. Our motivation comes from the following.

Consider V' = 8™ and K = S7. Then a linear transformation L on V belongs to Aut(S?}) if and
only if there exists an invertible matrix A € R™*"™ such that

L(X)= AXAT (X es8mM),
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see [24]. For such transformations, it has been shown in [2] (see also [11]), that global uniqueness and
Ry properties are equivalent, and that these properties hold if and only if +A is positive definite.
Now when A € 8™, the above transformation coincides with P4 given by:

PA(X) = AXA.

In [22], Sampangi Raman considers P4 on S™ and shows that the global solvability and the
Ry properties are equivalent, and that these properties hold if and only if +A is positive definite.
Working on £", Malik and Mohan [18] prove a similar result for quadratic representations on £™.

In our main result below, we extend these two results to arbitrary Euclidean Jordan algebras.
We remark that the crucial idea of our analysis comes from [22].

We recall the following from [6] (see Propositions I1.3.1, 11.3.2, and I11.2.2.)

PROPOSITION 6.1. Let a € V. Then the following statements hold.

(i) a is invertible if and only if P, is invertible.

() Pp,(z) = PaPyPy.

(iii) If a is invertible, then P,(K) = K. Hence P,(K) C K for alla € V.

(iv) If for some x, P,(x) is invertible, then a is invertible.

The following lemmas are needed to prove our main theorem. These lemmas and their proofs
are somewhat similar, except for technical details, to those in [22] and [18].

LEMMA 6.2. Let V be any FEuclidean Jordan algebra. Let a be invertible in V with spectral
decomposition given by

a = aiei + azez + -+ Grep.

Define |a| := |a1]e1 + |azle2 + -+ + |ar|er and s = €11 + €2ea + - - - + €€, where £; = sign (a;). If
P, has the Q-property, then so does Ps.

Proof. Let b:= \/]a|. Then Py(s) = a (by using the definition) and P, = P,PsP, using item (i)
in the previous lemma. Assume that P, has the Q-property and let ¢ € V. Let z be a solution of
LCP(P,, K,r) where r = Py(q). Then 2 > 0, y := P,(z) +r > 0 and (z,y) = 0. From P, = Pp,(5) =
P,P,P,, we have P, 'y = Ps(Py(z))+q. Using item (iii) in the above lemma and the self-adjointness
of Py, we have u := Py(z) >0, v:= P, 'y > 0 and (u,v) = (Py(z), P, 'y) = (z,y) = 0. This means
that LCP(Ps, K, q) has a solution, proving the result. O

LEMMA 6.3. Let {e1,e2,...,e,} be a Jordan frame in V and z = Y | mie; + Y
Peirce decomposition of an element x € V' with respect to this Jordan frame. Let

i<j Tij be the

s=ei1+e+---+ex— (eky1+---+er)

for some k with 1 <k <r and 0 # qrr+1 € Vik+1- Then the following hold:

(a) Ps(x) =37 xiei + 3 5%i5 — D, Tij, where

a:={(,)):1<i<kk+1<j<r}andf:={(,7):1<i<ji<r}\a.

(b) The (kk + 1)-term in the Peirce decomposition of x o Ps(x) is zero.

(c) the (kk + 1)-term in the Peirce decomposition of T o qrk+1 S %(Tk + Tk+1)qk k+1-

(d) If x > 0, then xrer + Tpy1€k+1 + Tr k1 > 0.

Proof. Let f = e1+ea+---+ek so that s = 2f —e where e is the unit element in V. Then Ps(z) =
2s50(sox) —s%ozx. Since s2 = e and s = 2f — e, simplification leads to Ps(z) = 8fo(fox) —8fox+x.
Using the properties

1
eoe; =0d;e and e oxm; = ixij ifl € {i,j}, or 0if I & {i,5},
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we get

