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1. Introduction. A real n× n matrix M is said to be a P-matrix if all its principal
minors are positive. Introduced by Fiedler and Pták [7] in 1962, P-matrices have found
many applications in various fields, particularly in optimization; see, e.g., Facchinei and
Pang [5]. It is well known (Cottle et al. [4]) that the P-matrix property can be equivalently
described by the following condition:

x ∈Rn� x ∗Mx≤ 0 ⇒ x= 0 (1.1)

where “∗” denotes the componentwise product and z ≤ 0 means that all components of
z are nonpositive. Equally well known is the unique solvability of linear complementarity
problem LCP�M�q	 corresponding to M and any q ∈Rn: Find x ∈Rn such that

x≥ 0� Mx+ q ≥ 0 and �x�Mx+ q� = 0

In the complementarity literature (Facchinei and Pang [5]), the nonlinear version of (1.1)
has been extensively studied: A continuous function �� Rn→Rn is said to be a P-function
if the following condition holds:

�x− y	 ∗ ���x	−��y		≤ 0 ⇒ x= y


Similar to a linear complementarity problem, we have a nonlinear complementarity problem
NCP���q	 corresponding to � and q ∈Rn: Find x ∈Rn such that

x≥ 0� ��x	+ q ≥ 0 and �x���x	+ q� = 0

When � is a P-function, NCP���q	 will have at most one solution. Under the assumption
that � is a P0-function (which means that � + �I is a P-function for all � > 0) and a
so-called R0-condition, it can be shown (see e.g., Facchinei and Pang [5, Corollary 9.1.31])
that NCP���q	 has a solution for every q ∈Rn. The NCP is a special case of a variational
inequality problem that has been extensively studied in the literature (see, e.g., Facchinei
and Pang [5]). Facchinei and Pang [5] introduce P and P0 functions relative to a Cartesian
product of sets in Rn and study some of their properties. Going in a different direction,
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Gowda and Song [11] extended the P-property (1.1) to a linear transformation L defined
on � n (the space of all n× n real symmetric matrices):

X ∈� n� XL�X	= L�X	X � 0 ⇒ X = 0� (1.2)

where X � 0 means that X is negative semi-definite. Some of the properties of P matrices
continue to hold in this setting. For example, given L satisfying (1.2) and any Q ∈� n, the
following semidefinite linear complementarity problem, SDLCP�L�Q	, has a solution: Find
X ∈� n such that

X � 0� L�X	+Q� 0� and �L�X	+Q�X� = 0�
where �·� ·� refers to the trace inner product between two matrices. However, because of
the nonpolyhedrality of the semidefinite cone � n

+, not all P-matrix properties—including
the uniqueness in LCP and the positive principal minor property—extend to this setting.
In Gowda and Song [11] and Gowda and Parthasarathy [10], the property (1.2) was

specialized to the Lyapunov and Stein transformations, defined respectively by

LA�X	 �= AX +XAT and SA�X	 �=X−AXAT �

where A is a given real n×n matrix and X ∈� n. It was shown in these papers that LA has
P-property (1.2) if and only if A is positive stable (that is, all eigenvalues of A lie in the
open right-half plane of the complex plane), and SA has the P-property if and only if A is
Schur stable (that is, all eigenvalues of A lie in the open unit disk) thereby connecting the
above P-property to the theorems of Lyapunov and Stein on continuous and discrete linear
dynamical systems.
The space Rn with componentwise product and � n with Jordan product X �Y �= 1

2 �XY +
YX	 are two examples of Euclidean Jordan algebras. Partly motivated by the recent interest
in the study of conic optimization problems, Gowda et al. [14] extended this notion of
P-property to a linear transformation defined on a Euclidean Jordan algebra. A Euclidean
Jordan algebra is a finite-dimensional real inner product space along with a Jordan product
x �y satisfying certain properties; see §2 for the definition. In such an algebra, the so-called
cone of squares forms a “symmetric” cone. Along with Rn and � n, other examples of
such algebras include the space of n× n Hermitian matrices over complex numbers, n× n
Hermitian matrices over quaternions, and 3× 3 Hermitian matrices over octonions. There
is another algebra (denoted by �n) defined on Rn �n > 1	 that induces a cone called the
Lorentz cone (also known as the second-order cone); see §2 for definitions. In this paper, we
further extend the notion of P-property to nonlinear transformations defined on a Euclidean
Jordan algebra V : A continuous transformation F � V → V is said to have the P-property if

x− y and F �x	− F �y	 operator commute

�x− y	 � �F �x	− F �y		≤ 0

}
⇒ x= y


(Here, “operator commutativity” refers to the commutativity of two corresponding Lyapunov
transformations; see §2. In the context of � n, this reduces to the ordinary matrix product
commutativity.) Along with this P-property, we introduce other generalizations of the P-
matrix property. When F � V → V is such that F + �I has the P-property for all �> 0, we
say that F has the P0-property. Given a Euclidean Jordan algebra V with the corresponding
symmetric cone K, q ∈ V , and a continuous transformation F � V → V , we can define the
complementarity problem CP�F � q	: Find x ∈ V such that

x ∈K� F �x	+ q ∈K and �F �x	+ q�x� = 0

We note that the extra structure available in Euclidean Jordan algebras allows us to go beyond
the general study of cone complementarity problems (see, e.g., Facchinei and Pang [5])
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of which the above symmetric cone complementarity problem is a special case. Assuming
that V is either � n or �n (and monotonicity of F in some cases), a number of authors,
such as Chen and Tseng [3], Chen et al. [2], and Fukushima et al. [8], have discussed this
problem. By going beyond monotonicity and � n (�n) we show in this paper that when
F has the P0-property along with a certain R0-property, all associated complementarity
problems have solutions. In this way, we extend the classical result valid for nonlinear
complementarity problems (defined on Rn) to the setting of Euclidean Jordan algebras.
In §4, we address the uniqueness issue in the complementarity problems associated

with a continuous transformation defined on a Euclidean Jordan algebra. By adopting a
terminology coined by Megiddo and Kojima [18] in the context of nonlinear comple-
mentarity problems, we say that F � V → V has the globally uniquely solvable (GUS)
property if for all q ∈ V , CP�F � q	 has a unique solution. In the setting of linear com-
plementarity problems, there is no difference between P and GUS properties. In the set-
ting of nonlinear complementarity problems, extending Karamardian’s strong monotonicity
condition, Moré’s uniform P-condition, and Cottle’s positively bounded Jacobians condi-
tion, Megiddo and Kojima [18] formulate necessary and/or sufficient conditions for the
GUS property to hold. They also point out that in this setting, the GUS property does
not imply the P-property. In the setting of Euclidean Jordan algebras two results are
known: When F is strongly monotone on V this GUS property holds (Facchinei and Pang
[5, Theorem 2.3.3]). When F is linear, the GUS property holds if and only if F has the
P-property and the so-called cross commutativity property (Gowda et al. [14, Theorem 14]).
Because this cross-commutative property is not easily verifiable and depends somewhat on
the solution sets of complementarity problems, we seek other necessary conditions for the
GUS property to hold. In §4 we describe one such necessary condition. The condition says
that when F has the GUS property, �F �c	 − F �0	� c� ≥ 0 for all primitive idempotents
c in V .
Finally, in §5, we introduce the so-called relaxation transformation on a general Euclidean

Jordan algebra that is induced by a vector valued function, and study its P and GUS
properties.

