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1 Introduction

A real n × n matrix M is said to be a Z-matrix if all its off-diagonal entries are non-
positive [12]. Such matrices appear in various fields including differential equations,
dynamical systems, optimization, economics, etc., see [3]. For our discussion, we
recall the following equivalent properties for a Z-matrix ([3], Chap. 6):

(1) M is a P-matrix, i.e., all the principal minors of M are positive.
(2) M is a Q-matrix, i.e., for any q ∈ Rn , the linear complementarity problem

LCP(M, q) has a solution; this means that there exists an x ∈ Rn such that

x ≥ 0, y = Mx + q ≥ 0, and 〈x, y〉 = 0.

(3) There exists a d > 0 such that Md > 0.
(4) M is invertible and M−1 is (entrywise) nonnegative.
(5) M is positive stable, that is, every eigenvalue of M has positive real part.
(6) M is diagonally stable, i.e., there exists a positive diagonal matrix D such that

M D + DMT is positive definite.

(This is a partial list. See [3] for 50 equivalent conditions, and [21] for more.)
In the above properties, x ≥ 0 means that x ∈ Rn+ (the nonnegative orthant) and

d > 0 means that d is in the interior of Rn+. We remark that the P-matrix property in
(1) can also be equivalently described by

x ∗ (Mx) ≤ 0 ⇒ x = 0

where x ∗ (Mx) denotes the componentwise product of vectors x and Mx [6]. Also,
when M is a P-matrix, the solution x in (2) is unique for all q ∈ Rn .

In recent times, various authors have studied complementarity problems over sym-
metric cones, especially over the positive semidefinite cone and the second-order cone.
In [15] and [14], the following result was established. Let Sn denote the space of all
real n × n symmetric matrices and Sn+ denote the cone of positive semidefinite matri-
ces in Sn . For a real n × n matrix A, let the Lyapunov and Stein transformations be
respectively given by

L A(X) = A ◦ X := AX + X AT and SA(X) = X − AX AT (X ∈ Sn).

Let L denote either L A or SA. Then the following are equivalent:

(a) L has the P-property on Sn , i.e.,

X and L(X) (operator) commute
X ◦ L(X) 	 0

}
⇒ X = 0.

(b) L has the Q-property with respect to the cone Sn+, i.e., for any Q ∈ Sn , there
exists an X ∈ Sn such that

X 
 0, Y = L(X) + Q 
 0, and 〈X, Y 〉 = 0.

123



Z-transformations on proper and symmetric cones

(c) There exists a matrix D � 0 in Sn such that L(D) � 0.
(d) L is invertible and L−1(Sn+) ⊆ Sn+.
(e) L is positive stable, i.e., the real part of any eigenvalue of L is positive.

Here X 
 0 means that X ∈ Sn+ and D � 0 means that D lies in the interior
of Sn+. Motivated by the similarities between the above two results, one may ask if the
Lyapunov and Stein transformations have some sort of a Z-property on the semidef-
inite cone, or more generally, whether one could define and study Z-transformations
on, say, symmetric cones and proper cones. The main objective of this paper is to
undertake such a study and extend properties (1–6) to proper/symmetric cones.

Consider a real finite dimensional Hilbert space V and let K be a proper cone in V ,
that is, K is a closed convex cone in V with K ∩ (−K ) = {0} and K − K = V . Let
the dual of K be defined by

K ∗ := {x ∈ V : 〈x, y〉 ≥ 0 for all y ∈ K }.

Following [31], we say that a linear transformation T : V → V has the cross-positive
property with respect to K if

x ∈ K , y ∈ K ∗, and 〈x, y〉 = 0 ⇒ 〈T (x), y〉 ≥ 0;

Now we say that a linear transformation L : V → V has the Z-property with respect
to K if −L has the cross-positive property. Cross-positive transformations have been
studied in [2,3,8,9,19,31,35,37]. These works deal with equivalent formulations and
eigenvalue properties of cross-positive transformations. Other pertinent references
include [32,33], and [34].

In this paper, we show that Lyapunov and Stein transformations (and numerous oth-
ers) have the Z-property on the semidefinite cone, and that many of the properties of
Z-matrices generalize to proper cones. In particular, we focus on the complementarity
properties.

We mention here two other generalizations of the Z-matrix property. In [4],
Borwein and Dempster extend the Z-matrix property to vector lattices, primarily to
study order linear complementarity problems and describe least element solutions of
such problems. Given a vector lattice E and a linear transformation T : E → E , they
define the type (Z) property by the condition

x ∧ y = 0 ⇒ (T x) ∧ y ≤ 0

where x ∧ y denotes the vector minimum of x and y in E . In [7], Cryer and Dempster
define, on a real Hilbert space H which is also a vector lattice, by

x ∧ y = 0 ⇒ 〈T (x), y〉 ≤ 0.

In the case of a Hilbert lattice, see Sect. 5 in [4], this definition coincides with the
above definition of Z-transformation. As our cones, to the most part, are non-latticial,
we will not consider these generalizations in this paper.
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Here is an outline of the paper. In Sect. 2, we will cover the basic material dealing
with the complementarity properties, degree theory, and Euclidean Jordan algebras. In
Sect. 3, we introduce Z-transformations on proper cones, give examples, and extend
properties (2–5) of the Introduction; in particular, we show that for a Z-transformation,
the Q and S properties with respect to K (which are the cone analogs of conditions (2)
and (3) of the Introduction) are equivalent. Results in this section show that a linear
transformation L : V → V has the Z and Q properties with respect to K if and only
if the dynamical system

dx

dt
+ L(x) = 0

is globally asymptotically stable (which means that its trajectory, starting at any point
in V , converges to zero) and viable with respect to K (which means the trajectory,
starting at any point in K , stays in K ). Partly motived by the simultaneous stabil-
ity problem in dynamical systems, in Sect. 4 we deal with the question of when the
sum and product of Z-transformations have the Q-property. In Sect. 5, we consider
Euclidean Jordan algebras, and prove an analog of Item (6) of the Introduction replac-
ing the positive diagonal matrix by a quadratic representation. Section 6 deals with
the P-property on a Euclidean Jordan algebra which is defined by

x ◦ L(x) ≤ 0
x operator commutes with L(x)

}
⇒ x = 0,

and the question whether Q and P properties are equivalent for a Z-transformation;
in particular, we prove this equivalence on the Euclidean Jordan algebra Ln whose
corresponding symmetric cone is the Lorentz cone.

2 Preliminaries

Let (V, 〈·, ·〉) be a finite dimensional real Hilbert space. For any set C in V , we write C◦
for the interior of C ; when C is closed convex, we write �C (x) for the (orthogonal)
projection of x onto C .

Throughout this paper, we assume that K denotes a closed convex cone in V , i.e., K
is closed, K +K ⊆ K and λK ⊆ K for all λ ≥ 0. Given K , we define the dual cone by

K ∗ := {y ∈ V : 〈y, x〉 ≥ 0 for all x ∈ K }.

K is said to be proper if

K ∩ (−K ) = {0} and K − K = V,

or equivalently, interiors of K ∗ and K are nonempty ([3], p. 2).
Examples of proper cones include self-dual cones (those satisfying K ∗ = K ) and

(in particular) symmetric cones, see Sect. 2.3 below.
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We note that

0 �= x ∈ K ∗ and d ∈ K ◦ ⇒ 〈x, d〉 > 0.

A closed convex cone F contained in K is said to be a face of K if the following
is satisfied:

x ∈ K , y ∈ K , and λx + (1 − λ)y ∈ F
f or some λ ∈ (0, 1)

}
⇒ x ∈ F and y ∈ F.