Ti1e1 + l(.2312 + 213+ + z14)
xaez + 5(x12 + Taz + Taa + -+ - + Top)
z3e3 + 5(213 + T2z + 34 + -+ - + 23;)

fos

+ 4+ 4

We note that in the above expression, the term x;; for 1 < i < k and k£ + 1 < j < r appears only
once and the term x;; for 1 <14 < j < k appears twice. Hence

k
foxzz:xiei—k Z .’Eij—f-% Z Tij-
1

1<i<j<k 1<i<k,k+1<j<r

From this, we get fo(fox) = Y% Ti€it Y 1<icjck Tij+7 oo Tij- Using Py(z) = 8fo(fox)—8for+uz,
a simple calculation leads to item (a).
We now prove item (b). Consider any element y with its Peirce decomposition:

r
Y= Zyiei + Z Ymn-
1 m<n

Then, in view of the properties of the spaces V;;, the (kk + 1) term in the Peirce decomposition of
x oy is obtained by adding all terms of the form z;; o Ympn and zmy, o ys; Where

ked{i,j}, k+1€{m,n}, and |{i,j} N {m,n}| = 1.
This sum reduces to

Zl§i<k Tik O Yik+1 T+ EISKk Yik © Tik+1

+Zkk © Yk k+1 T Ykk © Tk k+1

FThk+1 O Yk+1k+1 T Yk k+1 O Tht1 k+1

+ 2kt 1<i<r Thi O Ykt 1i + Dopi1cicr Yki © Thtli-

Now, when y = P,(x), we have y;; = —x;; for (i,j) € a and y;; = x;; for (i,j) ¢ a. Putting these
in the above sum and simplifying, we get the item (b).
Upon putting y = qrx+1, we see that the (k k + 1) term in the Peirce decomposition of z oy is

1
Tkk O Qkk+1 + Th+1k+1 O Gk k+1 = §($k + Tkt 1)qk k+1

which is item (c).
Now we prove item (d). Suppose = > 0. Let

V{ek,ek_'_l} ={zx eV :zo(ex+ept1) =z}

It is known (see Proposition IV.1.1 in [6]) that this is a Euclidean Jordan algebra and its corre-
sponding symmetric cone is given by (Theorem 3.1, [13])

Vit ey = {8 € K 1wo (e + exy1) =z}
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Let y belong to this (sub)cone. Then its Peirce decomposition in V' with respect to {e1, e, ..., e}l
is given by (see Lemma 20, [12])

Y = Ykek + Yrt+1€k+1 + Yk k+1-

Then, using the orthogonality properties of spaces V;;, we have
0 <{z,y) = (zrer + Thr1€k+1 + Thkt+1,Y)-

that Trer+Try1epr1+TEpe1 € V,F

As y is arbitrary, we see from the self-duality of V;t emenin}?

{ex.ent1}

and in particular belongs to K. O

PROPOSITION 6.4. Suppose V' is simple. Let {e1,e2,...,e,} be a Jordan frame in V. Let
s=e +tex+---+ex— (exyr1+ -+ e) for some k with 1 < k < r. Then P, does not have the
Q-property.

Proof. As 'V is simple, Vi 41 is nontrivial (see Proposition IV.2.3, [6]). Let 0 # grk+1 € Vig+t1-
We claim that LCP(Ps, K, g k+1) has no solution. If possible, let 2 be a solution of this problem.
Then z > 0, y := Ps(z) + grk+1 > 0 and z oy = 0. Applying the previous lemma to this setting, we
get

1
0= (oY kk+1 = (® o Ps(x))kkt1 + (T 0 Qrkt1)kkt1 = E(xk + Tt 1)Qh k41

As grg+1 # 0, we must have x4+ 241 = 0. But > 0 implies that zrer + Tkt+1€p+1 + 2k g+1 > 0. So
xy, and x4 are both nonnegative and hence zy, = 251 = 0. By Proposition 3.2 in [13], z 1 = 0.
Now y > 0 implies that yrer + yYrr1€kr1 + Yrks1 > 0. From y = Py(x) + ¢xry1 and the above
lemma, we get Treg + Tpr1€k+1 — Thk+1 + k1 > 0. As 0 = 2 = zp41 and Tk k1 = 0, we have
(by Proposition 3.2 in [13]), gk k+1 = 0 which is a contradiction. Hence LCP(P;, K, g k+1) has no
solution. a

THEOREM 6.5. Let V be any Euclidean Jordan algebra and a € V. Then the following are
equivalent:

(1) P, is positive definite on V.

