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In this article, we prove inverse and implicit function theorems for H -differentiable functions, thereby giving a unified
treatment of such theorems for C!-functions, PC!-functions, and for locally Lipschitzian functions. We also derive
inverse and implicit function theorems for semismooth functions.

Keywords: H-differentiability; Locally Lipschitzian functions; Semismooth; Generalized Jacobian; Degree; Coherent
orientation

1 INTRODUCTION

In this article, we present inverse and implicit function theorems for H -differentiable functions
and semismooth functions, thereby generalizing the classical inverse and implicit function
theorems to certain classes of nonsmooth functions. The classical inverse function theorem
[47] asserts that a continuously differentiable function f: R" — R" is locally invertible
at a point with a continuously differentiable inverse if the (Fréchet) derivative of the func-
tion at that point is nonsingular. The corresponding implicit function theorem says that when
a continuously differentiable function f(x, y) vanishes at a point (x*, y*) with f); (x*, ¥
nonsingular, the equation f(x, y) = 0 can be solved for y in terms of x in a neighborhood
of (x*, y*). There are numerous inverse and implicit function theorems in the literature. The
classical inverse and implicit function theorems have been extended in various directions, e.g.,
to Banach spaces [1], to multivalued mappings [8,38], to nonsmooth functions [4,32,37,55],
etc. Since our setting here is finite dimensional and our functions are single valued, we
describe only those generalizations of the classical results that are relevant to our discussion.
In 1976, Clarke extended the classical inverse and implicit function theorems to locally
Lipschitzian functions by considering the so-called generalized Jacobian; see Refs. [37,55] for

* Corresponding author. Tel.: 410-455-2431. Fax: 410-455-1066. E-mail: gowda@math.umbc.edu

ISSN 1055-6788 print; ISSN 1029-4937 online (© 2004 Taylor & Francis Ltd
DOI: 10.1080/10556780410001697668



Downloaded by [University of Maryland Baltimore County], [Muddappa Gowda] at 11:02 21 October 2011

444 M. S. GOWDA

similar results. In 1991, Robinson [44] proved an implicit function theorem for nonsmooth
functions based on the concept of strong approximation and on a certain (numerical) measure of
Lipschitzian invertibility. In 1991, Kummer [25] gave a characterization of (local) Lipschitzian
invertibility of a function. He showed that a locally Lipschitzian function f: R* — R" is Lip-
schitzian invertible at a point x* if and only if 0 ¢ Af(x*,d) for all 0 # d € R", where
Af(x*,d) consists of all limit points of sequences of the form )Lk_'[ f (x* + Apd) — f *")]
with x¥ — x* and A |, 0. Since the technical assumptions in these works rely on analytical
quantities and/or approximations, we shall refer to these results as analytical inverse/implicit
function theorems. Furthermore, the proofs in these works are based on fixed point theorems
and/or optimality conditions for minimization problems. In contrast to these, our results in
this article are algebraic in nature and rely on topological degree theory. In a rough sense, they
say the following: If

(a) f: R* — R" is continuous in a neighborhood of a point x*,

(b) a certain set of n x n matrices associated with f are coherently oriented (i.e., they have
the same nonzero determinantal sign), and

(c) the (topological) index of f at x* is £1,

then f is locally invertible at x* with the inverse enjoying certain properties that are similar to
those of f.

To motivate our results, we begin with the linear complementarity problem LCP(M, g) [7]
of finding a vector x in R" such that

x>0, y=Mx+qg>0, and (x,y)=0,

where M € R and ¢ € R". In this context, it is well known [24,30,48] that the
piecewise affine function f(x) := Mx™ — x~, where x™ = max{x, 0} and x~ := x* — x, is
locally invertible at the origin (equivalently, globally invertible on R") if and only if the matrices
that describe f are coherently oriented. (This translates to the P-property of M, namely, all
the principal minors of M are positive.) Generalizing this, Robinson [45] has shown that for
an affine variational inequality problem AVI(M, K, ¢), where M € R"*",q € R",and K is a
polyhedral convex set in R", the (piecewise affine) normal map

Jf ) = Mg (x)) + x — g (x),

where Ik (x) denotes the projection of x onto K, is globally invertible on R" if and only if the
matrices describing f are coherently oriented. Motivated by applications to electrical networks,
optimization, etc., various researchers have studied the global homeomorphism properties of
piecewise affine mappings; see, e.g., Refs. [3,14,23,24,31,49,50], etc. These global results can
be localized to yield local inversion theorems for piecewise affine functions. For example, the
local version of a result [Theorem 4.5, Ref. 14] says that a piecewise affine function from
R" to itself is locally invertible at a point if and only if the matrices describing the function
at that point are coherently oriented and the topological index of the function at that point
is £1. In 1996, Pang and Ralph [35] described a generalization of this to piecewise smooth
(PC!) functions. In that paper, it was shown that if at the point under consideration, the so-
called Bouligand (sub)differential of the function is coherently oriented and if the index of the
function is £1, then the function is locally invertible with an inverse that is piecewise smooth;
see Ref. [27] for a related implicit function theorem, and Ref. [43] for inverse /implicit function
theorems for PC” functions.