Given a linear transformation L : V → V and a face F of K , the transformation
L F F : Span(F) → Span(F) defined by

L F F (x) = �Span(F)(L(x)) (x ∈ Span(F))

is called a principal subtransformation of L (induced by F). We say that L has the
positive principal minor property with respect to K if for every face F of K , the
determinant of L F F is positive. We remark that when V = Rn , K = Rn+, and L is an
n × n real matrix, the positive principal minor property coincides with the P-matrix
property.

We recall that for any two matrices A and B in Rn×n , tr(AB) = ∑
i, j ai j bi j =

tr(B A).

2.1 LCP Concepts

Recall that K is a closed convex cone in V . Given a linear transformation L : V → V
and q ∈ V , the cone linear complementarity problem, LCP(L , K , q), is to find an
x ∈ V such that

x ∈ K , y = L(x) + q ∈ K ∗, and 〈x, y〉 = 0.

This problem is a particular case of a variational inequality problem [10].
The following concepts are defined with respect to the cone K .

(i) We say that L has the Q-property with respect to K (and write L ∈ Q(K )) if
LCP(L , K , q) has a solution for all q ∈ V ,

(ii) L has the R0-property with respect to K if zero is the only solution of
LCP(L , K , 0), and

(iii) L is said to have the S-property with respect to K (and write L ∈ S(K )) if there
exists a d such that

d ∈ K ◦ and L(d) ∈ K ◦.

We note that when L is invertible, L has the Q-property with respect to K if and
only if L−1 has the Q-property with respect to K ∗. (This is because, x is a solution
of LCP(L−1, K ∗,−L−1(q)) if and only if y := L−1(x) − L−1(q) is a solution of
LCP(L , K , q).)
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2.2 Degree theory

Given L : V → V and q ∈ V , we define the mapping Fq : V → V by

Fq(x) := x − �K (x − L(x) − q).

It is well known that Fq(x) = 0 if and only if x solves LCP(L , K , q) [10].
We use degree theory concepts/results to prove existence of solutions of equations.

We refer to [24] and [10] for further details. The following are standard results in
complementarity theory, see Theorem 2.5.10 and its proof in [10].

Theorem 1 Suppose L has the R0-property with respect to K and let F0(x) := x −
�K (x − L(x)). Then for any bounded open set � containing zero in V , deg(F0,�, 0)

is defined. If this degree is nonzero, then L has the Q-property with respect to K .

Theorem 2 (Karamardian [22]) Suppose that (K ∗)o is nonempty and there is a vec-
tor e ∈ (K ∗)o such that zero is the only solution of the problems LCP(L , K , 0) and
LCP(L , K , e). Then L has the Q-property with respect to K .

We mention two consequences of Karamardian’s Theorem. First, if K is proper, L
is copositive on K (which means that 〈L(x), x〉 ≥ 0 for all x ∈ K ) and L has the
R0-property on K , then L has the Q-property on K . Second, if L is positive definite
on V (which means 〈L(x), x〉 > 0 for all x �= 0), then L has the Q-property with
respect to K .

2.3 Euclidean Jordan algebras

In this subsection, we recall some concepts, properties, and results from Euclidean
Jordan algebras. Most of these can be found in Faraut and Korányi [11] and Gowda,
Sznajder and Tao [18].

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉) where (V, 〈·, ·〉) is a finite
dimensional inner product space over R and (x, y) �→ x ◦ y : V × V → V is a
bilinear mapping satisfying the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 := x ◦ x , and

(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V .

We also assume that there is an element e ∈ V (called the unit element) such that
x ◦ e = x for all x ∈ V .

In V , the set of squares

K := {x ◦ x : x ∈ V }

is a symmetric cone (see Faraut and Korányi [11], p. 46). This means that K is a
self-dual closed convex cone and for any two elements x, y ∈ K ◦, there exists an
invertible linear transformation � : V → V such that �(K ) = K and �(x) = y.
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An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is
nonzero and cannot be written as a sum of two nonzero idempotents. We say that a
finite set {e1, e2, . . . , em} of primitive idempotents in V is a Jordan frame if

ei ◦ e j = 0 if i �= j, and
m∑
1

ei = e.

Note that 〈ei , e j 〉 = 〈ei ◦ e j , e〉 = 0 whenever i �= j .

Theorem 3 (The Spectral decomposition theorem) (Faraut and Korányi [11]) Let V
be a Euclidean Jordan algebra. Then there is a number r (called the rank of V ) such
that for every x ∈ V , there exists a Jordan frame {e1, . . . , er } and real numbers
λ1, . . . , λr with

x = λ1e1 + · · · + λr er . (1)

If x in (1) is invertible (which means that every λi is nonzero), we define

x−1 := λ−1
1 e1 + · · · + λ−1

r er

and when x ≥ 0 (or equivalently, every λi is nonnegative), we define

x
1
2 = λ

1
2
1 e1 + · · · + λ

1
2
r er .

Remark 1 Rn is a Euclidean Jordan algebra with inner product and Jordan product
defined respectively by

〈x, y〉 =
n∑

i=1

xi yi and x ◦ y = x ∗ y.

Here Rn+ is the corresponding symmetric cone.

Remark 2 Sn , the set of all n × n real symmetric matrices, is a Euclidean Jordan
algebra with the inner and Jordan product given by

〈X, Y 〉 := trace(XY ) and X ◦ Y := 1

2
(XY + Y X).

In this setting, the symmetric cone K is the set of all positive semidefinite matrices in
Sn denoted by Sn+.

Remark 3 Consider Rn (n > 1) where any element x is written as

x =
[

x0
x

]
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with x0 ∈ R and x ∈ Rn−1. The inner product in Rn is the usual inner product. The
Jordan product x ◦ y in Rn is defined by

x ◦ y =
[

x0
x

]
◦

[
y0
y

]
:=

[ 〈x, y〉
x0 y + y0x

]
.

We shall denote this Euclidean Jordan algebra (Rn, ◦, 〈·, ·〉) by Ln . In this algebra,
the cone of squares, denoted by Ln+, is called the Lorentz cone (or the second-order
cone). It is given by

Ln+ = {x : ||x || ≤ x0}.

We note the spectral decomposition of any x with x �= 0:

x = λ1e1 + λ2e2

where

λ1 := x0 + ||x ||, λ2 := x0 − ||x ||

and

e1 := 1

2

[
1
x

||x ||

]
, and e2 := 1

2

[
1

− x
||x ||

]
.

In a Euclidean Jordan algebra V , for a given x ∈ V , we define the corresponding
Lyapunov transformation Lx : V → V by

Lx (z) = x ◦ z.

We say that elements x and y operator commute if Lx L y = L y Lx . It is known that
x and y operator commute if and only if x and y have their spectral decompositions
with respect to a common Jordan frame (Faraut and Korányi [11], Lemma X.2.2).

We recall the following from Gowda, Sznajder and Tao [18] (with the notation
x ≥ 0 when x ∈ K ):

Proposition 1 For x, y ∈ V , the following conditions are equivalent:

1. x ≥ 0, y ≥ 0, and 〈x, y〉 = 0.
2. x ≥ 0, y ≥ 0, and x ◦ y = 0.

In each case, elements x and y operator commute.

The Peirce decomposition Fix a Jordan frame {e1, e2, . . . , er } in a Euclidean Jordan
algebra V . For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = R ei
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and when i �= j ,

Vi j :=
{

x ∈ V : x ◦ ei = 1

2
x = x ◦ e j

}
.

Then we have the following

Theorem 4 (Theorem IV.2.1, Faraut and Korányi [11]) The space V is the orthogonal
direct sum of spaces Vi j (i ≤ j). Furthermore,

Vi j ◦ Vi j ⊂ Vii + Vj j

Vi j ◦ Vjk ⊂ Vik if i �= k
Vi j ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, e2, . . . , er }, we have the Peirce decomposition of
x ∈ V :

x =
r∑

i=1

xi ei +
∑
i< j

xi j

where xi ∈ R and xi j ∈ Vi j .
A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two

Euclidean Jordan algebras. The classification theorem (Chap. V, Faraut and Korányi
[11]) says that every simple Euclidean Jordan algebra is isomorphic to one of the
following:

(1) The algebra Sn of n × n real symmetric matrices.
(2) The algebra Ln .
(3) The algebra Hn of all n ×n complex Hermitian matrices with trace inner product

and X ◦ Y = 1
2 (XY + Y X).