2. Preliminaries.

2.1. Euclidean Jordan algebras. In this subsection, we recall some concepts, proper-
ties, and results from Euclidean Jordan algebras. Most of these can be found in Faraut and
Korányi [6], Schmieta and Alizadeh [19], and Gowda et al. [14].
A Euclidean Jordan algebra is a triple �V ��� �·� ·�	, where �V � �·� ·�	 is a finite dimen-

sional inner product space over R and �x� y	 �→ x � y� V × V → V is a bilinear mapping
satisfying the following conditions:
(i) x � y = y � x for all x� y ∈ V ,
(ii) x � �x2 � y	= x2 � �x � y	 for all x� y ∈ V where x2 �= x � x, and
(iii) �x � y� z� = �y� x � z� for all x� y� z ∈ V .
Henceforth, we assume that V is a Euclidean Jordan algebra and call x � y the Jordan

product of x and y. We may assume (see Faraut and Korányi [6, p. 146]) that there is an
element e ∈ V (called the unit element) such that x � e= x for all x ∈ V .
In V , the set of squares

K �= �x � x� x ∈ V �
is a symmetric cone (see Faraut and Korányi [6, p. 46]). This means that K is a self-dual
closed convex cone and for any two elements x� y ∈ interior �K	, there exists an invertible
linear transformation  � V → V such that  �K	=K and  �x	= y.
For an element z ∈ V , we write

z≥ 0 if and only if z ∈K�
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and z≤ 0 when −z≥ 0. We also define
z+ �=!K�z	 and z− �= z+ − z

where !K�z	 denotes the (orthogonal) projection of z onto K. Finally, for any two elements
x� y ∈ V , we let

x � y �= x− �x− y	+ and x � y �= y+ �x− y	+


For x ∈ V , we define m�x	 �=min�k > 0� �e� x� $ $ $ � xk� is linearly dependent� and rank of
V by r =max�m�x	� x ∈ V �. An element c ∈ V is an idempotent if c2 = c; it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents.
We say that a finite set �e1� e2� $ $ $ � em� of primitive idempotents in V is a Jordan frame if

ei � ej = 0 if i �= j and
m∑
1

ei = e


Note that �ei� ej� = �ei � ej� e� = 0 whenever i �= j .

Theorem 2.1 (The Spectral Decomposition Theorem) (Faraut and Korányi [6]).
Let V be a Euclidean Jordan algebra with rank r . Then for every x ∈ V , there exists a
Jordan frame �e1� $ $ $ � er� and real numbers (1� $ $ $ � (r such that

x= (1e1+ · · ·+(rer 
 (2.1)

The numbers (i are called the eigenvalues of x.

The expression (1e1+ · · · + (rer is the spectral decomposition (or the spectral expansion)
of x. Given (2.1), we have

x=
r∑

i=1
(+i ei−

r∑
i=1

(−i ei and
〈 r∑
i=1

(+i ei�
r∑

i=1
(−i ei

〉
= 0


From this we easily verify that

x+ =
r∑

i=1
(+i ei and x− =

r∑
i=1

(−i ei�

and so
x= x+ − x− with �x+� x−� = 0


Corresponding to any x ∈ V , let (i�x	�i= 1�2$ $ $ � r	 denote the eigenvalues of x. We let
)�x	 �= max

1≤i≤r
(i�x	 and *�x	 �= min

1≤i≤r
(i�x	


We note that x≤ 0 if and only if )�x	≤ 0.
Proposition 2.1. There exists a positive number + such that for any x� y ∈ V and any

nonzero idempotent c, the following statements hold:
(i) �x� c� ≤)�x	�c�2.
(ii) �x� y� ≤)�x � y	�e�2.
(iii) + ≤ �c� ≤ �e�.
(iv) �)�x+ y	−)�x	� ≤ �1/+	�y� and �*�x+ y	− *�x	� ≤ �1/+	�y�.
(v) If x�k	 ∈ V �k= 1�2� $ $ $ 	 and y�k	→ 0, then lim inf )�x�k	+ y�k		= lim inf )�x�k		

and lim inf *�x�k	+ y�k		= lim inf *�x�k		.
Proof. (i) By using the spectral decomposition of x =∑(i�x	ei, we have �x� c� =∑
(i�x	�ei� c�. Because c� ei ∈K and �e� c� = �e� c2� = �c� c� = �c�2, we have �ei� c� ≥ 0

and hence �x� c� ≤)�x	
∑�ei� c� =)�x	�∑ ei� c� =)�x	�e� c� =)�x	�c�2.

(ii) We have �x� y� = �x � y� e� ≤)�x � y	�e�2 from Item (i).
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(iii) The second inequality follows from �c�2 = �c� e� ≤ �c��e�. To see the first in-
equality, suppose there is a sequence of nonzero idempotents c�k	→ 0. Assuming x�k	 �=
c�k	/�c�k	� → x and taking the limit in c�k	 � x�k	 = x�k	, we see that 0 � x = x. This is a
contradiction because x has unit norm.
(iv) Let x =∑(i�x	ei be the spectral decomposition of x. By considering the spectral

decomposition of x+y, we see that )�x+y	= �x+ y� c�/�c�2 = �x� c�/�c�2+�y� c�/�c�2
for some primitive idempotent c. The first term �x� c�/�c�2 is less than or equal to )�x	
from Item (i). The second term is less than or equal to �1/+	�y� in view of Cauchy-
Schwarz inequality and Item (iii). It follows that )�x+ y	 ≤ )�x	+ �1/+	�y�. Similarly,
)�x	 ≤ )�x + y	 + �1/+	�y�. Now the first part of Item (iv) follows. The second part
follows from the first part and the observation )�−x	=−*�x	.
(v) is an easy consequence of Item (iv). �

Remark 2.1. (i) While the above proof of item (iv) is elementary, the inequalities in (iv)
are not new. As noted by a referee, they follow from a result of Gårding ([9, Theorem 2.1])
on hyperbolic polynomials.
(ii) Item (iv) shows that ) is a continuous function. (This also follows from the fact that

eigenvalues are continuous functions of the argument.)
Example 2.1. Consider Rn with the (usual) inner product and Jordan product defined

respectively by

�x� y� =
n∑

i=1
xiyi and x � y = x ∗ y�

where xi denotes the ith component of x, etc., and x∗y denotes the componentwise product
of vectors x and y. Then Rn is a Euclidean Jordan algebra with Rn

+ as its cone of squares.
In this setting, for x� y ∈Rn,

x � y �= x− �x− y	+ =min�x� y� and x � y �= y+ �x− y	+ =max�x� y�

Example 2.2. Let � n be the set of all n× n real symmetric matrices with the inner

and Jordan product given by

�X�Y � �= trace�XY 	 and X � Y �= 1
2
�XY +YX	


In this setting, the cone of squares � n
+ is the set of all positive semidefinite matrices in

� n. The identity matrix is the unit element. The set �E1�E2� $ $ $ �En� is a Jordan frame in
� n where Ei is the diagonal matrix with 1 in the �i� i	-slot and zeros elsewhere. Note that
the rank of � n is n. Given any X ∈� n, there exists an orthogonal matrix U with columns
u1� u2� $ $ $ � un and a real diagonal matrix D = diag�(1�(2� $ $ $ � (n	 such that X =UDUT .
Clearly,

X = (1u1u
T
1 + · · ·+(nunu

T
n

is the spectral decomposition of X; In particular, �u1u
T
1 � u2u

T
2 � $ $ $ � unu

T
n � is a Jordan frame.