In recent times, a class of functions called semismooth functions have attracted a lot of
attention in the optimization community; see, for example, Refs. [28,34,39,42] and Section 2.3



Downloaded by [University of Maryland Baltimore County], [Muddappa Gowda] at 11:02 21 October 2011

INVERSE AND IMPLICIT FUNCTION THEOREMS 445

for further references. Since piecewise smooth functions are semismooth, it is natural to ask
whether the Pang—Ralph result mentioned above is valid for semismooth functions. We show in
this article that this is indeed the case. In fact, by utilizing the concepts of H -differentiability
and H-differentials, we prove inverse/implicit function theorems which, when specialized,
yield classical inverse/implicit function theorems, Clarke inverse /implicit function theorems,
Pang—Ralph inverse function theorem, and inverse/implicit function theorems for semismooth
functions. It should be noted that our definition of semismoothness deviates from the original
definition of Refs. [28,39,42] in that we do not assume directional differentiability on the func-
tion. Because of this, our inverse function theorem for semismooth functions (see Corollary 4)
makes no mention of the directional differentiability of the inverse function. In a related work,
assuming our definition of semismoothness, Sun [52] has shown that the local inverse of a
semismooth function (if exists) is semismooth. In a recent paper, Pang et al. [36] address the
local invertibility of a semismooth function (as given in the original definition). Based on the
technical report version [15] of this article and a result of Ref. [49], they prove a complete
inverse function theorem for semismooth functions and show, in particular, that if directional
differentiability is assumed then the inverse function is also directionally differentiable. As
an application, they study strong regularity/stability of isolated solutions of semidefinite cone
and Lorentz cone complementarity problems.

The concepts of H-differentiability and H-differential of a function were introduced in
Ref. [16] to study univalence properties of nonsmooth functions. It has been observed in
Ref. [16] that the Fréchet derivative of a Fréchet differentiable function, the Clarke gener-
alized Jacobian of a locally Lipschitzian function [5], the Bouligand differential of a semi-
smooth function [39], and the C-differential of a C-differentiable function [40] are examples of
H-differentials. H-differentials are related to the approximate Jacobians of Jeyakumar and Luc
[19], in that the closure of an H-differential is an approximate Jacobian. Applications of H-
differentiability to optimization, complementarity, and variational inequalities are treated in
Ref. [54] and characterizations of Py- and P-properties of a function can be found in Ref. [51].

2 PRELIMINARIES

Throughout this article, ||x|| denotes the (Euclidean) norm of a vector and €2 denotes an open
set in an Euclidean space. If a function f: R" — R™ is Fréchet differentiable at x*, we denote
the Fréchet derivative (Jacobian matrix) by f’(x*). For a set E in R", we denote the interior
(closure, boundary, convex hull) of E by int E (respectively, E,0E,coE ).

2.1 H-differentiability and H-differentials
We recall the following from Ref. [16].

DEFINITION 1 Let f: Q — R™ where Q2 C R" is an open set and x* € Q. We say that a
nonempty subset T (x*) of R™" is an H-differential of f at x* if for every sequence {x*}
converging to x*, there exists a subsequence {x%i} and a matrix A € T (x*) such that

FOEEG) = ) — AN —x*) = o([lxh — x*|]). (1)

We say that f is H-differentiable at x* if  has an H-differential at x*.
Sometimes, to show the dependence of T (x*) on f, we write Ty (x*) instead of T (x*).

A useful equivalent definition of an H-differential T (x*) is: for any sequence x* := x* +
trd* with #; | 0 and ||d*|| = 1 for all k, there exist convergent subsequences t 4 0 and
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d* — d,and A € T (x*) such that

SO nd9) — fx)
lim =

j—00 l‘k/.

Ad. 2

We note that f is H-differentiable at x* if and only if there is an open neighborhood U of
x* and a positive constant y such that

If ) = fFGOI < yllx —x*|| forall x e U. 3)

(When (3) holds, we may take R™*" as an H-differential of f at x*.) It is clear that an
H -differential is not unique (since any superset of an H-differential is another H -differential)
and that H -differentiability implies continuity.

2.2 Locally Lipschitzian Functions

Let €2 be an open set in R”. Consider a function f: & — R™ that is locally Lipschitzian on
2 (so that on some neighborhood of each point of €2, f is Lipschitzian). We recall two well-
known properties of such a function; the first one is the famous Rademacher’s theorem [see
Ref. 6] and the second one follows easily from the definitions [see the proof of Lemma 3.2.2
in Ref. 26].

e f is Fréchet differentiable almost everywhere (in the Lebesgue sense) in 2.
o If Sis a set of (Lebesgue) measure zero in €2, then f(S) has measure zero.

Let €27 denote the set of all points in &2 where f is Fréchet differentiable. Then, at any
x* € Q, the (Clarke) generalized Jacobian [5]

3f (x*) = coflim f'(x*): xF — x*, x* € Q) 4)
exists and is nonempty, compact, and convex. The set
ap f(x*) == {lim f/(x"):x*" — x*, x" € Q;) 5)

is called the Bouligand (sub)differential of f at x*. We note that the (multivalued) maps
x — df(x) and x +— 9 f(x) are both compact valued and upper semicontinuous at every
point [5]. The following fact has been shown in Ref. [16] for a locally Lipschitzian function

f:

e f is H-differentiable at x* with df (x*) as an H-differential.

2.3 Semismooth Functions

Consider a function f: 2 € R" — R™ that is locally Lipschitzian on Q. We say that f is
semismooth at x* € Q if for any x* — x* and V; € af (x¥),

FOR) = F(%) = ViexF — x*) = o(flxk — x*|)).