(4) The algebra Qn of all n ×n quaternion Hermitian matrices with (real) trace inner
product and X ◦ Y = 1

2 (XY + Y X).

(5) The algebra O3 of all 3 × 3 octonion Hermitian matrices with (real) trace inner
product and X ◦ Y = 1

2 (XY + Y X).

The following result characterizes all Euclidean Jordan algebras.

Theorem 5 (Faraut and Korányi [11], Proposition III.4.4, III.4.5, Theorem V.3.7) Any
Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean Jordan
algebras. Moreover, the symmetric cone in a given Euclidean Jordan algebra is, in
a unique way, a direct sum of symmetric cones in the constituent simple Euclidean
Jordan algebras.

Suppose V is a Euclidean Jordan algebra with rank r . Given any matrix A ∈ Rr×r

and a Jordan frame {e1, e2, . . . , er } in V , we define a transformation RA : V → V as
follows. For any x ∈ V , write the Peirce decomposition

x =
r∑
1

xi ei +
∑
i< j

xi j .
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Then

RA(x) :=
r∑
1

yi ei +
∑
i< j

xi j ,

where

[y1, y2, . . . , yr ]T = A
(
[x1, x2, . . . , xr ]T

)
.

Intuitively, we can think of RA as the map that (linearly) transforms the element x by
changing its ‘diagonal’. It turns out that properties of A and RA are closely related,
see Example 5 below.

3 Definition of Z-property, examples, and general results

Definition 1 Let K be a proper cone in V . Given a linear transformation L : V → V ,
we say that L has the Z-property with respect to K (and write L ∈ Z(K )) if

x ∈ K , y ∈ K ∗, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0.

When the context is clear, we simply write Z in place of Z(K ).
We immediately note that Z(K ) is closed under finite nonnegative linear combina-

tions; also, if L ∈ Z(K ), then LT ∈ Z(K ∗).

Example 1 When V = Rn and K = Rn+, it is easily verified that an n × n real matrix
has the Z-property with respect to Rn+ if and only if it is a Z-matrix (that is, all its
off-diagonal entries are nonpositive).

Example 2 Let V = Sn , K = Sn+, and write X 
 0 when X ∈ Sn+. For A ∈ Rn×n ,
recall that the Lyapunov transformation L A is given by

L A(X) = AX + X AT .

We claim that L A has the Z-property with respect to Sn+. Suppose X 
 0, Y 
 0, and
〈X, Y 〉 = 0. Then, XY = 0 = Y X [15] and hence

〈L A(X), Y 〉 = 〈AX + X AT , Y 〉 = tr(AXY )

+tr(X AT Y ) = 0 + tr(Y X AT ) = 0.

Example 3 Let K be any proper cone in a general V . If S : V → V is linear and
S(K ) ⊆ K , then it is trivial to see that −S ∈ Z(K ). Moreover,

t ∈ R, S(K ) ⊆ K ⇒ L = t I − S ∈ Z(K ).

123



Z-transformations on proper and symmetric cones

In particular, if V = Sn , K = Sn+, and A ∈ Rn×n , the Stein transformation SA,
defined by

SA(X) = X − AX AT

has the Z-property on Sn+. In [26], Mesbahi and Papavassilopoulos study transforma-
tions of the form

L(X) = X −
k∑
1

Bi X BT
i .

Calling such a transformation a type-Z-transformation, they study the rank mini-
mization problem with applications to control theory. We note that this transformation
is a particular case of

L(X) = AX + X AT −
k∑
1

Bi X BT
i

which is in Z(Sn+).

Example 4 Let V = Ln and J := diag(1,−1,−1, . . . ,−1) ∈ Rn×n . We claim that
A ∈ Z(Ln+) if and only if there exists γ ∈ R such that γ J − (J A + AT J ) is positive
semidefinite on Ln.

Since the ‘if’ part is easily verified, we prove the ‘only if’ part. Assume A ∈ Z(Ln+)

and let 〈x, J x〉 = 0. Then u := ±x is on the boundary of Ln+, v := Ju ∈ Ln+ and
〈u, v〉 = 0. By the Z-property of A, we must have 〈Au, v〉 ≤ 0. Expressing this last
inequality in terms of x , we get the implication

〈x, J x〉 = 0 ⇒ 〈−(J A + AT J )x, x〉 ≥ 0.

By a result of Finsler [13] (see also [39]), there exists a γ ∈ R such that γ J −
(J A + AT J ) is positive semidefinite on Ln . This proves the claim.

We note that the above claim (expressed in terms of exponential nonnegativity)
appears in [35] with a different proof.

Example 5 Let V be a Euclidean Jordan algebra with rank r and K be the correspond-
ing cone of squares. Let A = (ai j ) ∈ Rr×r . Consider RA defined with respect to a
Jordan frame {e1, . . . , er } (see the end of Sect. 2). Then we have the following:

(i) If RA has the Z-property with respect to K , then A is a Z matrix.
(ii) If A is a Z-matrix with aii ≤ 1 for all i , then RA has the Z-property with respect

to K .

Item (i) can be seen by noting, for any Jordan frame {e1, . . . , er }, ai j ||ei ||2 =
〈RA(e j ), ei 〉 ≤ 0 for i �= j . To see (ii), assume that A is a Z-matrix with aii ≤ 1
for all i . Let x, y ∈ K and 〈x, y〉 = 0. We write the Peirce decompositions x =
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∑r
1 xi ei + ∑

i< j xi j and y = ∑r
1 yi ei + ∑

i< j yi j . Then by the properties of spaces
Vi j , xi ≥ 0, yi ≥ 0 (for all i = 1, . . . , r ) and

〈 ∑
i< j

xi j ,
∑
i< j

yi j

〉
= −

r∑
1

xi yi ||ei ||2 ≤ 0.

Now RA(x) = ∑r
1 µi ei + ∑

i< j xi j , where

[µ1, µ2, . . . , µr ]T = A
(
[x1, x2, . . . , xr ]T

)
.

Then

〈RA(x), y〉 =
r∑
1

yiµi ||ei ||2 −
r∑
1

xi yi ||ei ||2 =
r∑
1

(aii − 1)xi yi ||ei ||2

+
∑
i �= j

ai j x j y j ||e j ||2 ≤ 0.

Thus RA has the Z-property with respect to K .
The following example shows that RA need not have the Z-property when aii > 1.

Let V = S2, K = S2+,

E1 =
[

1 0
0 0

]
, E2 =

[
0 0
0 1

]
, and A =

[
2 0
0 2

]
.

Define RA with respect to the Jordan frame {E1, E2}. Letting

X =
[

1
2 −

√
3

2√
3

2
1
2

] [
1 0
0 0

] [
1
2

√
3

2

−
√

3
2

1
2

]
=

[
1
4

√
3

4√
3

4
3
4

]

and

Y =
[

1
2 −

√
3

2√
3

2
1
2

] [
0 0
0 1

] [
1
2

√
3

2

−
√

3
2

1
2

]
=

[
3
4 −

√
3

4

−
√

3
4

1
4

]
,

we see that X 
 0, Y 
 0, and 〈X, Y 〉 = 0. However,

RA(X) =
[

1
2

√
3

4√
3

4
3
2

]

and 〈RA X, Y 〉 = 3
8 > 0. Hence RA does not have the Z-property with respect to S2+

even though A is a Z-matrix. ��
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As mentioned in the Introduction, a Z-transformation is the negative of a cross-
positive transformation. Hence we have the following equivalent properties on any
proper cone [9,31]:

(a) L has the Z-property with respect to K .
(b) e−t L(K ) ⊆ K for all t ≥ 0.
(c) For any x0 ∈ K , the trajectory of the dynamical system

dx

dt
+ L(x) = 0; x(0) = x0

stays in K .
(d) L = lim(αn I − Sn) where αn ∈ R and Sn is a linear transformation on V with

Sn(K ) ⊆ K for all n.