Note that we may think of Rn (of Example 2.1) as the product of n copies of � 1.
Example 2.3. Consider Rn �n > 1	 where any element x is written as

x=
[
x0

x̄

]
�

with x0 ∈ R and x̄ ∈ Rn−1. The inner product in Rn is the usual inner product. The Jordan
product x � y in Rn is defined by

x � y =
[
x0

x̄

]
�
[
y0

ȳ

]
�=
[ �x� y�
x0ȳ+ y0x̄

]





Tao and Gowda: P-Properties for Nonlinear Transformations
990 Mathematics of Operations Research 30(4), pp. 985–1004, © 2005 INFORMS

We denote this Euclidean Jordan algebra �Rn��� �·� ·�	 by �n. In this algebra, the cone of
squares, denoted by �n

+, is called the Lorentz cone (or the second-order cone). It is given by

�n
+ = �x� �x̄� ≤ x0�


The unit element in �n is e= [ 10 ]. We note the spectral decomposition of any x with x̄ �= 0:
x= (1e1+(2e2�

where
(1 �= x0+�x̄�� (2 �= x0−�x̄��

and

e1 �=
1
2

 1

x̄

�x̄�

 and e2 �=
1
2

 1

− x̄

�x̄�

 


In a Euclidean Jordan algebra V , for a given x ∈ V , we define the corresponding Lyapunov
transformation Lx� V → V by

Lx�z	= x � z

(Traditionally, the notation L�x	 has been used to denote the Lyapunov transformation;
see Faraut and Korányi [6]. In this paper, we reserve the notation Lx for the Lyapunov
transformation and write L�x	 to denote the image of an element x ∈ V under a linear
transformation L� V → V . We also note that our previous notation used to describe the
Lyapunov transformation LA defined in the introduction is a commonly used notation in
various literature; it differs slightly from the above.)
We say that elements x and y operator commute if Lx and Ly commute, i.e.,

LxLy = LyLx


It is known that x and y operator commute if and only if x and y have their spectral decom-
positions with respect to a common Jordan frame (Faraut and Korányi [6, Lemma X.2.2] or
Schmieta and Alizadeh [19, Theorem 27]). In the case of � n, matrices X and Y operator
commute if and only if XY = YX. In the case of �n, vectors x and y (see Example 2.3)
operator commute if and only if either ȳ is a multiple of x̄ or x̄ is a multiple of ȳ.
We recall the following propositions from Gowda et al. [14].

Proposition 2.2. For x� y ∈ V , the following conditions are equivalent:
(i) x � y = 0.
(ii) x≥ 0, y ≥ 0, and �x� y� = 0.
(iii) x≥ 0, y ≥ 0, and x � y = 0.

In each case, elements x and y operator commute.

Proposition 2.3. For x, y ∈ V , consider the following statements:
(i) x and y operator commute, and x � y ≤ 0.
(ii) x � y ≤ 0.
(iii) x � y ≤ 0≤ x � y.
(iv) �x� y� ≤ 0.
Then (i)⇒ (ii)⇒ (iii)⇒ (iv).

The Peirce decomposition. Fix a Jordan frame �e1� e2� $ $ $ � er� in a Euclidean Jordan
algebra V . For i� j ∈ �1�2� $ $ $ � r�, define the eigenspaces

Vii �= �x ∈ V � x � ei = x�=Rei
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and when i �= j ,
Vij �=

{
x ∈ V � x � ei = 1

2x= x � ej
}



Then we have the following theorem.

Theorem 2.2 (Faraut and Korányi [6], Theorem IV.2.1). The space V is the orthog-
onal direct sum of spaces Vij �i≤ j	. Furthermore,

Vij �Vij ⊂ Vii+Vjj

Vij �Vjk ⊂ Vik if i �= k

Vij �Vkl = �0� if �i� j�∩ �k� l�=�

Thus, given any Jordan frame �e1� e2� $ $ $ � er�, we can write any element x ∈ V as

x=
r∑

i=1
xiei+

∑
i<j

xij �

where xi ∈R and xij ∈ Vij .

Simple Jordan algebras and the structure theorem. A Euclidean Jordan algebra is
said to be simple if it is not the direct sum of two Euclidean Jordan algebras. The classifica-
tion theorem (Faraut and Korányi [6, Chapter V]) says that every simple Euclidean Jordan
algebra is isomorphic to one of the following:
(1) The algebra � n of n× n real symmetric matrices (Example 2.2).
(2) The algebra �n (Example 2.3).
(3) The algebra �n of all n×n complex Hermitian matrices with trace inner product and

X � Y = 1
2 �XY +YX	.

(4) The algebra �n of all n× n quaternion Hermitian matrices with trace inner product
and X � Y = 1

2 �XY +YX	.
(5) The algebra �3 of all 3×3 octonion Hermitian matrices with trace inner product and

X � Y = 1
2 �XY +YX	.

The following result characterizes all Euclidean Jordan algebras.

Theorem 2.3 (Faraut and Korányi [6], Propositions III.4.4 and III.4.5, and The-
orem V.3.7). Any Euclidean Jordan algebra is, in a unique way, a direct sum of simple
Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan
algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple
Euclidean Jordan algebras.

2.2. Complementarity problems. Given a Euclidean Jordan algebra V with the asso-
ciated cone K, a continuous transformation F � V → V , and a q ∈ V , we define the comple-
mentarity problem CP�F � q	 as follows: Find x ∈ V such that

x ∈K� F �x	+ q ∈K and �x�F �x	+ q� = 0

In the above condition, in view of Proposition 2.2, we can replace �x�F �x	+ q� = 0 by
x � �F �x	+q	= 0. Furthermore, finding a solution to CP�F � q	 is equivalent to solving the
equation

x � �F �x	+ q		= 0

We say that F � V → V has the globally uniquely solvable (GUS) property if for all

q ∈ V , CP�F � q	 has a unique solution.
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3. Some monotone and P-properties. We recall that for any x ∈ V , (i�x	 �i =
1�2� $ $ $ � r	 denote the eigenvalues of x and

)�x	 �= max
1≤i≤r

(i�x	


Definition 3.1. Let V be an Euclidean Jordan algebra. A continuous transformation
F � V → V is said to be
(i) monotone if �x− y�F �x	− F �y	� ≥ 0 ∀x� y ∈ V ;
(ii) strictly monotone if �x− y�F �x	− F �y	�> 0 ∀x �= y ∈ V ;
(iii) strongly monotone if there is an 3> 0 such that

�x− y�F �x	− F �y	� ≥ 3�x− y�2 ∀x� y ∈ V 

It is said to have the
(a) order P-property if �x− y	� �F �x	−F �y		≤ 0≤ �x− y	� �F �x	−F �y		⇒ x= y;
(b) Jordan P-property if �x− y	 � �F �x	− F �y		≤ 0⇒ x= y, or equivalently,

x �= y ⇒ )4�x− y	 � �F �x	− F �y		5 > 06

(c) P-property if

x− y and F �x	− F �y	 operator commute

�x− y	 � �F �x	− F �y		≤ 0

}
⇒ x= y6

(d) uniform Jordan P-property if there is an 3 > 0 such that for all x and y in V ,
we have