The notion of semismoothness was introduced in Ref. [28] for functionals and extended to
vector functions in Ref. [39]. We note that in these works the directional differentiability of f
at x* is assumed in addition to the above condition. Convex functions and smooth functions
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are examples of semismooth functions. Scalar products, sums, compositions of semismooth
functions are semismooth. Because of their appearance in many equation-based reformulations
of nonlinear complementarity and variational inequality problems, semismooth functions have
attracted a lot of attention in the optimization community in recent times; see, for example,
Refs. [9-13,21,22,34,39,41,42,56], etc.

We make two observations regarding semismooth functions.

e Inthe above definition of semismoothness, we can replace 3 f (x¥) by the smaller set dg f (x).

e If f is semismooth (in particular, piecewise smooth (PC'), i.e., f is a continuous selection
of a finite number of C'-functions) at x*, then it is H-differentiable at x* with dg f (x*) as
an H -differential.

The first observation can be seen by noting (thanks to Caratheodory’s theorem [46]) that
each matrix in 9f (x*) is a convex combination of at most mn + 1 matrices in dg f (x%). The
second observation has been proved in Ref. [16]. We note that if f is locally Lipschitz but not
semismooth, then dg f (x*) need not be an H-differential; see, for example, Problem 2.9.16
in [6].

We now formulate the definition of semismoothness of a function with respect to an
H -differentiable map.

DEFINITION 2 Consider a function f: Q2 C R" — R™ that is H-differentiable at each point
x of Q with the corresponding H -differential T (x). We say that fis semismooth at x* € Q with
respect to the map x — T (x) if for any x* — x* and V. € T (x%),

FOEE = F(x*) = Vie(x* — x*) = o(Jlx* — x*|]).

We say that f is semismooth on 2 with respect to the map x — T (x) if fis semismooth at each
point of Q with respect to T.

2.4 Mean Value Theorem for H-differentiable Functions

In this subsection, we describe a mean value theorem for H -differentiable functions and an
important consequence that is needed in the main result of Section 3.

Following Jeyakumar and Luc [19], we define the concept of an approximate Jacobian: given
fiQC R" — R™and x* € Q, we say that a closed set 3* f(x*) € R™*" is an approximate
Jacobian of f at x™ if for all v € R™, the following inequality holds:

W~ (x*,u) < sup (Mu,v) Vu e R",
Med* f(x*)

where

(f)~ (" ) o= lim (i)nf<,,, fO + 1) — f(x*)>

t

is the lower Dini derivative of vf at x* in the direction of u.
We note that

e if afunction f is H-differentiable at x* with T (x*) as an H -differential, then the closure of
T (x*) is an approximate Jacobian of f at x*.
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To see this, fix any u # 0. Starting with the sequence x* := x* 4 (1/k)u, we produce a sub-
sequence x*i and a matrix A € T (x*) such that

Au = lim k; [f <x* + 1 ) - f(x*)] .
j=oo ki

It follows that
W~ (x*u) < (v, Au) < sup (v, Mu)
MEeT (x*)

proving the claim.
By specializing the results in Ref. [19] we get the following theorem.

THEOREM 1  Suppose f: 2 € R" — R™ is H-differentiable with an H -differential T (c) at
each point c of the interval [a, b] C Q, where 2 is an open set. Then

fb) = f(a) €T [Ueetan T (©)] (b — a). (6)

As a consequence of the above result [see also, Theorem 3.5, Ref. 19], we have the following
corollary.

COROLLARY 1 Suppose f: Q2 C R" — R™ is H-differentiable such that the H-differential
map x — T (x) is compact valued and upper semicontinuous. Then f is locally Lipschitzian
on 2.

Remark We note that the above corollary fails without the compact, upper semicontinuity
property of the multivalued mapping x +— T (x): consider on R,

f(x):xsin% forx #0 and f(0)=0.

Then f is H-differentiable on R with
11 1
TO)=[-1,11 and T(c)= {sm — — —cos —} for ¢ # 0.
c c c

We see that f is neither locally Lipschitzian nor Fréchet differentiable at zero. In addition,
f is not directionally differentiable at zero.

2.5 Some Properties of (Topological) Degree

Given a continuous function f: Q C R" — R", where Q is a bounded open set and p €
R™\ f(02), we denote the (topological) degree of f on 2 at p by deg(f, 2, p) [26]. We list
below some properties of the degree [17,26] that are relevant to our discussion. In what follows,
we denote the distance between p and f(9€2) by dist (p, f(92)).

e If deg(f, 2, p) # 0, then there is a solution to the equation f(x) = p in Q.

e (Nearness property) Suppose that deg(f, 2, p) is defined. If ||g — p|| < dist(p, f(9K2)),
then deg( f, 2, ¢) is defined and is equal to deg( f, 2, p).

o If deg(f, 2, p) is nonzero, then p € int f(£2).
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e Suppose that deg( f, €2, p) is defined. Let u be an isolated solution of the equation f(x) = p
in Q. Let U be any open subset of 2 containing u such that u is the only solution of
f(x) = pin U. Then deg(f, U, p) is independent of the open set U. We call this common
degree the index of f at u and denote it by index(f, u). If f is differentiable at x* with a
nonsingular Jacobian matrix f’(x*), then index(f, x*) = sgn det f’(x*). Moreover, if the

equation f(x) = p has a finite number of solutions uy, us, ..., u; in €2, then
i
deg(f. Q. p) =) _index(f, u;). 7
1

e (Homotopy invariance) Suppose that f is homotopic to g on Q, i.e., there exists a continuous
f_unction H;(x): [0, 1] x  — R" such that Hy(x) = f(x) and H;(x) = g(x) forallax €
Q. If p & H(0R2) forall ¢ € [0, 1], then

deg(f, @2, p) = deg(g, 2, p).