In the above list, Item (d) describes how one can generate Z-transformations. Trans-
formations of the form

α I − S with S(K ) ⊆ K

are especially important in matrix theory, see [2] and [3]. Any such transformation
will be called an M-transformation if (spectral radius) ρ(S) ≤ α, and a nonsingular
M-transformation if ρ(S) < α; for properties of such transformations, see Chap. 2,
Sect. 4 in [2].

Remark 4 When V = Rn with K = Rn+, every Z-matrix is of the form α I − S
where S is a nonnegative matrix. In the general case, this need not be true: The fol-
lowing example shows that Z-transformations need not be of the form α I − S with
S(K ) ⊆ K .

Example 6 Consider L A on S2 where

A =
[

1 0
1 1

]
.

We know that L A has the Z-property with respect to Sn+, see Example 2. Suppose that
there exists α ∈ R and S(S2+) ⊆ S2+, such that L A = α I − S. Then S = α I − L A.
For any X, Y ∈ S2+ with 〈X, Y 〉 > 0, we have

〈S(X), Y 〉 ≥ 0 ⇒ 〈αX, Y 〉 − 〈L A(X), Y 〉 ≥ 0 ⇒ α ≥ 〈L A(X), Y 〉
〈X, Y 〉 .

Now take

Xk =
[

1 1√
k

1√
k

1
k

]
and Yk =

[ 1
k2 0
0 1

k

]
.

123



M. S. Gowda, J. Tao

It is easy to see that

tr(XkYk) = 2

k2 → 0, tr(L A(Xk)Yk) = 4

k2 + 2

k
√

k
→ 0,

while

〈L A(Xk), Yk〉
〈Xk, Yk〉 = 2 + √

k → ∞

as k → ∞, which is clearly a contradiction.

Our next result extends properties (2–4) of the Introduction to proper cones. In the
classical (matrix) situation, equivalence of properties (2–4) is invariably proved via
property (1), see e.g., Theorem 3.11.10 in [6], Theorem 1.5.2 in [1], or Page 134, [3].
This cannot be done in the general case as the so-called positive principal minor
property fails to hold, see Remark 8.

Theorem 6 Let K be a proper cone in V and suppose L : V → V has the Z-property
with respect to K . Then the following conditions are equivalent:

(a) L has the Q-property with respect to K .
(b) L−1 exists and L−1(K ) ⊆ K (equivalently, L−1(K ◦) ⊆ K ◦).
(c) There exists d ∈ K ◦ such that L(d) ∈ K ◦.
(d) LT has the Q-property with respect to K ∗.
(e) (LT )−1 exists and (LT )−1(K ∗) ⊆ K ∗ (equivalently, (LT )−1((K ∗)o) ⊆ (K ∗)o).
(f) There exists u ∈ (K ∗)o such that LT (u) ∈ (K ∗)o.

Note: In view of a Theorem of Alternative ([3], p. 9), Item ( f ) is equivalent to:

−L(x) ∈ K , x ∈ K ⇒ x = 0.

Proof (a) ⇒ (b): Assume (a). Take any q ∈ K ◦, and consider a solution x of
LCP(L , K ,−q) so that

x ∈ K , y = L(x) − q ∈ K ∗, and 〈x, y〉 = 0.

Then, by the Z-property of L on K , we have

〈L(x), y〉 ≤ 0.

As L(x) = y +q, this leads to ||y||2 +〈y, q〉 ≤ 0. Since q ∈ K ◦ and y ∈ K ∗, we must
have 〈y, q〉 ≥ 0 and so y = 0. This implies that L(x) = q. So, for each q ∈ K ◦, we
have an x ∈ K such that L(x) = q. This implies that the range of L contains the open
set K ◦ and so L must be onto. As V is finite dimensional, (the linear transformation)
L must be one-to-one proving the existence of L−1. We also see that for each q ∈ K ◦,
L−1(q) = x ∈ K . From this we get L−1(K ◦) ⊆ K ◦ and L−1(K ) ⊆ K .
(b) ⇒ (c): Assuming (b), let q ∈ K ◦ so that L−1(q) = d ∈ K ◦. Then d ∈ K ◦ with
L(d) ∈ K ◦, proving (c).
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(c) ⇒ (d): Let d be as in (c). We show that for t = 0 or 1, the problem
LCP(LT , K ∗, td) has only one solution, namely, zero. Note that zero is a solution
of this problem; let v be any solution so that

v ∈ K ∗, w = LT (v) + td ∈ K , and 〈v,w〉 = 0.

Then, by the Z-property of L on K , we have

〈L(w), v〉 ≤ 0.

As 〈L(w), v〉 = 〈w, LT (v)〉, we get

0 ≥ 〈LT (v) + td, LT (v)〉 = ||LT (v)||2 + t〈L(d), v〉.

Since L(d) ∈ K ◦, v ∈ K ∗, and t ≥ 0, we must have LT (v) = 0 which further yields

〈L(d), v〉 = 〈LT (v), d〉 = 0.

As L(d) ∈ K ◦, v ∈ K ∗, this can happen only if v = 0. So zero is the only solution
of LCP(LT , K ∗, td) for t = 0 or 1. Since d is in the interior of (K ∗)∗ = K , by
Theorem 2, we get (d).
(d) ⇒ (e): Since LT has the Z-property with respect to K ∗, the proof of (d) ⇒ (e)
is similar to that of (a) ⇒ (b).
(e) ⇒ ( f ): This is similar to (b) ⇒ (c).
( f ) ⇒ (a): The proof is similar to that of (c) ⇒ (d): We work with LCP(L , K , tu)

and show that for t = 0, 1, this problem has a unique solution, namely, zero, and then
appeal to Theorem 2. ��
Remark 5 We note that (only) the nonemptyness of K ◦ was used in proving the impli-
cations (a) ⇒ (b) ⇒ (c) ⇒ (d) and (only) the nonemptyness of (K ∗)o was used in
the proofs of (d) ⇒ (e) ⇒ ( f ) ⇒ (a).

The above result shows that with respect to K ,

Z ∩ S = Z ∩ Q.

Analogous to the implication (a) ⇒ (c), we have the following for any L: If L ∈
Q(K ), then there exists a p ∈ K ◦ such that L(p) ∈ (K ∗)o. This can be seen by taking
an e ∈ (K ∗)o, looking at a solution x of LCP(L , K ,−e) (so that L(x) − e ∈ K ∗, that
is, L(x) ∈ (K ∗)o), and finally perturbing x .

Remark 6 The equivalence of (b) and (c) for transformations of the form L = R − S
where R and S satisfy the conditions S(K ) ⊆ K and R(K ◦) ⊇ K ◦ or R(K ◦)∩K ◦ = ∅,
has been studied by Schneider [30]. In fact, he proves the equivalence of the following:

(i) R is invertible, R−1(K ) ⊆ K , and ρ(R−1S) < 1.
(ii) L is invertible and L−1(K ◦) ⊆ K ◦.

(iii) There exists a vector d ∈ K ◦ such that L(d) ∈ K ◦.
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We note that such transformations need not imply the Q-property (cf. Example 2,
[14]) and so need not have the Z-property. In [14], Gowda and Parthasarathy show
that when R is a multiple of the Identity, the above conditions are further equivalent
to the Q-property of L . They also observe (cf. Example 2, [14]) that the Q-property
does not hold for a general L .

The following is an example for which both Theorem 6 and Schneider’s result hold:
On Sn with K = Sn+, consider a transformation of the form

L(X) = AX + X AT −
k∑
1

Bi X BT
i .