)4�x− y	 � �F �x	− F �y		5≥ 3�x− y�26
(e) uniform P-property if there is an 3 > 0 such that for all x and y in V with x− y

operator commuting with F �x	− F �y	, we have

)4�x− y	 � �F �x	− F �y		5≥ 3�x− y�26
(f) P0-property if F �x	+ �x has the P-property for all �> 0.
Remark 3.1. (i) It is easily seen that when V = Rn with componentwise product (see

Example 2.1), order P= Jordan P= P and uniform Jordan P= uniform P.
(ii) When F is linear, (i) strong monotonicity and strict monotonicity concepts coincide,

and (ii) uniform (Jordan) P and (Jordan) P properties coincide. In this setting, the above
properties have been introduced in Gowda et al. [14].
(iii) Consider the Lyapunov and Stein transformations LA and SA defined on � n (see

Introduction). It is known that LA has the P-property if and only if A has all eigenvalues in
the open right-half plane and SA has the P-property if and only if all eigenvalues of A lie
in the open unit disk (Gowda and Song [11] and Gowda and Parthasarathy [10]). Because

�LA+ �I	�X	= AX +XAT + �X = LA+ �
2 I
�X	�

and
�SA+ �I	�X	=X−AXAT + �X = �1+ �	S 1√

1+� A
�X	�

we see that LA has the P0-property if and only if all eigenvalues of A lie in the closed right
half-plane, and SA has the P0-property if and only if all eigenvalues of A lie in the closed
unit disk.
In what follows, we establish various interconnections between the above concepts.

Proposition 3.1. For a continuous F � V → V , the following implications hold:

Strong monotonicity⇒ strict monotonicity⇒Order P⇒ Jordan P⇒ P⇒ P0�

strong monotonicity⇒ uniform Jordan P⇒ uniform P⇒ P� and monotonicity⇒ P0
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Proof. The implications strong monotonicity ⇒ strict monotonicity� uniform Jordan P
⇒ Jordan P, and Jordan P ⇒ P are obvious. That strict monotonicity implies order P
follows immediately from the implication

x � y ≤ 0≤ x � y ⇒ �x� y� ≤ 06
see Proposition 2.3. That order P ⇒ Jordan P follows from the implication

x � y ≤ 0 ⇒ x � y ≤ 0≤ x � y6
see Proposition 2.3.
To see that P⇒ P0, assume that F has the P-property, let �> 0, G�x	 �= F �x	+�x, and

suppose �x− y	 � �G�x	−G�y		≤ 0, where the objects in this product operator commute.
We have

�x− y	 � �G�x	−G�y		≤ 0⇒ �x− y	 � 4�F �x	− F �y		+ ��x− y	5≤ 0
⇒ �x− y	 � �F �x	− F �y		+ ��x− y	2 ≤ 0
⇒ �x− y	 � �F �x	− F �y		≤−��x− y	2 ≤ 0


As x − y and F �x	− F �y	 operator commute and F has the P-property, we have x = y.
Thus F has the P0-property.
Now to prove the second set of implications, suppose that F is strongly monotone so that

for some positive 3, �x− y�F �x	− F �y	� ≥ 3�x− y�2 for all x� y ∈ V . Using Item (b) in
Proposition 2.1, we have

3�x− y�2 ≤)4�x− y	 � �F �x	− F �y		5�e�2

This implies that F has the uniform Jordan P-property. That uniform P implies P follows
from the fact that x≤ 0 if and only if )�x	≤ 0.
Finally, to show that monotonicity implies P0, let F be monotone and G�x	= F �x	+�x

for �> 0 and suppose that �x−y	��G�x	−G�y		≤ 0. Because �x−y	��G�x	−G�y		≤ 0
⇒�x− y�G�x	−G�y	� ≤ 0 (by Proposition 2.1) and

�x− y�G�x	−G�y	� = �x− y�F �x	− F �y	+ ��x− y	�
= �x− y�F �x	− F �y	�+ ��x− y�2�

we have that �x − y�F �x	− F �y	� ≤ −��x − y�2 ≤ 0. Because F is monotone, we have
x= y. Thus, G has the Jordan P-property, which implies the P-property. Hence, F has the
P0-property. �

Our next result deals with complementarity problems. When F = L is linear with the
P-property, one can use a result of Karamardian [16] to show that for all q ∈ V , CP�F � q	 has
a solution (Gowda et al. [14, Theorem 12]). In the (general) nonlinear case, Karamardian’s
result cannot be used. In what follows, we use degree-theoretic arguments to show that under
a certain R0-type condition, every P0 complementarity problem has a solution. The usage of
degree theory to prove existence results is standard; see, for example, §2.6 in Facchinei and
Pang [5]. Given a bounded open set 8 in V (which is isomorphic to some Rk), a continuous
function f � �8→ V such that 0 �∈ f �:8	, we can define the (topological) degree of f with
respect to 8 at 0; see Lloyd [17]. We denote this degree by deg�f �8�0	.

Theorem 3.1. Suppose that the continuous transformation F � V → V has the
P0-property, and for any ;> 0 in R, the set

�x� x solves CP�F � q	� �q� ≤;� (3.1)

is bounded. Then for any q ∈ V , CP�F � q	 has a nonempty bounded solution set.
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Proof. We fix q ∈ V and define q1 = q+ F �0	. Consider the function

<�x	 �= x � 4F �x	+ q5


Define the homotopy

H1�x� t	= x � 4F �x	− F �0	+ tq15� t ∈ 40�15

We have H1�x�0	= x � 4F �x	− F �0	5 and H1�x�1	=<�x	 for all x. Because F satisfies
(3.1), the zero sets of H1�·� t	 (as t varies over 40�15) are uniformly bounded. Now let 8
be a bounded open set in V containing all these zero sets. Because 0 is a zero of H1�x�0	,
we see that 0 ∈8. Then, by the homotopy invariance of degree (Lloyd [17, Theorem 2.1.2]),

deg�H1�·�0	�8�0	= deg�H1�·�1	�8�0	= deg�<�8�0	


As 0 ∈8, 0�H1�:8�0	 and so dist�0�H1�:8�0		 > 0. Let

?��x	 �= x � 4F �x	+ �x− F �0	5

for any �> 0. Because �u� v−u� z� ≤ �v− z� by the nonexpansiveness of the projection
map, we choose a small �> 0 such that

sup
x∈�8
�?��x	−H1�x�0	�< dist�0�H1�:8�0		


We have deg�?��8�0	= deg�H1�·�0	�8�0	 by Lloyd [17, Theorem 2.1.2]. Thus

deg�?��8�0	= deg�<�8�0	


Now define the homotopy

H2�x� t	= x � 4t�F �x	− F �0	+ �x	+ �1− t	x5� t ∈ 40�15

We have H2�x�0	= x � x= x and H2�x�1	=?��x	 for all x.
We claim that 0�H2�:8� t	 for any t ∈ 40�15. If possible, suppose H2�x� t	= 0 for some

t ∈ 40�15 and x ∈ :8. If t = 0, then H2�x�0	= 0 implies that x= 0, which is a contradiction
(because 0 ∈8). If t �= 0, then from H2�x� t	= 0, we have

x≥0� �F �x	−F �0	+�x	+
(
1
t
−1
)
x≥0 and x�

[
�F �x	−F �0	+�x	+

(
1
t
−1
)
x

]
=0


Now because F has the P0-property, the function G�x	 �= F �x	+ ��+ 1/t − 1	x has the
P-property. Now x and G�x	−G�0	 operator commute (see Proposition 2.2) and �x− 0	 �
�G�x	−G�0		= 0. Hence x= 0, which leads to a contradiction. Hence the claim.
Now by the homotopy invariance of degree, we have

deg�H2�·�0	�8�0	= deg�H2�·�1	�8�0	= deg�?��8�0	


Because deg�H2�·�0	�8�0	= 1, we have deg�<�8�0	= deg�?��8�0	= 1 which implies
that the equation <�x	= 0 has a solution (Lloyd [17, Theorem 2.1.1]). This solution solves
CP�F �q	. By the imposed condition (3.1), CP�F � q	 has a bounded solution set. �

In the setting of linear complementarity problems, a matrix M is said to have the
R0-property if the homogeneous problem LCP�M�0	 has only the trivial solution. This con-
dition is equivalent to saying that for any ;> 0, the set �x� x solves LCP�M�q	��q� ≤;�
is a bounded set. Our condition (3.1) is a nonlinear analog of this boundedness assumption.
In Definition 3.2, we formulate an R0 condition on F that implies (3.1). We recall that

)�z	= max
1≤i≤r

(i�z	 and *�z	= min
1≤i≤r

(i�z	
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Definition 3.2. A continuous transformation F � V → V is said to have the R0-property
if the following condition holds: For any sequence x�k	 in V with

�x�k	�→ � lim inf
*�x�k		

�x�k	� ≥ 0 and lim inf
*�F �x�k			

�x�k	� ≥ 0� (3.2)

we have lim inf )��x�k	 � F �x�k			/�x�k	�2	 > 0.
The above condition is a variation of a condition used in Chen and Harker [1] for non-

linear complementarity problems; see also §5 in Gowda and Tawhid [15]. In the case of
linear F , it is easily seen that the above condition reduces to the statement that CP�L�0	
has only one solution, namely, zero.
In what follows, we describe two conditions under which the R0-property holds.

Proposition 3.2. Suppose F satisfies either the uniform Jordan P-property or the fol-
lowing: For any sequence x�k	 in V with

�x�k	�→ � lim inf
*�x�k		

�x�k	� ≥ 0 and lim inf
*�F �x�k			

�x�k	� ≥ 0�

we have lim inf �x�k	� F �x�k		�/�x�k	�2 > 0. Then F has the R0-property.

Proof. Let x�k	 be a sequence in V such that

�x�k	�→ � lim inf
*�x�k		

�x�k	� ≥ 0 and lim inf
*�F �x�k			

�x�k	� ≥ 0


Now suppose that F has the uniform Jordan P-property. Then for all large k we have

0<3≤)

(
�x�k	− 0	 � �F �x�k		− F �0		

�x�k	�2
)
=)

(
x�k	 � F �x�k		
�x�k	�2 − x�k	

�x�k	� �
F �0	
�x�k	�

)



Letting k→ and using Proposition 2.1, we have

lim inf )
(
x�k	 � F �x�k		
�x�k	�2

)
> 0�

proving the R0-property. If F satisfies the other condition, then the R0-property follows
from Item �b	 in Proposition 2.1. �

Remark 3.2. It is not clear if uniform P-property implies the R0-property.

Proposition 3.3. If F has the R0-property, then for any ;> 0, the set

�x� x solves CP�F � q	� �q� ≤;�

is bounded.

Proof. Suppose the described set is not bounded. Then there exists a sequence q�k	

with �q�k	� ≤; and a sequence x�k	 with �x�k	�→ such that
x�k	 ≥ 0� y�k	 = F �x�k		+ q�k	 ≥ 0 and x�k	 � y�k	 = 0� ∀k


Because x�k	 ≥ 0, we have *�x�k		≥ 0 for all k and hence lim inf *�x�k		/�x�k	� ≥ 0. Also,
because y�k	 ≥ 0 and q�k	 is bounded, we have from Proposition 2.1,

lim inf
*�F �x�k			

�x�k	� = lim inf *�F �x
�k		+ q�k		

�x�k	� = lim inf *�y
�k		

�x�k	� ≥ 0


By the imposed R0-condition, we have

lim inf )
(
x�k	 � F �x�k		
�x�k	�2

)
> 0
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However, �x�k	 � F �x�k			/�x�k	�2 = �x�k	 � y�k		/�x�k	�2 − �x�k	 � q�k		/�x�k	�2 → 0 as
x�k	 � y�k	 = 0 and q�k	 is bounded. From Proposition 2.1, this yields

lim inf )
(
x�k	 � F �x�k		
�x�k	�2

)
= 0�

which is a contradiction. Hence the given set is bounded. �

Corollary 3.1. Suppose F has P0 and R0 properties. Then for all q ∈ V , the solution
set of CP�F � q	 is nonempty and bounded. Moreover, there exists an x̄ ∈ V such that

x̄ > 0 and F �x̄	 > 0


Proof. In view of the previous proposition and Theorem 3.1, CP�F � q	 has a nonempty
bounded solution set for all q. In particular, CP�F �−e	 has a solution, say x. Then x ≥ 0
and F �x	− e≥ 0, yielding F �x	≥ e > 0. By continuity, there exists x̄ ∈ V such that x̄ > 0
and F �x̄	 > 0. �

Remark 3.3. Suppose F = L is linear. The above corollary implies that when L has the
P-property, there exists x̄ ∈ V such that x̄ > 0 and F �x̄	 > 0.
It is interesting to note that the converse of the above statement holds in the case of

Lyapunov and Stein transformations LA and SA defined on � n; see Gowda and Song [11]
and Gowda and Parthasarathy [10].

4. A necessary condition for the GUS-property. Recall that a continuous transforma-
tion F � V → V is said to have the GUS-property if for all q ∈ V , CP�F � q	 has a unique
solution. In what follows, we will provide a necessary condition for the GUS property. To
motivate the next result, consider the linear case. In this setting (see Gowda et al. [14]),

GUS⇒ P


In the context of Rn with componentwise product, the diagonal of a P-matrix has positive
entries. In the context of V =� n, if a linear transformation L has the GUS-property, then
the �i� i	 entry of L�Ei	 is nonnegative for all i = 1�2$ $ $ � n where Ei is an n× n matrix
with one in the �i� i	 slot and zeros elsewhere; see Theorem 8 in Gowda and Song [11]
and its corrected version in Gowda and Song [12]. This statement is false if L has only
the P-property. (To see an example, let A be a 2× 2 real positive stable matrix with �1�1	-
entry negative. Then the Lyapunov transformation LA (see Introduction) has the P-property,
yet �LA�E1		11 is negative.) The above result on � n was used to characterize Lyapunov
transformations LA that have the GUS-property: LA has the GUS-property on � n if and
only if A is positive stable and positive semidefinite (Gowda and Song [11, Theorem 9]).
The following result is a generalization of the abovementioned results for a nonlinear

transformation on a Euclidean Jordan algebra.

Theorem 4.1. If F � V �→ V has the GUS-property, then for any primitive idempotent
c ∈ V , �F �c	− F �0	� c� ≥ 0.
We begin with two lemmas.