2.6 A Local Error Bound Result

PROPOSITION 1 Suppose 2 is an open subset of R" and f: Q@ — R" has an H -differential
T(a) at a € Q consisting of nonsingular matrices. Let S := {x € Q: f(x) = f(a)}. Then,
there exist a positive constant L and a neighborhood U of a such that

dist(x, S) < llx —al = Ll f(x) = f(@] (Vx € U).
In particular, a is an isolated point of the equation f(x) = f(a).

Proof Since the first inequality in the stated conclusion holds trivially, we prove the second
inequality. Assuming the contrary, we consider a sequence x* — a such that

Ix* = all > kIl f (&) = F@l

for all k. By working with a subsequence if necessary, we let d := lim(x* — a)/(||x* — a||)
and

k
lim M — Ad
x* —all

for some A € T (a). We see that ||d|| = 1 and Ad = O contradicting the nonsingularity of
matrices in 7 (a). Hence the conclusion. |

As an illustration of the above result, we describe a local error bound result for the nonlinear
complementarity problem (NCP). Recall that for a given mapping ¢: R" — R", the nonlinear
complementarity problem NCP(¢) is to find a vector x € R" such that

x>0, ¢(x)=0, and (x,¢(x))=0.

It is well known and easy to see that this problem is equivalent to finding a zero of the function

f(x) :=min{x, ¢ (x)}.
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Suppose
f(a) = minfa, ¢(a)} =0

and that ¢ is H-differentiable at ¢ with an H -differential 7y (a). It has been shown in Example 8
of Ref. [54] that

(VA+ W:AeTy(a), V=dag), W=diag(w;), V+ W =1andv;, w; € {0, 1} Vi}

is an H-differential of f at a. A modification of the proof of this assertion reveals that the
following smaller set is also an H-differential of f at a:

Ti(a) :={VA+W: (A, V,W) €T},

where I' consists of all triples (A, V, W) with A € Ty(a), V = diag(v;) and W = diag(w;),
and
vi=1 Viea:={i:a > ¢i(a)},

wj=1 Vjep:={ja <o)},
vi,w; € {0,1}, vi+w; =1 Viey :={i:a = ¢i(a)}.

When each matrix in 7y (a) is nonsingular, the above proposition gives a local error bound
result for min{x, ¢ (x)}. To further specialize, let ¢ be Fréchet differentiable at @ in which case
wecanlet Ty (a) = {A}, where A = ¢’(a). Then each matrix in T (a) is nonsingular if and only
if each submatrix of A of the form Ass, where @« € § € o U y, is nonsingular. This condition
is precisely the concept of b-regularity (at the point a) introduced in Ref. [33]. Therefore, in
the presence of b-regularity at a, we have the inequality

lx —all < || min{x, ¢ (o)},

holding for all points x in a suitable neighborhood of a. A statement of this type has been
(explicitly) noted in the literature for a continuously differentiable ¢ [18].

Remark  In the context of semismooth functions, the nonsingularity of matrices in the
H -differential dg f (a) defines the so-called BD-regularity property of f at a [39]. This prop-
erty has been used in the convergence proofs of many Newton methods for solving semismooth
equations.

3 INVERSE FUNCTION THEOREM FOR H-DIFFERENTIABLE
FUNCTIONS

THEOREM2 Let2 C R" beanopenset. Let f: 2 — R" be H-differentiable at each point x €

Q with an H-differential T (x). Fix a point x* € Q and suppose that the following conditions
hold:

(1) Iffis differentiable at an x € 2, then f'(x)T (x).
(ii) The multivalued mapping x — T (x) is compact valued and upper semicontinuous at
each point of Q.
(iii) T (x*) consists of positively (negatively) oriented matrices.
(iv) index(f, x*) = 1 (respectively, —1).



Downloaded by [University of Maryland Baltimore County], [Muddappa Gowda] at 11:02 21 October 2011

INVERSE AND IMPLICIT FUNCTION THEOREMS 451

Then the following hold:

(a) fis locally Lipschitzian on 2.

(b) There exist an open neighborhood U of x* and an open neighborhood V of f(x*) such
that f: U — V is one-to-one and onto.

(©) If g0 V — U is the inverse of f, then g is H-differentiable at each v € V with an
H -differential

R() :={A""" A e T},

where u € U with f(u) = v.

(d) If g is Fréchet differentiable at v € V, then g'(v) € R(v).

(e) The map v — R(v) is compact valued and upper semicontinuous at each point of V.

(f) g: V — U is locally Lipschitzian.

(g) If f is semismooth at u € U with respect to the map x — T (x), then g is semismooth at
f (u) with respect to the map y — R(y).