Then L , being a sum of Z-transformations, is a Z-transformation. If there is a D � 0
such that L(D) � 0, then equivalent conditions in Theorem 6 hold. Also, writing
L = R − S with R(X) = AX + X AT (which is a Z-transformation), we see that
R(D) � 0 and so R−1(K ◦) ⊆ K ◦ where K is the interior of Sn+; Schneider’s result
now applies.

The following result describes the eigenvalues of Z ∩ S-transformations.

Theorem 7 Let K be proper and suppose L ∈ Z(K ). Then the following are equiva-
lent:

(i) L is positive stable.
(ii) All real eigenvalues of L are positive.

(iii) L + ε I is nonsingular for all ε ≥ 0.

(iv) L has the Q-property with respect to K .

Proof The implications (i) ⇒ (ii) ⇒ (iii) are obvious. Now suppose (iii) holds. Define
the function F0 : V → V by

F0(x) := x − �K (x − L(x)).

We show that for some bounded open set � containing zero in V , deg(F0,�, 0) = 1.

Then Theorem 1 shows that L ∈ Q(K ). Now define the homotopy H(x, t) : V ×
[0, 1] → V by

H(x, t) := x − �K (x − (1 − t)L(x) − t x).

Then H(x, 0) = F0(x) and H(x, 1) = I x := x for all x ∈ V . We claim that as t varies
from 0 to 1, the zero sets of H are uniformly bounded. Assuming the contrary, we have
sequences xn and tn such that ||xn|| → ∞ and tn ∈ [0, 1] with H(xn, tn) = 0. Then
xn ∈ K , yn := (1 − tn)L(xn) + tn xn ∈ K ∗, and 〈xn, yn〉 = 0. Assuming xn||xn || → x

and tn → t ∈ [0, 1], we have

x ∈ K , y = (1 − t)L(x) + t x ∈ K ∗, and 〈x, y〉 = 0.
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As ||x || = 1, t �= 1. Then x is a solution of LCP(L + s I, K , 0) where s = t
1−t .

Observe that L + s I belongs to Z(K ) and so

||(L + s I )x ||2 =
〈
(L + s I )x,

(
1

1 − t

)
y

〉
≤ 0.

This gives (L + s I )x = 0 contradicting (i i i). This contradiction shows that the zero
sets of H are uniformly bounded. Let � be any bounded open set containing all the
zero sets. Then by the homotopy invariance of degree,

deg(F0,�, 0) = deg(I,�, 0) = 1.

Now by Theorem 1, L has the Q-property with respect to K .
Now suppose (iv) holds. As L belongs to Z(K ), with σ(L) denoting the spectrum

of L , Theorem 6 in [31] shows that

λ = min{Re(µ) : µ ∈ σ(L)}

is an eigenvalue of L with a corresponding eigenvector u in K . Since L is inver-
tible (see Theorem 6), λ �= 0. Then L(u) = λ u implies that L−1(u) = 1

λ
u. Since

L−1(K ) ⊆ K (see Theorem 6), we must have λ > 0. This proves that L is positive
stable. ��
Remark 7 The equivalence of items (b), (c), (e), (f) in Theorem 6 and (i) in Theorem 7
has also been noted by Stern [32] by different means. See also, Chap. 5 in [2] and [34].

In addition, Theorem 4.3 in [34] says that

Z(K ) ∩ S(K ) = {L : (L + ε I )−1(K ) ⊆ K ∀ ε ≥ 0}.

By the well known Lyapunov theory, the positive stability of a transformation L is
equivalent to the global asymptotic stability of

dx

dt
+ L(x) = 0

(that is, its trajectory, starting at any point in V , converges to zero). As remarked ear-
lier, the Z-property of L with respect to K is equivalent to the viability of the above
dynamical system in K (which means the trajectory, starting at any point in K , stays
in K ) or the so-called exponential nonnegativity of −L (Chap. 4, [2]).

Corollary 1 Let K be proper and suppose L ∈ Z(K ) ∩ S(K ). Then

(a) The determinant of L is positive;
(b) If L is self-adjoint, then L is positive definite.

Proof From the previous theorem, L is positive stable. As L is a real linear transfor-
mation, the complex eigenvalues of L occur in conjugate pairs. Thus the determinant
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of L , being the product of all its eigenvalues, is positive. If L is self-adjoint on V , then
it is so on the complexification of V . Thus all eigenvalues of L are real and positive.
Therefore L is positive definite on the complexification of V and hence on V . ��
Remark 8 Let V = Rn and K = Rn+. Let M be a Z-matrix such that for some d > 0,
we have Md > 0. It follows that for every nonempty α ⊆ {1, 2, . . . , n}, the principal
submatrix Mαα is a Z-matrix with Mααdα > 0. Then the above corollary implies that
the determinant of Mαα is positive. Thus we have the well-known result that every
principal minor of a Z ∩ S-matrix is positive, i.e., every Z ∩ S-matrix is a P-matrix.
This result cannot be extended to general cones, as the following example shows.

Example 7 Consider, on S2, L A with

A =
[−1 2

−2 2

]
.

We know that L A has the Z-property on S2+. As A is positive stable, L A has the
Q-property on S2+ [15]. Now consider the principal subtransformation of L A corres-
ponding to the face F consisting of all matrices of the form

[
x 0
0 0

]

where x is nonnegative. Then this principal subtransformation is given, on Span(F),
by

[
x 0
0 0

]
�→

[−2x 0
0 0

]
.

Clearly, the determinant of this subtransformation is negative and so the positive
principal minor property (see Sect. 2) does not hold for the Z ∩ S-transformation L A.

4 Simultaneous stability, sum and product Results

Given a set A of matrices, the simultaneous stability problem is: Find a (symmetric)
positive definite matrix X such that AX + X AT is positive definite for all A ∈ A. As
is well known, this stability problem is related to the asymptotic stability of the linear
time-varying system

dx

dt
= −A(t)x

where x(t) ∈ Rn and A(t) ∈ A for all t (Sect. 5.1, [5] or [25]).
In connection with this problem, Narendra and Balakrishnan [27] prove the

following
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Theorem 8 Let {A1, . . . , Ak} consist of (pairwise) commuting positive stable matri-
ces. Then there exists X � 0 such that L Ai (X) := Ai X + X Ai

T � 0 for all
i = 1, . . . , k.

We now extend this result to Z-transformations as follows:

Theorem 9 Suppose K is proper and Li ∈ Z(K ) ∩ S(K ) for i = 1, 2, . . . , k. If
Li s commute pairwise, then there exists a d ∈ K ◦ such that Li (d) ∈ K ◦ for all
i = 1, 2 . . . , k; Moreover,

∑k
1 Li ∈ Q(K ).

Proof Suppose that Li s commute pairwise. Since L−1
i (K ◦) ⊆ K ◦ for all i ,

�k
1L−1

i (K ◦) ⊆ K ◦. Take u ∈ K ◦ so that d := �k
1L−1

i (u) ∈ K ◦. Then using the
commutativity of Li s, for any j , L j (d) = �i �= j L−1

i (u) ∈ K ◦. The second conclusion
follows from Theorem 6. ��
Corollary 2 Let L , LT ∈ Z(K ). If there is a d ∈ K ◦ with L(d) ∈ K ◦ and LT (d) ∈
K ◦, then L is positive definite. In particular, this conclusion holds if L is normal (that
is, L LT = LT L).

Proof Since L and LT are in Z(K ), L + LT ∈ Z(K ). Since (L + LT )(d) ∈ K ◦ by
our assumption, L + LT is positive definite by Corollary 1. For the second part, we
apply the previous theorem. ��
Remark 9 When K is self-dual and L ∈ Z(K ), we have LT ∈ Z(K ). So in this
setting, the above corollary says that normal Z ∩ S-transformations are positive defi-
nite. In particular, when the above corollary is specialized to L A and SA, we recover
previously proved results (Theorems 2, 3 in [17]).

