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1. Introduction

Consider a square complex matrix given in the block form

M =
[
A B

C D

]
,

where A is square. If A is invertible, the Schur complement of A inM is defined by

M/A:=D − CA−1B.

Schur complementplays an important role in various areas includingmatrix analysis, statistics, numer-

ical analysis, optimization, etc., see e.g. [1,3,13,15,16], and the references therein. Among its numerous

properties, perhaps, the most important and useful ones are:
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(1) The Schur determinantal formula: det(M) = det(A) det(M/A).
(2) The Haynsworth formula for inertia of a Hermitian matrix: In(M) = In(A) + In(M/A).
(3) The positive definiteness property for a Hermitian matrix: M is positive definite if and only if A

and M/A are positive definite.

(4) TheGuttman rank additivity formula for aHermitianmatrix: rank(M) = rank(A) + rank(M/A).

All of the above results can be derived from the following so-called Aitken block-diagonalization

formula:[
I 0

−CA−1 I

] [
A B

C D

] [
I −A−1B

0 I

]
=

[
A 0

0 D − CA−1B

]
.

In fact, taking the determinants both sides of the above formula and using the multiplicative

property of the determinant, we get the Schur determinantal formula in (1). When M is Hermitian,

by applying the Sylvester’s law of inertia [9], we get the Haynsworth formula in (2). Finally, (for M

Hermitian) items (3) and (4) follow immediately from item (2).

Can the above results be extended to matrices over quaternions and octonions? In the case of

quaternions, the Aitken formula continues to hold. However, the non-existence of a quaternion-valued

multiplicative determinant that extends the usual complex determinant [2] prevents us from stating

a Schur determinantal formula in this setting. In the case of octonions (which are non-commutative

and non-associative), the quantity D − CA−1B is not even defined. In spite of these drawbacks, in this

paper, we formulate the concept of Schur complement in Euclidean Jordan algebras and state analogs

of above statements (1)–(4).

To explain our results, consider an Euclidean Jordan algebra (J , ◦, 〈·, ·〉). For any given idempotent

c ∈ J , we have the Peirce decomposition [5, Chap. IV, Sec. 1]

J = J (c, 1) ⊕ J
(
c,

1

2

)
⊕ J (c, 0), (1)

where

J (c, γ ) = {x ∈ J : x ◦ c = γ x},
for γ = 0, 1

2
, 1. Given any element x ∈ J , we write the decomposition

x = u + v + w, (2)

where u ∈ J (c, 1), v ∈ J
(
c, 1

2

)
, and w ∈ J (c, 0). When u is invertible in the Euclidean Jordan

(sub)algebra J (c, 1), let u−1∗ denote the inverse of u in J (c, 1). In this case, the Schur complement

of u in x is defined by

x/u:=w − Pv(u
−1∗ ), (3)

where, for any element a ∈ J , the quadratic representation Pa is given by

Pa(z) = 2a ◦ (a ◦ z) − (a ◦ a) ◦ z (z ∈ J ).

The expression w − Pv(u
−1∗ ) appears in the works of Loos [10] and Massam and Neher [11], without

the name ‘Schur complement’ and the associated notation. It turns out, see [11] (or Section 2 below),

that x/u ∈ J (c, 0). Now, any element x ∈ J will have a spectral decomposition

x = λ1e1 + λ2e2 + · · · + λrer , (4)

where {e1, e2, . . . , er} is a Jordan frame in J and real numbers λ1, λ2, . . . , λr are the (spectral) eigen-

values of x. Then the determinant, inertia, and rank of x are, respectively, defined by

det(x):=λ1λ2 · · · λr , (5)

In(x):=(π(x), ν(x), δ(x)), and rank(x) = π(x) + ν(x). (6)

Here π(x), ν(x), and δ(x) are, respectively, the number of positive, negative, and zero eigenvalues

of x. Given x and the above decomposition (2), we let det∗(u) and In∗(u) denote, respectively, the
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determinant and inertia of u in the (sub)algebra J (c, 1). Similarly, we let det∗(x/u) and In∗(x/u)
denote, respectively, the determinant and inertia of x/u in the (sub)algebra J (c, 0). The analogs of

properties (1)–(4) (suppressing the ‘∗’ in the determinant and inertia notations) can now be stated:

(i) det(x) = det(u)det(x/u).
(ii) In(x) = In(u) + In(x/u).
(iii) x > 0 in J if and only if u > 0 in J (c, 1) and x/u > 0 in J (c, 0).
(iv) rank(x) = rank(u) + rank(x/u).

In the setting of a general Euclidean Jordan algebra, item (i) was proved by Massam and Neher

[11] using the so-called Frobenius transformation as a substitute for the Aitken formula; it can also be

derived from the work of Loos [10]. In this paper, using homotopy and continuity arguments, and the

properties of Frobenius transformations, we prove item (ii); items (iii) and (iv) follow immediately.