Remark The condition f’(x) € T (x) may not automatically hold when f is Fréchet differ-
entiable at x, and 7 (x) is an arbitrary H-differential of f at x. For, if f: R" — R"(n > 2) is
Fréchet differentiable at x*, then R"*"\{f’'(x*)} will also be an H-differential of f at x*.
However, it can be seen from (2) that if f is Fréchet differentiable at x*, then for any
H-differential T (x*), and any d € R", we have

F'(x*)d € T(x")d. (8)

Proof Assume that T'(x*) consists of positively oriented matrices and index ( f, x*) = 1.
Clearly, Item (a) follows from Corollary 1. To see (b), we proceed in several steps.

Step 1 Since T (x*) consists of positively oriented matrices, we may assume, from
Proposition 1, that in an open neighborhood Q* of x*, the equation f(x) = f(x*) has only
one solution, namely, x*. We may assume, because of condition (ii), that

T (x) consists of positively oriented matrices for all x € Q*. C))

Step2  Fixx € Q*. Since T (x) consists of positively oriented matrices, once again, by Propo-
sition 1, X is an isolated solution of f(x) = f(x) in, say, the closed ball B(x, ¢) C Q*. We
claim that

index(f, x) := deg(f, B(x, &), f(x)) > 0. (10)
Let S denote the set of all points in B(x, €), where f is not Fréchet differentiable. Because f

is Lipschitzian (item (a)), by Rademacher’s theorem, the Lebesgue measure of S is zero. We
consider two cases.

Case 1 Suppose x ¢ S. Then f is Fréchet differentiable at x and (10) follows from the
equality

index(f, x) = sgn det f'(¥),

condition (i) and (9). Moreover, f(x) € int f(B(x, €)).



Downloaded by [University of Maryland Baltimore County], [Muddappa Gowda] at 11:02 21 October 2011

452 M. S. GOWDA

Case 2 Suppose that x € S. Let § := dist(f(x), f(dB(x, €))), which we know is positive.
It follows from the nearness property that

deg(f, B(x,¢), f(x)) =deg(f, B(x,¢),q) forallq € B(f(x),$). (11D

Now by the continuity of f, there exists an &; € (0, €) such that

f(B(x, 1) € B(f(X),9).

By considering a point u in B(x, €;)\S (which is nonempty since S has measure zero), we see
by Case 1 that, f(«) is an interior point of f(B(x, ¢1)); hence f(B(x, 1)) has a nonempty
interior. Now f(S), being the image of a set of measure zero under a locally Lipschitzian func-
tion, has measure zero. Thus, we can find a point p € [intf(B(x, £1))]\ f(S) € B(f(x), ).
Now consider the equation f(x) = p. This will not have any solutions on the boundary of
B(x, €) because ||p — f(X)|| < § =dist(f(x), f(dB(x, €))). However, it will have a solu-
tion in B(x, €1) and hence in B(x, ¢). Moreover, by (9) and Proposition 1, each solution of
f(x) = pin B(x, ¢) isisolated. Hence, the equation f(x) = p has a finite number of solutions
in B(x, €). By (7) and (11), we see that deg( f, B(x, ¢), f(x)) = deg(f, B(x, ¢), p) is the sum
of the indexes of f at each of these solution points. Since p ¢ f(S), at each of these solution
points, f is Fréchet differentiable, and by Case 1, f will have a positive index. We conclude
that deg( f, B(x, €), f(x)) > 0 proving the claim.

Step 3 Letr :=dist(f(x*), f(0R2")) and define
V:=B(f(x*),r) and U := f'(V)NnQ*

We note that U is open and nonempty (since the equation f(x) = ¢, for g € V, has a solution
in Q* thanks to the nearness property). Since x* is an isolated solution of f(x) = f(x*) in Q*,
we have deg(f, U, f(x*)) = deg(f, Q*, f(x*)). By condition (iv), this degree is 1. We claim
that f: U — V is one-to-one. If for a ¢ € V, we have more than one solution in U, then each
of these solutions is isolated, and at each such point f will have a positive index by Step 2.
By adding these indexes we reach a contradiction to the condition (iv). This proves our claim.
Item (b) follows.

(c) Let g: V — U be the inverse of f. Since f: U — V is continuous, one-to-one, and
onto, we see (e.g., from the domain of invariance theorem [26]) that f is an open map;
the continuity of g follows. Now for the H-differentiability of g, fix a point v € V and let
R() :={A™": A € T(u)}, where u = g(v). We claim that R(v) is an H-differential of g at
v. To see this, let v¥ — v in V. Then, the sequence u* := g(v*) converges to u and so by the
H-differentiability of f at u, we can find a subsequence u* and an A € T (u) such that

Fby = f) — A —u) = o||u — ul]).

Since A is invertible, we can easily show (by going through a subsequence of v% if necessary)
that

W) —g(v) — AT WY —v) = AT F W) — fu) — AWY —u)] = o(vY — v]]).
Since A~' € R(v), we have our claim. Thus we have (c).

(d) Fix a point v in V and assume that g is Fréchet differentiable at v. By (8) applied to g
and R at v, we have ¢’ (v)d € R(v)d for any vector d. Since each matrix in R(v) is invertible, it



Downloaded by [University of Maryland Baltimore County], [Muddappa Gowda] at 11:02 21 October 2011

INVERSE AND IMPLICIT FUNCTION THEOREMS 453

follows that g’(v)d = 0 = d = 0 showing that g’(v) is invertible. Writing v = f («) for some
u € U, we see that f is Fréchet differentiable at u and f’(u) = [g’(v)]™". Since f'(u) € T (u)
by condition (i), we see that g’(v) € R(v), proving (d).