The following result describes the Q-property of a finite product of transformations
each belonging to Z ∩ Q when K is proper and K ∗ ⊆ K . Such a result for Lyapunov
and Stein transformations on the semidefinite cone was proved in [16] using degree
theoretic ideas. For some recent results of this type on self-dual cones, see [36].

Theorem 10 Suppose that K is proper, K ∗ ⊆ K , and Li ∈ Z(K ) ∩ Q(K ) for
i = 1, . . . , n. Then �n

1 Li has Q-property with respect to K .

Proof Since Li ∈ Z(K )∩Q(K ), by Theorem 6, (LT
i )−1 exists and (LT

i )−1(K ∗) ⊆ K ∗
for all i . Letting L = �n

1 Li , we get (LT )−1(K ∗) ⊆ K ∗ ⊆ K . We now claim that

(a) L−1 is copositive on K ∗, and
(b) L−1 has the R0-property with respect to K ∗.

To see (a), let x ∈ K ∗. Then y := (LT )−1(x) ∈ K ∗ ⊆ K . Hence

〈L−1(x), x〉 = 〈x, (LT )−1(x)〉 = 〈x, y〉 ≥ 0.

To see (b), let x ∈ K ∗ with L−1(x) ∈ K and 〈L−1(x), x〉 = 0. Since Ln ∈ Z(K ),
we have 〈x, Ln L−1(x)〉 ≤ 0. But (Ln L−1)T (x) = (�n−1

1 (LT
i )−1)(x) ∈ K ∗ ⊆

K and hence 〈x, (Ln L−1)T (x)〉 ≥ 0. Thus, 〈x, Ln L−1(x)〉 = 0. Now Ln L−1 =
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(�n−1
1 Li )

−1. By repeating this argument n times, we get 〈x, x〉 = 0, that is, x = 0,
proving item (b).

As a consequence of Karamardian’s Theorem (see Sect. 2), L−1 has the Q-property
with respect to K ∗, or equivalently, L has the Q-property with respect to K . ��

Remark 10 We note that the above theorem is applicable to self-dual cones, and in
particular to symmetric cones.

5 Diagonal stability in symmetric cones

In the rest of the paper, we assume that V is a Euclidean Jordan algebra and K is
the corresponding symmetric cone. From now on, all the properties are defined with
respect to this (fixed) K . We use the standard notations

x ≥ 0 and x > 0

to mean x ∈ K and x ∈ K ◦ respectively. Also, y ≤ 0 means that −y ≥ 0.
With respect to K , the Z-property can be characterized as follows:
L has the Z-property if and only if for any Jordan frame {e1, e2, . . . , er } in V and

i �= j , it holds that 〈L(ei ), e j 〉 ≤ 0.
(If x ≥ 0, y ≥ 0, and 〈x, y〉 = 0, then there is a Jordan frame {e1, e2, . . . , er } such

that x = ∑
λi ei , y = ∑

µi ei with λi , µi ≥ 0 and λiµi = 0 for all i . This leads to
the justification of the “if” part. The “only if” part is obvious.)

Following [11], for any a ∈ V , we define the Lyapunov transformation La and
quadratic representation Pa by

La(x) := a ◦ x and Pa = 2(La)2 − La2 .

Because 〈La(x), y〉 = 〈a ◦ x, y〉 = 〈a, x ◦ y〉, we immediately notice (via Propo-
sition 1) that La has the Z-property with respect to K . Some useful properties are
[11]:

• Transformations La and Pa are self-adjoint on V .
• When a > 0, both La and Pa are positive definite on V .
• When a is invertible, Pa(K ) = K and (Pa)−1 = Pa−1 .

• PPa(x) = Pa Px Pa ; in particular, Pa2 = (Pa)2.

The following result shows that any element of K ◦ can be mapped to any element
of K ◦ by Lyapunov and quadratic representations. The result is known. The first part
is an application of Theorem 6 (see [28] for a different proof) and the second part is
crucially needed in our next Theorem.

Proposition 2 Suppose u, v > 0 in V . Then there exist w > 0 and a > 0 such that

Lw(u) = v and Pa(u) = v.
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Proof Consider the Lyapunov transformation Lu . This is positive definite on V and
hence has the Q-property with respect to K . Since it also has the Z-property, by
Theorem 6, (Lu)−1(K ◦) ⊆ K ◦. Let (Lu)−1(v) = w. Then w>0, Lw(u)= Lu(w)=v.

As to the existence of a, let

a := u−1#v := P
u− 1

2

(
P

u
1
2
(v)

) 1
2
.

(The right-hand side is the so-called geometric mean of u−1 and v.) By Theorem 4 in
[23], we have

a > 0 and Pa(u) = v.

��
For a matrix A ∈ Rn×n , the famous Lyapunov’s theorem ([20], Theorem 2.2.1)

asserts that A is positive stable if and only if there exists a symmetric positive def-
inite matrix P ∈ Rn×n such that AP + P AT is positive definite. In this situation,
the dynamical system dx

dt = −Ax is globally asymptotically stable and the Lyapunov
function given by f (x) = 〈Px, x〉 decreases along any trajectory of this system. If A
is positive stable and a Z-matrix, then, in addition to the global asymptotic stability,
we have viability of the system dx

dt = −Ax in Rn+ (this means that any trajectory that
starts at a point in Rn+ stays in Rn+) and A is diagonally stable (that is there is a P
which is diagonal). In the case of the Euclidean Jordan algebra V = Rn (see Remark ),
we may think of any diagonal matrix as either La or Pa for some a ∈ Rn . Also, in
this setting, if a > 0, then Pa = La2 ; so a matrix A is diagonally stable if there is an
a > 0 in Rn such that APa + Pa AT = ALa2 + La2 AT is positive definite. With this
in mind, we generalize Item (6) of the Introduction in the following way:

Theorem 11 For L ∈ Z on a Euclidean Jordan algebra V , the following are
equivalent:

(i) L ∈ S.
(ii) There exists a > 0 such that L Pa + Pa LT is positive definite on V .

Proof Assume (i) holds. Then by Theorem 6, there exists u > 0 and v > 0 such that
LT (u) > 0 and L(v) > 0. Then by the previous proposition, there exists an a such
that

a > 0 and Pa(u) = v.

Put b = a
1
2 . As K is invariant under Pb and Pb−1 = (Pb)

−1, it easily follows (from
L ∈ Z) that Pb−1 L Pb ∈ Z; hence (by the self-duality of K ),

� := Pb−1 L Pb + [Pb−1 L Pb]T ∈ Z

and Pb−1�Pb ∈ Z. Letting 
 := Pb−1�Pb, we see that 
 = Pa−1 L Pa + LT ∈ Z.

Then


(u) = Pa−1 L(Pa(u)) + LT (u) = Pa−1 L(v) + LT (u) > 0
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as Pa−1 keeps the interior of K invariant. This implies

Pb−1�Pb(u) > 0 and �Pb(u) > 0.

So we have proved that � (which is symmetric) is in Z and has the S-property. By
Corollary 1, � is positive definite; it follows that Pb�Pb is also positive definite. Since
Pb�Pb = L Pa + Pa LT , we get (ii).

Now suppose (ii) holds. If there is no d > 0 such that L(d) > 0, then by a Theorem
of Alternative, see Page 9 in [3], there is a nonzero y such that

y ≥ 0 and LT (y) ≤ 0.

As Pa(y) ≥ 0, we have

0 < 〈(L Pa + Pa LT )(y), y〉 = 2〈L Pa(y), y〉 = 2〈Pa(y), LT (y)〉 ≤ 0,

which is a contradiction. Hence (i) holds. ��
Remark 11 In the above result, we can replace (ii) by: There exists a c > 0 such that
Pc L + LT Pc is positive definite on V . This is because, when L ∈ Z, conditions L ∈ S
and LT ∈ S are equivalent, see Theorem 6.