Lemma 4.1. Let V be a Euclidean Jordan algebra with rank r > 1. Let a Jordan frame
�e1� $ $ $ � er� and an element p12 ∈ V12 be given. Then for all large positive (

e1+(e2+p12 ≥ 0

Proof. For ( ∈ R, let p = e1 + (e2 + p12. Note that p ≥ 0 if and only if �x�x � p� =

�x2� p� ≥ 0 for all x ∈ V . Consider any x ∈ V with the corresponding Peirce decomposition:
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x=∑r
i=1 xiei+

∑
i<j xij . Using the properties of Vij (see Theorem 2.2), we have

x �p =
( r∑

i=1
xiei+

∑
i<j

xij

)
� �e1+(e2+p12	

= x1e1+
∑
1<j

1
2
x1j +(

(
x2e2+

1
2
x12+

∑
2<j

1
2
x2j

)
+ 1
2
x1p12+

1
2
x2p12

+p12 � x12+
∑
2<j

p12 � x1j +
∑
2<j

p12 � x2j 


Once again using the properties of Vij (particularly the orthogonality of these spaces),
we have

�x�x �p� = x21�e1�2+
1
2

∑
1<j

�x1j�2+(

(
x22�e2�2+

1
2
�x12�2+

1
2

∑
2<j

�x2j�2
)

+ 1
2
x1�p12� x12�+

1
2
x2�p12� x12�+

∑
2<j

�p12 � x1j � x2j�

+∑
2<j

�p12 � x2j � x1j�+ x1�e1� p12 � x12�+ x2�e2� p12 � x12�
 (4.1)

Because �e1� p12 � x12� = �e1 �p12� x12� = 1
2�p12� x12�� �e2� p12 � x12� = �e2 �p12� x12� =

1
2�p12� x12�� and �p12 � x2j � x1j� = �p12 � x1j � x2j�, we have

�x�x �p� = x21�e1�2+ x1�p12� x12�+ x2�p12� x12�+(x22�e2�2+
1
2

∑
1<j

�x1j�2

+ (

2
�x12�2+

(

2

∑
2<j

�x2j�2+
∑
2<j

�p12 � x1j � x2j�+
∑
2<j

�p12 � x1j � x2j�

≥
[
x21�e1�2− �x1��p12��x12�+

(− 2
2
�x12�2

]
+
[
(x22�e2�2− �x2��p12��x12�+�x12�2

]
+ 1
2

[∑
2<j

(�x1j�2− 4E�x1j��x2j�+(�x2j�2
)]

 (4.2)

In the derivation of the above, we have used the following inequalities:

x1�p12� x12� ≥ −�x1��p12��x12��
x2�p12� x12� ≥ −�x2��p12��x12��

�p1j � x1j � x2j� = �Lp1j
x1j � x2j� ≥−�Lp1j

��x1j��x2j�
= −E�x1j��x2j��

where E= �Lp1j
� is the norm of the bounded linear transformation Lp1j

.
The three terms on the right-hand side of (4.2) involve quadratic expressions; they are

nonnegative if �p12�2 − 2�(− 2	�e1�2 ≤ 0, �p12�2 − 4(�e2�2 ≤ 0 and 16E2 − 4( ≤ 0. So
when

(≥max
{ �p12�2
2�e1�2

+ 2� �p12�
2

4�e2�2
�4E2

}
�

we see that �x2� p� ≥ 0 for all x ∈ V . In this situation, p≥ 0. �



Tao and Gowda: P-Properties for Nonlinear Transformations
998 Mathematics of Operations Research 30(4), pp. 985–1004, © 2005 INFORMS

Lemma 4.2. Let V be a Euclidean Jordan algebra with rank r > 1. Let a Jordan frame
�e1� $ $ $ � er� and elements p1j ∈ V1j �1< j	 be given. Then for all large positive ( we have

e1+(
r∑

i=2
ei+

∑
1<j

p1j ≥ 0


Proof. By Lemma 4.1, we can find a positive number (̂ such that

e1+ (̂ei+1+ �r − 1	p1i+1 ≥ 0� ∀ i= 1� $ $ $ � r − 1

Adding these inequalities, we get

�r − 1	e1+ (̂
r∑

i=2
ei+ �r − 1	∑

1<j

p1j ≥ 0
 (4.3)

This yields

e1+
(̂

r − 1
r∑

i=2
ei+

∑
1<j

p1j ≥ 0


Putting (= (̂/�r − 1	, we get the desired result. �

Proof of Theorem 4.1. Let c be a primitive idempotent in V and suppose �F �c	−
F �0	� c� < 0. First assume that r > 1. Corresponding to e1 �= c, there exists a Jordan
frame �e1� e2$ $ $ � er� in V , the existence of which can be seen by considering the spectral
decomposition of e− e1. Now consider the Peirce decomposition

F �e1	− F �0	= +1e1+ +2e2+ · · ·+ +rer +
∑
i<j

+ij �

where +1 = �F �e1	− F �0	� e1�/�e1�2 < 0. Define
q =−+1e1+(�e2+ · · ·+ er	−

∑
1<j

+1j 


Then we have F �e1	−F �0	+q =∑r
i=2�(++i	ei+

∑
2≤i<j +ij . Now consider the eigenspace

V�e2�e3� $ $ $ �er �
= �x ∈ V � x � �e2+ e3+ · · ·+ er	= x�


It is known that this space is actually a Euclidean Jordan subalgebra of V (Faraut and
Korányi [6, p. 72]). Also, every ei and +ij for 2≤ i < j belongs to this algebra; same goes
for
∑r

i=2 +iei +
∑
2≤i<j +ij . Because e2+ e3+ · · · + er is the unit element in this subalgebra

(hence, belongs to the interior of the symmetric cone in this subalgebra), we can take a
large ( so that F �e1	−F �0	+q ≥ 0. In view of Lemma 4.1, we can also assume that q ≥ 0.
However, then it is easy to verify that e1 and 0 are two solutions of CP�F �−F �0	+ q	,
contradicting the GUS-property of F . Hence the result.
When r = 1, V is isomorphic to R. In this case, let F �e1	− F �0	= +1e1. Put q =−+1e1

and proceed as before. �

Corollary 4.1. If L� V → V is linear with the GUS-property, then �L�c	� c� ≥ 0 for
all primitive idempotents. In the case of V = �n, this necessary condition reduces to:
�L�z	� z� ≥ 0 for all z on the boundary of �n

+.

Proof. The first statement follows immediately from Theorem 4.1. Now suppose that
V = �n. In this case, every nonzero element z on the boundary of �n

+ is a multiple of
c �= 1

2

[ 1
u

]
for some unit vector u ∈R�n−1	. Now c is a primitive idempotent, so �L�c	� c� ≥ 0.

From this we get �L�z	� z� ≥ 0. �



Tao and Gowda: P-Properties for Nonlinear Transformations
Mathematics of Operations Research 30(4), pp. 985–1004, © 2005 INFORMS 999

5. The relaxation transformation. In this section, we apply the ideas of the previous
sections to study a transformation F = R�� V → V that arises from a vector function
�� Rn→Rn.
Suppose we are given a Jordan frame �e1� $ $ $ � er� in V and a continuous function

�� Rr → Rr . We define R�� V → V as follows. For any x ∈ V , write the Peirce decompo-
sition

x=
r∑
1

xiei+
∑
i<j

xij 


Then

R��x	 �=
r∑
1

x̃iei+
∑
i<j

xij �

where
4x̃1� x̃2� $ $ $ � x̃r 5

T =�
(
4x1� x2� $ $ $ � xr 5

T
)



This is a generalization of a concept introduced in Gowda and Song [13] for V =� n and
�=A ∈Rn×n. Our objective in this section is to study some interconnections between prop-
erties of � and the properties of R�. Such a study has found to be quite interesting and
useful in the context of matrix-based linear transformations on V =� n, particularly the Lya-
punov and Stein transformations LA and SA; see Introduction. It should be noted that while
the definition of R� depends on a specific Jordan frame, the results below (Proposition 5.1
and Theorem 5.1) do not.