(2) P, has the GUS-property.

(8) P, has the P-property.

(4) P, has the Ro-property.

(5) P, has the Q-property.

If, in addition, V is simple, then the above conditions are further equivalent to

(6) +a € K°.

Proof. The implications (1) = (2) = (3) = (4) hold for any linear transformation on V, see [12].
Now suppose that (4) holds. Since P,(K) C K, by Proposition 3.1, P, has the Q-property. Hence
(5) holds. Now suppose that (5) holds. If z is a solution of LCP(P,, K, —e), then P,(xz) —e > 0 and
hence P,(z) > 0. By Item (iv) in Proposition 6.1, a is invertible. Let a = aie; + asea +- - -+ are, be
the spectral decomposition of a. Note that each a; is nonzero. By Lemma 6.2, P; has the Q-property
where s = e1e1 + e2ea + - -+ + g€, with s; = sign (a;). First suppose that V' is simple. Then by
Proposition 6.4, s; = 1 for all i or s; = —1 for all 5. This means that +a € K°. Since P, = P_,, we
may assume that a > 0. Then P, = Pp ae = P gPP 5= P\Q/a and so P, is positive semidefinite
on V. As P, is invertible and symmetric (recall that a is invertible), P, must be positive definite
on V. Thus in the case of simple V, conditions (1) — (6) are equivalent. When V is not simple,
we show that (5) is equivalent to (1) by decomposing V' as a product of simple Euclidean Jordan
algebras (Cf. Theorem 2.4). Write V = V1) x V2 x ... x V(™) where each V(¥ is simple. Let
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a=(aM,a®,...,a™) in this product. As P, = P, X P,z X --- X P,m), we see that each P,
has the Q-property in V¥, By what has been proved, £a®) > 0 in V*) and P, is positive
definite on V*)_ Tt follows that P, is positive definite on V. This completes the proof. O

7. Lyapunov-like transformations. A real square matrix A is said to be a Z-matrix if all
its off-diagonal entries are nonpositive. If A € R™*™, then this property is equivalent to

z,y € R}, (z,y) =0 = (Az,y) <0.

This concept can be extended to symmetric cones: Following [14], we say a linear transformation
L :V — V has the Z-property if

z,y € K, (z,y) =0= (L(x),y) <0.

It has been shown (see [26], [5]) that this property is equivalent to: e *F € TI(K) for all ¢ > 0.

The recent article [14] contains properties of such transformations; in particular, it is shown in
that paper that L has the global solvability property (item (8) of the Introduction) if and only if L
is positive stable. Examples of Z-transformations include both Lyapunov and Stein transformations
on 8™. We now say that a linear transformation L on V is Lyapunov-like transformation if both
L and —L have the Z-property, that is,

z,y € K, (z,y) =0= (L(z),y) =0.

Recently, Damm [4] has shown that for S™ and H™ (the space of all n x n Hermitian matrices over
complex numbers) L has the above property if and only if it is a Lyapunov transformation (that is,
it is of the form L4 for some square matrix A). While the form of a Lyapunov-like transformation
on a general Euclidean Jordan algebera is not known, it can be easily shown [27] that on L", a
matrix is Lyapunov-like if and only if it is of the form

5]

where @ € R, D € R»=Ux(n=1) with D 4+ DT = 2aI. For any Euclidean Jordan algebra V and
a € V, the transformation L, (called a Lyapunov transformation) defined by

Lo(z) =aox

is also a Lyapunov-like transformation.

Extending the result in item (1) of the Introduction, we present the following global uniqueness
result.

THEOREM 7.1. Let L : V — V be a Lyapunov-like transformation. Then L has the GUS-
property if and only if L is positive stable (that is, all its eigenvalues have positive real parts) and
positive semidefinite.