6 The P-Property in Euclidean Jordan algebras

Recall that a real n × n matrix M is a P-matrix if all its principal minors are positive.
This property can be equivalently described by

x ∗ (Mx) ≤ 0 ⇒ x = 0

where x ∗ (Mx) denotes the componentwise product and the inequality is component-
wise. This property can be extended to a Euclidean Jordan algebra as follows [18].

Definition 2 Let V be a Euclidean Jordan algebra. A linear transformation L : V → V
is said to have the P-property if

x ◦ L(x) ≤ 0
x operator commutes with L(x)

}
⇒ x = 0.

Note: The (stronger) Jordan P-property is obtained by deleting the operator com-
mutativity condition in the above definition.

While the P-property always implies the Q-property, it does not give uniqueness of
solution in related linear complementarity problems over K . However, the P-property
is implied by the GUS-property (which means that all related linear complementarity
problems over K have unique solutions), order P-property, Jordan P-property, see [18].
Also, the P-property does not imply the so-called positive principal minor property,
see [18].
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Theorem 12 Let L : V → V be linear and suppose there exists a b > 0 such that
Lb L + LT Lb is positive definite on V . Then L has the P-property.

Proof Suppose x �= 0 and x ◦ L(x) ≤ 0. Then

0 < 〈(Lb L + LT Lb)(x), x〉 = 2〈Lb(x), L(x)〉 = 2〈b, x ◦ L(x)〉 ≤ 0

as b > 0 and x ◦ L(x) ≤ 0. It follows that x ◦ L(x) ≤ 0 implies x = 0 proving the
Jordan P-property of L . Thus we have the P-property of L . ��

As the P-property always implies the Q-property (hence the S-property) [18], com-
bining the above theorem with Theorem 11, we get the following

Corollary 3 If L ∈ Z and there exists a b > 0 such that Lb L + LT Lb is positive
definite, then there exist an a > 0 such that L Pa + Pa LT is positive definite.

7 On the equality Z ∩ Q = Z ∩ P in Euclidean Jordan algebras

As we saw in the Introduction, for a Z-matrix, the Q and P properties coincide. We ask
if the same is true in the context of a Euclidean Jordan algebra. Since the P-property
implies the Q-property for any linear transformation, we ask if the inclusion

Z ∩ Q ⊆ P

holds. We begin with some examples.

Example 8 Consider L A (defined in Example 2) on Sn . We have observed previously
that L A has the Z-property. The equivalence of Q and P properties has been established
in Theorem 5 of [15].

Example 9 Consider SA (defined in Example 3) on Sn . We have observed previously
that SA has the Z-property. The equivalence of Q and P properties has been established
in Theorem 11 of [14].

Example 10 Let V be any Euclidean Jordan algebra. For any A ∈ Rr×r and any
Jordan frame {e1, e2, . . . , er }, consider RA. Suppose that RA ∈ Z ∩ Q = Z ∩ S. Let
d > 0 with RA(d) > 0. Then using the Peirce decomposition of d with respect to
{e1, e2, . . . , er }, we see that A ∈ S(Rn+). As A is a Z-matrix, see Example 5, A is a
Z ∩ Q-matrix. Hence it is a P-matrix. It follows, see Proposition 5.1 in [38], that RA

has the P-property.

Regarding the equality Z ∩ Q = Z ∩ P, we do not have an answer in the general
case. (For L ∈ Z ∩ Q, we know (by Remark 11) that there exists c > 0 such that
Pc L + LT Pc is positive definite. If one can show that Pc can be replaced by some
Lb, then it follows from Theorem 12 that L ∈ P.) The recent article [36] contains
some partial answers in the case of L = I − S with S(K ) ⊆ K . For Ln , we have the
following result.
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Theorem 13 Let V = Ln. Then Z ∩ Q = Z ∩ P.

Proof Let L : Ln → Ln be in Z ∩ Q = Z ∩ S. We have to show that L has the
P-property. To this end, let x �= 0 and L(x) operator commute in Ln with x ◦L(x) ≤ 0.
Because of operator commutativity, there is a Jordan frame {e1, e2} in Ln such that

x = λ1e1 + λ2e2 and L(x) = µ1e1 + µ2e2.

Now x ◦ L(x) ≤ 0 yields
∑

λiµi ei ≤ 0. It follows that λiµi ≤ 0 for i = 1, 2.
We consider several cases.

Case 1 λ1 �= 0, λ2 = 0 (Note: The case λ1 = 0, λ2 �= 0 is similar.) Then x = λ1e1 ⇒
x
λ1

= e1, L( x
λ1

) = µ1
λ1

e1+µ1
λ2

e2 ⇒ L(e1) = r1e1+r2e2, where ri = µi
λ1

for i = 1, 2. As
λ1µ1 ≤ 0 we have r1 ≤ 0. Since e1 ≥ 0, e2 ≥ 0 and 〈e1, e2〉 = 0, from the Z-property,
we have 〈L(e1), e2〉 ≤ 0; thus r2 ≤ 0. Hence L(e1) = r1e1 +r2e2 ≤ 0. As L ∈ Z∩Q,
from Theorem 6, L−1(Ln+) ⊆ Ln+; this implies that e1 = L−1(r1e1 +r2e2) ≤ 0 which
is clearly a contradiction.

Case 2 λ1 �= 0, λ2 �= 0.

Subcase 2.1 λ1 > 0, λ2 > 0. (Note: The case λ1 < 0, λ2 < 0 can be handled by
working with −x .) In this case, x > 0, µ1 ≤ 0 and µ2 ≤ 0. As L−1(e1) ≥ 0 and
L−1(e2) ≥ 0, we have L(x) = µ1e1 + µ2e2 ⇒ x = µ1L−1(e1) + µ2 L−1(e2) ≤ 0,
which is a contradiction.

Subcase 2.2 λ1 > 0, λ2 < 0. (Note: The case λ1 < 0, λ2 > 0 is similar.) In this case,
µ1 ≤ 0 and µ2 ≥ 0. Also, x �≥ 0 and x �≤ 0.

If µ1 = 0, then we have

x = µ2 L−1(e2) ⇒ λ1e1 + λ2e2 = µ2L−1(e2)

and

0 > λ2||e2||2 = µ2〈L−1(e2), e2〉 ≥ 0.

This is a contradiction.

If µ1 < 0, let µ1 = −r1, so that r1 > 0. Then

L(x) + r1

λ1
x = (µ2 + λ2

r1

λ1
)e2 ⇒ x = (L + r1

λ1
I )−1θe2,

where θ = µ2 + λ2
r1
λ1

.

Since L ∈ Z∩S, we easily verify that (L + r1
λ1

I ) ∈ Z∩S; thus (L + r1
λ1

I )−1e2 ≥ 0.
For any θ this cannot happen as x �≥ 0 and x �≤ 0. Thus in all cases, we reach a
contradiction, proving the P-property of L . ��

As an easy consequence (via Example 3 and Remark 6) we deduce the following
result which, in [36], was obtained by different means.

Corollary 4 Suppose L = I − S where S is linear, ρ(S) < 1 and S(Ln+) ⊆ Ln+. Then
L has the P-property.
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8 Miscellaneous

In the case of a Z-matrix M , it is known that feasibility of a (standard) linear comple-
mentarity problem implies its solvability. This means that if there is an x ≥ 0 such
that Mx + q ≥ 0, then LCP(M, Rn+, q) is solvable. (In the terminology of linear
complementarity problems, this says that every Z-matrix is a Q0-matrix.)

The following example shows that an analogous result fails in the general case.