Proposition 5.1. The following are equivalent:
(i) � is a P-function.
(ii) R� has the order P-property.
(iii) R� has the Jordan P-property.
(iv) R� has the P-property.

Proof. (i)⇒ (ii): Assume that � is a P-function and let
�u− v	� �R��u	−R��v		≤ 0≤ �u− v	� �R��u	−R��v		


Let

u=
r∑
1

uiei+
∑
i<j

uij and v=
r∑
1

viei+
∑
i<j

vij 


We have

R��u	=
r∑
1

ũiei+
∑
i<j

uij and R��v	=
r∑
1

ṽiei+
∑
i<j

vij 


Letting xi = ui− vi, yi = ũi− ṽi and xij = uij − vij , we have

0≥ �u− v	� �R��u	−R��v		 =
r∑
1

xiei+
∑
i<j

xij −
[ r∑
1

�xi− yi	ei

]+
=

r∑
1

xiei+
∑
i<j

xij −
r∑
1

�xi− yi	
+ei
 (5.1)

Taking the inner product of the above quantity with ei and using Theorem 2.2, we get

xi− �xi− yi	
+ ≤ 0 ⇒ min�xi� yi�≤ 0
 (5.2)

Similarly,

0≤ �u− v	� �R��u	−R��v		=
r∑
1

yiei+
∑
i<j

xij +
r∑
1

�xi− yi	
+ei (5.3)



Tao and Gowda: P-Properties for Nonlinear Transformations
1000 Mathematics of Operations Research 30(4), pp. 985–1004, © 2005 INFORMS

yields

yi+ �xi− yi	
+ ≥ 0 ⇒ max�xi� yi�≥ 0
 (5.4)

From min�xi� yi�≤ 0 and max�xi� yi�≥ 0, we have xiyi ≤ 0. Because this is true for all
i= 1�2� $ $ $ � r we haveu1− v1





ur − vr

 ∗
�

u1




ur

−�

 v1




vr


≤ 0
 (5.5)

Because � is a P-function, we have ui = vi, hence ũi = ṽi for all i= 1�2� $ $ $ � r .
Now putting ui = vi� ũi = ṽi, that is xi = 0 and yi = 0 in (5.1) and (5.3), we get∑

i<j

xij ≤ 0 and
∑
i<j

xij ≥ 0


Thus we have
∑

i<j xij = 0 and, hence, u= v. So R��x	 has the order P-property.
The implications (ii)⇒ (iii) and (iii)⇒ (iv) follow from Proposition 3.1.
To see (iv)⇒ (i): Letu1− v1





ur − vr

 ∗
�

u1




ur

−�

 v1




vr


≤ 0� (5.6)

and define u− v=∑r
i=1�ui− vi	ei and R��u	−R��v	=

∑r
i=1�ũi− ṽi	ei. We then have

�u− v	 � �R��u	−R��v		=
r∑

i=1
�ui− vi	�ũi− ṽi	ei


From (5.6) it follows that
�ui− vi	�ũi− ṽi	≤ 0�

and so we have �u− v	 � �R��u	−R��v		≤ 0. Because u− v and R��u	−R��v	 operator
commute (as they share the same Jordan frame), by condition (iv), u = v. Thus, � is a
P-function. �

It is easy to verify that the monotonicity properties of � are carried over to R�. However,
it is not clear if the uniform P-properties are carried over. Yet, as far as the complementarity
problems are concerned, we have the following proposition.

Proposition 5.2. Suppose that �� Rn→ Rn has the P0- and the R0-properties. Then
R� satisfies condition (3.1) and has the P0-property. Hence, for every q ∈ V , CP�R��q	
has a solution.

Proof. Suppose that condition (3.1) fails for F =R�. Then there exists a sequence q
�k	

with �q�k	� ≤; and a sequence �x�k	� with �x�k	�→ such that
x�k	 ≥ 0� y�k	 =R��x

�k		+ q�k	 ≥ 0 and x�k	 � y�k	 = 0� ∀k
 (5.7)

Because u=∑uiei+
∑

i<j uij ≥ 0 implies that ui ≥ 0 for all i= 1�2$ $ $ � r� we have
x
�k	
i ≥ 0 and y

�k	
i ≥ 0

for all i where x�k	 = ∑x
�k	
i ei +

∑
i<j x

�k	
ij and y�k	 = ∑y

�k	
i ei +

∑
i<j y

�k	
ij are the Peirce

decompositions of x�k	 and y�k	. Let

x̂�k	 = [x�k	1 � x
�k	
2 � $ $ $ � x�k	r

]T
�
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and �i denote the ith component of �. Now �x�k	� y�k	� = 0 implies that
r∑
1

x
�k	
i

[
�i�x̂

�k		+ q
�k	
i

]
�ei�2+

∑
i<j

[
�x�k	ij �2+�x�k	ij � q

�k	
ij �
]
= 0


Because the first term in the above expression is nonnegative and q�k	
ij is bounded by �q�k	�

(which is bounded by ;), we see that the sequence �x�k	ij � is bounded for every pair �i� j	
with i < j . From �x�k	�→ , we conclude that �x̂�k	�2 (the 2-norm of x̂�k	) goes to  . Be-
cause x�k	i and y�k	i are nonnegative for all i= 1 to r , we have lim inf�mini x�k	i /�x̂�k	�2	≥ 0
and lim inf�mini �i�x̂

�k		/�x̂�k	�2	≥ 0 where we have used the boundedness of q�k	. By the
R0-property of � (as defined on the algebra R

r of Example 1), we have

lim inf
maxi x

�k	
i �i�x̂

�k		

�x̂�k	�22
> 0


We may assume by going through a subsequence, if necessary, that for some index i, say
i= 1, we have

lim
x
�k	
1 �1�x̂

�k		

�x̂�k	�22
> 0


Now using the properties of Vij , we see that

e1 � x�k	 = x
�k	
1 +

1
2

∑
1<j

x
�k	
1j �

so

0= �e1� x�k	 � y�k	� = �e1 � x�k	� y�k	� = x
�k	
1 ��1�x̂

�k		+ q
�k	
1 	+ 1

2

∑
1<j

〈
x
�k	
1j � x

�k	
1j + q

�k	
1j

〉



Dividing this expression by �x̂�k	�22 and taking the limit, we see that lim x
�k	
1 �1�x̂

�k		/

�x̂�k	�22 = 0 which is a contradiction. This shows that the condition (3.1) holds.
We now show that R� has the P0-property. For any � > 0, let G�u	 = R��u	 + �u,

G�v	=R��v	+ �v, and suppose that

�u− v	 � �G�u	−G�v		≤ 0

Upon writing R��u	=

∑r
1 ũiei +

∑
i<j uij , R��v	=

∑r
1 ṽiei +

∑
i<j vij , xi = ui − vi and yi =

ũi− ṽi and xij = uij − vij , we have

��u−v	��G�u	−G�v		�ei�≤0 ⇒ xi�yi+�xi	�ei�2+
1+�
2

∑
i<j

�xij�2≤0� i=1�2�$ $ $ �r


Thus we have
xi�yi+ �xi	≤ 0� i= 1�2� $ $ $ � r�

which implies that u1− v1





ur − vr

 ∗
�̄

u1




ur

− �̄

 v1




vr


≤ 0�

where

�̄

u1




ur

=�

u1




ur

+ �

u1




ur

 � �̄

 v1




vr

=�

 v1




vr

+ �

 v1




vr

 
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Because � has the P0-property, �̄ is P-function. Hence xi = 0 for all i= 1�2� $ $ $ � r , i.e.,
ui = vi for all i. It follows that