Proof. Suppose L has the GUS-property. Then it has the global solvability property and so by
Theorem 7 in [14], L is positive stable. Also, by Theorem 4.1 in [28],

(L(c),c) 20

for any primitive idempotent ¢ in V. Now for any x € V, we have the spectral decomposition

T
xr = E )\iei
1
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where {e1,e3,...,e,} is a Jordan frame. Since L is a Lyapunov-like transformation, we have
(L(e;),e;) = 0 for all 3 # j, and so

(L(z),z) = Z AiXj(L(es), e5) = Z A (L(es), ei) > 0.

This proves that L is positive semidefinite.

Now assume that L is positive stable and positive semidefinite. Because of positive stability, for
every ¢, LCP(L, K, q) has a solution, see Theorems 6 and 7 in [14]. We now prove uniqueness. Fix
q and suppose that z and u are two solutions of LCP(L, K, ¢) so that

x>0, y:=L(z)+¢>0, and (z,y) =0
and
u>0, v:=L(u)+¢ >0, and (u,v) = 0.

Now, as L is positive semidefinite, the solution set of LCP(L, K, q) is convex (Theorem 2.3.5, [7]).
So for any ¢ € [0,1], tx+ (1 —t)u is also a solution of LCP(L, K, ). Writing out the complementarity
conditions, we see that

(x,v) =0 = (u,y).

We conclude (by Proposition 2.2) that z and u operator commute with both y and v, and z ov =
0 = uoy; hence z := x — u operator commutes with y —v = L(z), and z o L(z) = 0. In this situation,
there exists a Jordan frame {ej,ea,...,e,} and scalars y; such that

z= e+ pges +---+ e and  L(z) = pg1€i41 + €2 + -+ prer

for some [ between 1 and r. We then have

(7.1) L(2) = p1L(e1) + paL(ez) + --- + wL(er) = pg1€r41 + puyoerro + - - - + prer.

Now for any i between [+1 and r, and k between 1 and [, we have (eg,e;) = 0 and (L(eg), e;) = 0.
From (7.1), we get

pilles || = 0.

This implies that L(z) = 0. Since L is positive stable, it is invertible and so z = 0, thus proving the
the uniqueness of solution for LCP(L, K, q). Hence L has the GUS-property. O

Concluding Remarks. In this article, we have proved that global uniqueness, global solvability,
and the Ry properties are equivalent for algebra automorphisms over £" and for quadratic rep-
resentations over any Euclidean Jordan algebra. We have given a characterization of the global
uniqueness property for Lyapunov-like transformations. All the transformations considered in this
paper are related to symmetric-cone-invariant transformations. Motivated by our results, we pose
the following problems:
(1) Do global uniqueness and Rg properties coincide for algebra automorphisms on general
Euclidean Jordan algebras?
(2) Do global solvability (i.e., the Q-property) and Rg properties coincide for a cone automor-
phism? For an element of II(K)?
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8. Appendix. Here we justify an assertion made in the proof of Theorem 5.1.
LEMMA 8.1. Let  and u be two mnonzero wvectors in a real inner product space that are mot

proportional. Assume that for some nonnegative scalars A and p,

|1z —all = |lpa = Az|[ and (A —1D)|Z]| = (u = D)l|a]].

Then A = p = 1.

Proof. The second equality shows that (A —1)(u—1) > 0. Assume now that (A —1)(u—1) > 0.

Case 1: A>1and u> 1.
Expanding the first equality above, applying the Cauchy-Schwarz inequality, and using the second
equality, we get

@®

AVA
~~
=
(V] NN
|
—
= ==

1)
= (2 -Dal? + (2 - D& al? - 2880 (- 1)jal

Simplifying (8.1), we get

0> -DA-1)"+ W =1(r-1)*-20u-1)(g-1)(A-1) =0.

Since Ay > 1, we have equality in the Cauchy-Schwarz inequality (Z,@) < ||Z|| - ||%||. This means
that the vectors Z and % are proportional, which is a contradiction.

Case 2: 0<A<land0<u<1.

We omit the proof as it is similar to case 1.

Contradictions obtained in both cases imply that A = u = 1. O
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