Example 11 Let V = S2. Corresponding to

A =
[

0 1
1 0

]
and Q =

[
1 0.1

0.1 0

]
,

consider LCP(L A,S2+, Q). Put

X =
[

x y
y z

]
and Y = L A(X) + Q =

[
2y + 1 x + z + 0.1

x + z + 0.1 2y

]
.

Taking x = z = 1 and y = 0.9, we have X =
[

1 0.9
0.9 1

]
� 0, Y =

[
2.8 2.1
2.1 1.8

]
� 0.

Thus, LCP(L A, Q) is (strictly) feasible.
Suppose LCP(L A,Sn+, Q) is solvable, so that there exists X 
 0 such that Y 
 0

and 〈X, Y 〉 = 0. Now, X 
 0 ⇒ x ≥ 0 and z ≥ 0; Y 
 0 ⇒ 2y + 1 ≥ 0 and y ≥ 0.
Also,

〈X, Y 〉 = 0 ⇒ x(2y + 1) + 2y(x + z + 0.1) + 2yz = 0.

Because each term in the above equation is nonnegative, we have x(2y + 1) = 0 ⇒
x = 0, y(x + z + 0.1) = 0 ⇒ y = 0, but then

Y =
[

1 z + 0.1
z + 0.1 0

]
�∈ S2+.

Therefore LCP(L A,Sn+, Q) is not solvable.

Concluding remarks and open problems. In this article, we extended the Z-matrix
property to linear transformations on proper cones. We showed that Lyapunov and
Stein transformations have the Z-property on the semidefinite cone. We have also
shown that many of the properties of Z-matrices extend to Z-transformations on
proper cones. The diagonal stability of such transformations on symmetric cones was
described by means of quadratic representations. Finally the equivalence between the
Q and P properties of Z-transformations was studied over Euclidean Jordan algebras.
Motivated by our study, we formulate the following

Conjecture On any Euclidean Jordan algebra, Z ∩ Q = Z ∩ P.
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In this paper we have not addressed the uniqueness of solutions in cone linear com-
plementarity problems. As is well-known, when V = Rn and K = Rn+, the positive
principle minor property (see Sect. 2) gives a characterization of uniqueness of solu-
tion in (standard) linear complementarity problems. By replacing Rn+ by a polyhedral
set and using the concept of coherence, Robinson [29] extended this result to var-
iational inequalities. While the uniqueness issue has been settled for some special
classes of transformations (such as Lyapunov transformations, see [15]), there is no
constructive or verifiable characterization in the general case of (symmetric) cone lin-
ear complementarity problems. It may be interesting to study this uniqueness issue
for Z-transformations on symmetric cones.

References

1. Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University
Press, Cambridge (1997)

2. Berman, A., Neumann, M., Stern, R.J.: Nonnegative Matrices in Dynamical Systems. Wiley, New York
(1989)

3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadel-
phia (1994)

4. Borwein, J.M., Dempster, M.A.H.: The order linear complementarity problem. Math. Oper.
Res. 14, 534–558 (1989)

5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control
Theory. SIAM publications, Philadelphia (1994)

6. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)
7. Cryer, C.W., Dempster, M.A.H.: Equivalence of linear complementarity and linear programs in vector

lattice Hilbert spaces. SIAM J. Control Optim. 18, 76–90 (1980)
8. Damm, T.: Positive groups on Hn are completely positive. Linear Algebra Appl. 393, 127–137 (2004)
9. Elsner, L.: Quasimonotonie and ungleischungen in halbgeordneten Räumen. Linear Algebra Appl.

8, 249–261 (1974)
10. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequalities and Complementarity Prob-

lems. Springer, New York (2003)
11. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, Oxford (1994)
12. Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principle

minors. Czechoslov. Math. J. 12, 382–400 (1962)
13. Finsler, P.: Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratisher

Formen. Comment. Math. Helv. 9, 188–192 (1937)
14. Gowda, M.S., Parthasarathy, T.: Complementarity forms of theorems of Lyapunov and Stein, and

related results. Linear Algebra Appl. 320, 131–144 (2000)
15. Gowda, M.S., Song, Y.: On semidefinite linear complementarity problems. Math. Program. Series

A 88, 575–587 (2000)
16. Gowda, M.S., Song, Y.: Some new results for the semidefinite linear complementarity problem. SIAM

J. Matrix Anal. Appl. 24, 25–39 (2002)
17. Gowda, M.S., Song, Y., Ravindran, G.: On some interconnections between strict monotonicity, globally

uniquely solvable, and P properties in semidefinite linear complementarity problems. Linear Algebra
Appl. 370, 355–368 (2003)

18. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan
algebras. Linear Algebra Appl. 393, 203–232 (2004)

19. Gritzmann, P., Klee, V., Tam, B.-S.: Cross-positive matrices revisited. Linear Algebra Appl.
223/224, 285–305 (1995)

20. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
21. Kaneko, I.: Linear complementarity problems and characterizations of Minkowski matrices. Linear

Algebra Appl. 20, 113–130 (1978)
22. Karamardian, S.: An existence theorem for the complementarity problem. Optim. Theory Appl.

19, 227–232 (1976)

123



Z-transformations on proper and symmetric cones

23. Lim, Y.: Applications of geometric means on symmetric cones. Math. Ann. 319, 457–468 (2001)
24. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)
25. Mason, O., Shorten, R.: The geometry of convex cones associated with the Lyapunov inequality and

the common Lyapunov function problem. Electron. J. Linear Algebra 12, 42–63 (2005)
26. Mesbahi, M., Papavassilopoulos, G.P.: Least elements and the minimal rank matrices, in comple-

mentarity problems and variational problems, State of the art. In: Proceedings of the International
Conference on Complementarity Problems. SIAM Publications, Philadelphia (1997)

27. Narendra, K.S., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commu-
ting A-matrices. IEEE Trans. Autom. Control 39, 2469–2471 (1994)

28. Rangarajan, B.K.: Polynomial convergence of infeasible-interior-point methods over symmetric
cones. SIAM J. Optim. 16, 1211–1229 (2006)

29. Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17, 691–714 (1992)
30. Schneider, H.: Positive operators and an inertia theorem. Numer. Math. 7, 11–17 (1965)
31. Schneider, H., Vidyasagar, M.: Cross-positive matrices. SIAM J. Numer. Anal. 7, 508–519 (1970)
32. Stern, R.J.: Generalized M-matrices. Linear Algebra Appl. 41, 201–208 (1981)
33. Stern, R.J.: A note on positively invariant cones. Appl. Math. Optim. 9, 67–72 (1982)
34. Stern, R.J., Tsatsomeros, M.: Extended M-matrices and subtangentiality. Linear Algebra Appl. 97,

1–11 (1987)
35. Stern, R.J., Wolkowicz, H.: Exponential nonnegativity on the ice-cream cone. SIAM J. Matrix

Anal. 12, 160–165 (1991)
36. Sznajder, R., Gowda, M.S.: The Q-property of composite transformations and the P-property of Stein-

type transformations on self-dual and symmetric cones. Linear Algebra Appl. 416, 437–451 (2006)
37. Tam, B.-S.: Some results on cross-positive matrices. Linear Algebra Appl. 15, 173–176 (1976)
38. Tao, J., Gowda, M.S.: Some P-properties for nonlinear transformations on Euclidean Jordan

algebras. Math. Oper. Res. 30, 985–1004 (2005)
39. Uhlig, F.: A recurring theorem about pairs of quadratic forms and extensions: a survey. Linear Algebra

Appl. 25, 219–237 (1979)

123


	Z-transformations on proper and symmetric cones
	Abstract
	Introduction
	Preliminaries
	LCP Concepts
	Degree theory
	Euclidean Jordan algebras
	Definition of Z-property, examples, and general results
	Simultaneous stability, sum and product Results
	Diagonal stability in symmetric cones
	The P-Property in Euclidean Jordan algebras
	On the equality ZQ=ZP in Euclidean Jordan algebras
	Miscellaneous


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