1+ �

2

∑
i<j

�xij�2 ≤ 0� i= 1�2� $ $ $ � r


Thus we have xij = 0, ∀ i < j proving u = v. Therefore R� has the P0-property. Conse-
quently, for all q ∈ V , CP���q	 has a solution by Theorem 3.1. �

Now suppose that ��x	 = Ax where A is an r × r real matrix. We write RA for R�.
From Proposition 5.1, we see that A is a P-matrix if and only if RA has the P-property. The
following question naturally arises: When A is a P-matrix, every LCP�M�q	 for q ∈ Rn

has a unique solution; how about the corresponding RA? Will it have the GUS-property?
Below, we will provide an answer to this question in the negative.
We recall that a matrix A is copositive on Rn if �Ax�x� ≥ 0 for all x ∈ Rn

+. In what
follows, E denotes a square matrix with zero diagonal entries and ones elsewhere.

Theorem 5.1. The following statements hold:
(i) When V =�2, RA has the GUS-property if and only if A is a P-matrix.
(ii) If V =�n �n > 2	 and RA has the GUS-property, then A is a P-matrix and A+E

is copositive on R2.
(iii) If V = � n and RA has the GUS-property, then A is a P-matrix and A + E is

copositive on Rn.

Proof. (i) When V =�2, the cone �2+ is polyhedral. In this setting, the P- and GUS-
properties coincide for a linear transformation; see Theorem 23 in Gowda et al. [14]. The
result now follows from Proposition 5.1. (This can also be seen by considering the Jordan
frame �e1� e2� in �n, where e1 = 1

2

[ 1
1

]
, e2 = 1

2

[ 1
−1
]
and showing that P⇒ GUS by using

the definitions.)
(ii) We now suppose V =�n�n > 2	 and RA has the GUS-property. As the P-property

is clear, we verify that A+E is copositive on R2. Consider a Jordan frame �e1� e2� in �n

with respect to which RA is defined. We may write e1 = 1
2

[ 1
u

]
, e2 = 1

2

[ 1
−u
]
where �u� = 1.

Let z1 and z2 be two nonnegative numbers. As n> 2, we can pick a vector v in R
n−1 such

that �u� v� = 0 and �v�2 = z1z2 and define

z �= z1e1+ z2e2+
[
0

v

]



Then

RA�z	=w1e1+w2e2+
[
0

v

]
�

where 4w1�w25
T =A�4z1� z25

T 	. We easily verify that z12 �=
[ 0
v

]
belongs to V12 and z ∈ :�n

+
by direct computation. By Corollary 4.1, we have

0≤ �RA�z	� z� =
z1w1
2
+ z2w2
2
+�z12�2

= 1
2

〈
A

[
z1

z2

]
�

[
z1

z2

]〉
+ z1z2

= 1
2

〈
A

[
z1

z2

]
�

[
z1

z2

]〉
+ 1
2

〈
E

[
z1

z2

]
�

[
z1

z2

]〉

= 1
2

〈
�A+E	

[
z1

z2

]
�

[
z1

z2

]〉

 (5.8)
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Therefore, A+E is copositive on R2.
(iii) Now suppose that V = Sn and RA has the GUS-property. For this case, we modify

the proof presented in Gowda and Song [13].
First we prove the result for the Jordan frame �E1�E2� $ $ $ �En� in Sn, where Ei is the

diagonal matrix with 1 in the �i� i	-slot and zeros elsewhere.
Let 4x1� x2� $ $ $ � xr 5

T be a vector in Rr with
∑r
1 x
2
i = 1, and U be an orthogonal matrix

with this vector in its first column. It is easy to verify that the transformation

R̃A�X	 �=UTRA�UXU
T 	U

has the GUS-property. Because

�R̃AE1�E1� = �UTRA�UE1U
T 	U�E1�

= �RA�UE1U
T 	�UE1U

T ��
and

UE1U
T =


x1
2 x1x2 · · · x1xr

x1x2 x2
2 · · · x2xr






 
 



 
 






x1xr · · · xr−1xr xr
2

 �

we have 〈
�A+E	

[
x1
2





xr
2

]
�

[
x1
2





xr
2

]〉
= �R̃AE1�E1� ≥ 0�

where the last inequality follows from Corollary 4.1. From this we easily deduce the copos-
itivity property of A+E on Rn.
Now consider a general Jordan frame �C1�C2� $ $ $ �Cn� in � n. Define the relaxation

transformation R∗A with respect to this frame: For X =
∑

XiCi+
∑

i<j Xij , we have R
∗
A�X	=∑ #XiCi+

∑
i<j Xij , where

4 #X1� #X2� $ $ $ � #Xr5
T =A

(
4X1�X2� $ $ $ �Xr 5

T
)



Because �C1�C2� $ $ $ �Cn� is a Jordan frame and �
n is a simple Euclidean Jordan algebra,

there exists an automorphism of � n (i.e., an invertible linear transformation G on � n such
that G�x � y	=G�x	 �G�y	 for all x� y ∈� n) taking this Jordan frame to the Jordan frame
�E1�E2� $ $ $ �En� (Faraut and Korányi [6, Theorem IV.2.5]). The automorphisms of �

n are
described by X �→QXQT where Q is an orthogonal matrix (Gowda et al. [14, Example 1.1]).
We conclude that for some orthogonal matrix Q, Ci =QTEiQ for all i= 1�2� $ $ $ � n. (This
can also be seen as follows: Because the matrices in �C1�C2� $ $ $ �Cn� commute pairwise,
they are simultaneously diagonalizable by means of a (single) orthogonal matrix Q. Writing
Ci =QDiQ

T where Di is a diagonal matrix, and using the idempotent property of Ci, we see
that every diagonal entry in Di is either zero or one. Because the sum of Cis is the identity
matrix, it follows that in the diagonal of every Di exactly one entry is nonzero. We may
then write, without loss of generality, Di =Ei for all i.)
Then,

QXQT =∑XiQCiQ
T +∑

i<j

QXijQ
T =∑XiEi+

∑
i<j

Yij

where Yij =QXijQ
T . Because the transformation Z �→QZQT preserves inner/Jordan prod-

ucts, the last expression in the above statement is nothing but the Peirce decomposition of
Y = QXQT with respect to the Jordan frame �E1�E2� $ $ $ �En�. Using the definition of RA
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defined with respect to �E1�E2� $ $ $ �En�, we have RA�QXQ
T 	 =∑ #XiEi +

∑
i<j QXijQ

T .
This leads to

QTRA�QXQ
T 	Q=∑ #XiCi+

∑
i<j

Xij =R∗A�X	


Now if R∗A has the GUS-property, then Q
TRA�QXQ

T 	Q has the GUS-property, or equiva-
lently RA (defined with respect to the Jordan frame �E1�E2� $ $ $ �En�) has the GUS-property.
From the first part of the proof, we get the stated properties of A and A+E. �

Example 5.1 (Gowda and Song [13]). Let A = [ 1
1
−10
1

]
. Then A is a P-matrix, but

A+E is not copositive. This means that RA defined with respect to �E1�E2� in �
2 has the

P-property but not the GUS-property.
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