(e) To see this, consider the multivalued map v — R(v). Since the mapping which takes a
nonsingular matrix to its inverse is continuous, we see by condition (ii) that this multivalued
map is compact valued and upper semicontinuous.

(f) This follows from (e) and Corollary 1.

(g) Now suppose that f is semismooth at u € U with respect to T'. To see that g is semismooth
at v := f(u) with respect to R, consider any sequence v* — v and let v, € R(v¥) for all k.
Without loss of generality, let v* # v for all k so that u* # u for all k. With V, = A;"', put

£ = ft) — fu) — At —u)
and

= g(") — gw) — Vi(* —v).
Then n* = —A,:lék. We known that E"/Huk — u|| — 0. This yields

[v* — v
[
(Else, for some subsequence u*i, A — A e T (u) (by condition (ii)) and d := lim((u* — u)/

lu¥ — u|)), we have 0 = lim((f (%) = f(u))/|lu* — u||) = Ad. Since A is invertible and d
has norm one, we have a contradiction.) From

g g k-
F = vl fluk = ul JoF = vl ’
we get
Mgy JE 1
[T luk —ull m”

Since the sequence A,:' is bounded above (thanks to (e)), we see that n* = o(|Jv* — v|))
proving (g). [ |

Remark When the conditions of the theorem are in place, items (d) and (e) imply that
dsg(v) € R(v) (12)
forallv e V.

COROLLARY 2 (The classical inverse function theorem for C'-functions) Suppose f: R" —
R" is C' in a neighborhood of x* € R" and that the Fréchet derivative f'(x*) is nonsingular.
Then in a neighborhood of x*, f admits an inverse g that is C' and g’ (f (x*)) = [f'(x*)]~".

Proof With T (x) := {f’(x)} for all x in a suitable neighborhood of x*, conditions (i)—(iv)
of the above theorem hold. The local inverse g that we get in the above theorem is C' in a
neighborhood of f(x*). The equality g'(f(x*)) = [f'(x*)]~! comes from items (c) and (d) of
the theorem. |

We recall that a (continuous) function f: Q € R" — R"isPC!if f isacontinuous selection
of a finite number of C!-functions, i.e., there exist fi, fo, ..., fr,each C! on , such that

fx) e{fitx), L(x), ..., ilx)} (¥Vx € Q).
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Such a function is known to be semismooth and hence dg f (x) is an H -differential at any point
x. In addition, when these functions are essentially active at x* €  [35, Lemma 2], we have

Bwf() ={fj(x):j=1,2,... k.

COROLLARY 3 (Inverse function theorem for PC!-functions [35]) Let f: @ € R" — R" be
PC! with selection functions fi, f>, ..., fc. Assume that these functions are essentially active
at x* € Q. If conditions (iii) and (iv) of the theorem hold, then f has a PC' inverse in a
neighborhood of x*.

Proof Since f is semismooth, conditions (i) and (ii) are always true. When conditions (iii)
and (iv) of the theorem hold, we have a local inverse g as in the theorem. We see by condition
(iii) that each C'-function fj is locally invertible at x* with a C !inverse (fj)’l. Clearly, in an
appropriate neighborhood of f(x*), g(x) takes a value in the set {(fj)’1 x):j=1,2,...,k}
Since g is continuous, we see that g is a PC!-function. |

We now specialize the theorem to semismooth functions.

COROLLARY 4 (Inverse function theorem for semismooth functions) Suppose f: Q2 C R" —
R" is semismooth. Let x* € Q be such that

(1) ap f(x*) consists of positively (negatively) oriented matrices, and
(2) index(f, x*) = 1 (respectively, —1).

Then f has a local semismooth inverse at x*, i.e., there exist neighborhoods U of x* and
V oof y* := f(x*) such that f: U — V has an inverse g: V — U that is semismooth on V.
Moreover,

Ipg(y") ={A™" A e dpf(x").

Proof Since f is semismooth, at any point x € 2, the set dg f(x) is an H-differential.
Moreover, the mapping x — dg f(x) is compact and upper semicontinuous [5]. Hence, the
conditions of the previous theorem are met. Let U, V, and g be as in the theorem. Then g is
locally Lipschitzian on V. We claim that g is semismooth at v € V. Since f is semismooth
with respect to the map x — g f (x), we see that g is semismooth with respect to the map
y = R(y), where R(y) :=={A™": A € dgf(x)} and y = f(x). We complete the proof by
showing that

dpg(v) ={A™" A e dpfu), (13)

where v = f(u). The inclusion dgg(v) € {A™!: A € 85 f (1)} comes from (12). To see the
reverse inclusion, suppose A € g f(u). Then A = lim f’(u*) where u* — u. Since A is
invertible, f’(u¥) is invertible for large k and A~! = lim[ f'(u*)]~!. We see that g is differ-
entiable at v* := f(u¥) with g’(v*) = [f' )], and A~" = lim g’ (v*) € dpg(v). We thus
have (13). |

Remark As noted in the introduction, our definition of semismoothness does not require
the directional differentiability of the function at the reference point. Suppose in the above
Corollary, f is further assumed to be directionally differentiable at x* so that f is semismooth
in the original sense [28,39]. Then, f has a local semismooth inverse (by the above Corollary).
In particular, f has a local Lipschitzian inverse. In this setting, Scholtes [49, Theorem 3.2.3]
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has shown that the inverse of f is directionally differentiable at f(x*). We conclude that:
If f is semismooth in the original sense and satisfies conditions (1) and (2) of the above
Corollary, then f has a local inverse that is semismooth in the original sense. This fact and
its justification appear in Ref. [36], where the authors, using the (strong) semismoothness
properties of the projection maps onto the semidefinite cone and Lorentz cone [2,53] study
strong regularity/stability properties of isolated solutions of semidefinite and Lorentz cone
complementarity problems.

At this stage, one might ask whether conditions (1) and (2) of the above corollary are
necessary for the existence of a local semismooth inverse. The following result answers this
question.

THEOREM 3 Suppose f: Q C R" — R" is locally Lipschitzian and x* € Q. If f admits a
locally Lipschitzian inverse in a neighborhood of x*, then conditions (1) and (2) of the previous
corollary are satisfied. Moreover, when f is semismooth, there is a semismooth inverse of f in
a neighborhood of x* if and only if conditions (1) and (2) of the above corollary are satisfied.

Proof For the first part, suppose there exist neighborhoods U of x*, V of y* = f(x*) such
that f: U — V is one-to-one and onto, and the inverse g: V — U is locally Lipschitzian. To
see conditions (1) and (2), we proceed in several steps.

First, we show that at any point u € U where f is Fréchet differentiable, the derivative
f'(u) is nonsingular. To see this, fix a point u € U and assume if possible that f'(u)d = 0 for
some nonzero vector d. Then

i Su+nd) — fu)
im

= f'(wyd =0,

Ik
whenever #; | 0. This clearly contradicts the following consequence of the Lipschitzian prop-
erty of g at f(u):

g (f (u+nd)) — g(f )l < el f(u +tcd) — fu)l

(which is valid for some « > 0 and for all k large). Hence the nonsingularity of f’(u).

Second, we claim that at any point u € U, dg f (1) consists of invertible matrices. To see
this, suppose A € dg f(u) so that by definition, A = lim f’(u*) where u* — u. We know
from the previous argument that f’(u*) is invertible for all large k. Writing v* = £ (u¥), we
see that [f’(u")]’1 = g/(vk) € BBg(vk). Since the map x +— dgg(x) is compact valued and
upper semicontinuous at v(= lim v¥), we see that a subsequence of [ f'(u*)]~' converges to,
say, the matrix B. We conclude that AB = [ and that A is invertible.

Third, we establish conditions (1) and (2). Now, since f is one-to-one, deg(f, U, f(x*)) =
41 [26]. We may assume, without loss of generality, that deg(f, U, f(x*)) = 1. Since x* is
an isolated solution of f(x) = f(x*) in U, this degree is index (f, x*) giving us the condi-
tion (2) of the above corollary. In addition, by assuming the connectedness of V (see Step 3
in the proof of Theorem 2) and the homotopy invariance of degree, we may conclude that
deg(f, U, f(u)) = 1forany u € U. As before, this integer is nothing but index( f, «). Now, if
f is Fréchet differentiable at u, then

1 = index(f, u) = sgn det f’(u),

where we have used the fact that f'(u) is nonsingular. Thus we see that at any differentiable
point u, the derivative of f has a positive determinant. Finally any matrix in dp f (1), being
invertible and the limit of matrices with positive determinants, has a positive determinant. Thus
we have condition (1) of the corollary.
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When f is semismooth, the stated conclusion comes from the first part of the theorem and
Corollary 4. |

COROLLARY 5 (Inverse function theorem for locally Lipschitzian functions [4]) Suppose
f:Q2 € R" — R"islocally Lipschitzian. Let x* € Q2 be such that df (x*) consists of invertible
matrices. Then f has a local Lipschitzian inverse g at y* = f(x*) with

(a) dpg(y*) C{A™: A € 9f (x*)} and
(b) 3g(y*) S co{A™: A € af (x*)}.

Proof Ateachpointx € Q,weletT (x) := df (x). Thisis an H-differential of f (see Sec.2.2);
moreover, the map x +— T'(x) is compact valued and upper semicontinuous at each point of
Q [5]. The condition (i) of Theorem 2 is clearly satisfied. By convexity of df (x*), we conclude
that all matrices in df (x*) have the same determinantal sign which is nonzero by the imposed
condition. Thus condition (iii) holds. To see condition (iv), fix A € df (x*), apply the homotopy
invariance of the degree to the homotopy H;(x) :=¢[f(x) — f(x")]+ (1 —t)A(x — x™) to
getindex (f, x*) = sgn det A. The inverse of f obtained in the theorem is locally Lipschitzian.
Item (a) follows from (12), and item (b) follows from the definition. [ |

Remarks The idea of using topological degree theory to study Lipschitzian invertibility of
a Lipschitzian function is not new; see, for example, Ref. [20].

4 IMPLICIT FUNCTION THEOREMS

In this section, based on Theorem 2, we shall derive an implicit function theorem for
H -differentiable functions.
Consider a function f of two variables with x € R" and y € R™. For ease of notation, we

let
X
y 9

where x and y are column vectors. (We define z* and 7 similarly.) If f has an H-differential
Ty (z) at a given point z, we write any A € Tr(z), in the block form as

A=[A, A,

where A, and A, are of sizes n x n and n x m, respectively. (In the differentiable case, Ay is
fx(2), the partial derivative of f at z with respect to x.)

THEOREM 4 Consider f: D C R" x R™ — R", where D is an open set. Suppose f is H-
differentiable at each point z of D with an H-differential given by T¢(z). Let z* € D and
assume that

(@) f'(z) € Ty(z) whenever f is Fréchet differentiable at z,

(b) the multivalued mapping z — Ty (z) is compact valued and upper semicontinuous at each
point of D,

(©) f(z*) =0,

(d) the set {As: A € Ty(z*)} consists of positively (negatively) oriented matrices, and
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(e) index(h, x*) = 1 (respectively, —1) where

hx) = f ( 2). (14)
y

Then there exist open sets U C R" x R™ containing z* and W C R™ containing y* such that
to every y € W, there is a unique x with

<x> =zeU and f(z)=0.
y

If this x is defined to be g(y), then
@)

f<g(y)> 0 vyew:
y

(i) g is H-differentiable at any y € W with an H-differential given by
T(3) = {=(A07'Ay: [Ar A] € Tr @)
Proof We begin by noting that 4, given by (14), is H-differentiable at x* with
Ti(x*) ={Ac: A=[A, Ay] € Ty}
The same conclusion holds at all points near x*. From condition (d) and Proposition 1, we see
that the equation 2 (x) = h(x™) has an isolated solution in some neighborhood of x*. (Because

of this, we could define the index of & at x* in condition (e).)
Now define a function F: D — R" x R™ by

()-(7)

It is easily seen that F is H-differentiable at any z € D with an H-differential given by

3 ~ A A .
TF(Z):{A:[ I':|:A=[Ax Ay]eTf(z)}.

0
We now verify conditions (i)—(iv) of Theorem 2 for F. Clearly, conditions (i) and (ii) of
Theorem 2 are satisfied for F' and Tr. Since the determinant of any matrix A in TF is the
determinant of the corresponding A,, by condition (d) above, we see that Tr(z*) consists of

positively (negatively) oriented matrices. We now claim that

index(F, z*) = index(h, x™).

0
F(z*):( *)
y

We first note that
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By the nonsingularity of matrices in Tr(z*), and by Proposition 1, we see that index of F at
z* is well defined. We proceed to justify the above claim.

By our earlier observation, the equation /#(x) = h(x*) = 0 has an isolated solution in a
neighborhood of x*. Then, the equation

h(x) 0
y y
has a unique solution, namely, z* in the closure of some open set  containing z*. On Q, we
define a homotopy

(h(x))
Hi(z) =tF(z)+(1—1) O=<tr=zD.
y

0
H,<z)=( )
y

leads to y = y* and A (x) = 0, and hence to z = z*. By the homotopy invariance of degree,

On Q, the equation

deg(Hp, Q, F(z")) = deg(H;, 2, F(z")).
Now

h(x)
Hy(z) = ( ) and H;(z) = F(2).
y

Since
deg(Hy, 2, F(z*)) = index(h, x*) - index(I, y*)
(where I denotes the identity map) and

deg(H,, 2, F(z")) = index(F, z¥),

we have our claim.

At this stage, we have verified the conditions of Theorem 2 for F. We can now find a
neighborhood U of z* and a neighborhood V x W of F(z*) such that to each v € V and
w € W, there is a unique z € U such that

v
F(Z)=< )
w

In particular, for each w € W, there is a unique z € U with

()-ro-2)
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This implies that y = w and f(z) = 0. Thus for each y € W, there is a unique x such that

and f(z) = 0. Letting g be the map that takes y to x, we verify conclusions (i) and (ii) of the
theorem. Conclusion (i) is obvious. To get (ii), we proceed as follows. Let G: V x W — U
denote the inverse of ' on U. Then from Theorem 2, we know that G is H-differentiable

at any
v
S \w

T6(q) = {M~": M € Tr(2)},

with an H -differential given by

where F(z) = q. Now g can be written as

g=Il1o0Gog,
0
y}—)
y
X
— x.
y

Thus g, being a composition of H-differentiable maps, is also H-differentiable with an
H -differential given by

-1
Ay, A, 0 _
T,(»)=1[1 0] { ’ :| [ } A A e T @

0 1 I,

where ¢ is the inclusion map

and IT; is the projection map

This is seen by observing that both ¢ and IT; are Fréchet differentiable, and that straightforward
chain rule exists for H-differentiable functions. Now simple algebraic manipulations yield

T,() ={—(A07"Ay: [A, A)] e Ty @)}
This proves conclusion (ii) and the theorem. [ |

Remarks We note that in the above theorem, if f is continuously differentiable (locally
Lipschitzian, piecewise smooth, semismooth), then so is g. By specializing the above
theorem, we get implicit function theorems for continuously differentiable functions (with
Tt (z) = {f'(z)}), locally Lipschitzian functions (with Ty(z) = df(z)), and for piecewise
smooth/semismooth functions (with Ty (z) = g f (z)).
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5 CONCLUSION

In this article, we have proved inverse and implicit function theorems for H-differentiable
functions. Except for some comments on directional differentiability (e.g., Remark following
Corollary 4) and some recent references, this article is essentially the same as the technical
report [15]. One referee notes that pseudodifferentiable functions, as given in Ref. [29], are
H -differentiable and that (a version of) Corollary 1 can be found in Ref. [29].
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