2. Euclidean Jordan algebras

Throughout this paper, we let (J , ◦, 〈·, ·〉) denote a Euclidean Jordan algebra of rank r [5,7,14]. The

symmetric cone of J is the cone of squares K :={x2 : x ∈ J }. We use the notation x � 0 (x > 0)when

x ∈ K (respectively, x ∈ interior(K)). As is well known, any Euclidean Jordan algebra is a product of

simple Euclidean Jordan algebras and every simple algebra is isomorphic to the Jordan spin algebra

Ln or to the algebra of all n × n real/complex/quaternion Hermitian matrices or to the algebra of all

3 × 3 octonion Hermitian matrices.

Given any a ∈ J , we let La and Pa denote the corresponding Lyapunov transformation andquadratic

representation of a on J :

La(x):=a ◦ x and Pa(x):=2a ◦ (a ◦ x) − a2 ◦ x.

These are linear and self-adjoint on J . In addition, Pa(K) ⊆ K for any a. We say that objects a and b in

J operator commute if LaLb = LbLa. It is known that a and b operator commute if and only if they have

their spectral decompositions with respect to a common Jordan frame.

Corresponding to the decomposition (2), consider the Schur complement x/u given in (3). Then we

have

Proposition 1. The following statements hold:
(a) x/u ∈ J (c, 0).

(b) x/u = x − Px

(
u−1∗

)
.

Proof. (a) As x/u = w − Pv

(
u−1∗

)
andw ∈ J (c, 0), it is enough to show that Pv

(
u−1∗

)
∈ J (c, 0). We

actually show that for any z ∈ J (c, 1), Pv(z) ∈ J (c, 0), that is, Pv(z) ◦ c = 0. (This is stated on p. 870

in [11] without proof.) Consider

Pv(c) = 2v ◦ (v ◦ c) − v2 ◦ c = 2v ◦
(
1

2
v

)
− v2 ◦ c = v2 ◦ (e − c).

Then

〈Pv(c), c〉 = 〈v2 ◦ (e − c), c〉 = 〈v2, (e − c) ◦ c〉 = 0.

As c ∈ K and Pv(K) ⊆ K, 〈Pv(c), c〉 = 0 implies Pv(c) ◦ c = 0, see Proposition 6 in [7]. Thismeans that

Pv(c) ∈ J (c, 0). AsJ (c, 1) is orthogonal toJ (c, 0), we have, for any primitive idempotent f ∈ J (c, 1),

〈f , Pv(c)〉 = 0.

Since Pv is self-adjoint, 〈Pv(f ), c〉 = 0. Once again, as f ∈ K and Pv(K) ⊆ K , we have Pv(f ) ◦ c = 0.

By the spectral decomposition theorem, any z ∈ J(c, 1) is a finite linear combination of primitive

idempotents in J (c, 1). Hence, by the linearity of Pv, we get
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Pv(z) ◦ c = 0

for any z ∈ J (c, 1). This completes the proof of (a).

(b) We first compute Px

(
u−1∗

)
. Using the facts J (c, 1) ◦ J (c, 0) = {0}, u ◦ u−1∗ = c, w ◦ u−1∗ =

0, v ◦ c = 1
2
v, and w ◦ c = 0, we get

x ◦ u−1∗ = c + v ◦ u−1∗
and

2x ◦
(
x ◦ u−1∗

)
= 2u + v + 2u ◦

(
v ◦ u−1∗

)
+ 2v ◦

(
v ◦ u−1∗

)
+ 2w ◦

(
v ◦ u−1∗

)
.

Also, from J (c, 1) ◦ J (c, 0) = {0} and u2 ◦ u−1∗ = u, we have

x2 = (u + v + w)2 = u2 + v2 + w2 + 2u ◦ v + 2v ◦ w

and

x2 ◦ u−1∗ = u + v2 ◦ u−1∗ + 2(u ◦ v) ◦ u−1∗ + 2(v ◦ w) ◦ u−1∗ .

Now, by orthogonality, any primitive idempotent in J (c, 1) operator commutes with any primitive

idempotent inJ (c, 0) (seee.g., Proposition6 in [7]); hence, via the spectral decomposition, anyelement

in J (c, 1) operator commutes with any element in J (c, 0). This means that

w ◦
(
u−1∗ ◦ v

)
= LwLu−1∗ (v) = L

u
−1∗ Lw(v) = u−1∗ ◦ (w ◦ v).

In addition, u and u−1∗ operator commute and so

u ◦
(
u−1∗ ◦ v

)
= u−1∗ ◦ (u ◦ v).

A simple algebraic manipulation gives

x − Px

(
u−1∗

)
= x −

{
2x ◦

(
x ◦ u−1∗

)
− x2 ◦ u−1∗

}

= w −
{
2v ◦

(
v ◦ u−1∗

)
− v2 ◦ u−1∗

}
= w − Pv

(
u−1∗

)
. �

Remarks. In thecaseofalgebrasofalln × n real/complex/quaternionHermitianmatrices, thequadratic

representation is given by PX(Y) = XYX , and hence the Schur complement reduces to the standard

one when the idempotent c is chosen appropriately. The following example illustrates the concept of

Schur complement in the algebra Herm(O3×3) of 3 × 3 Hermitian matrices over octonions.

Example. Consider a matrixM ∈ Herm(O3×3), given by

M =
⎡
⎣p a b

ā q c

b̄ c̄ r

⎤
⎦ ,

wherep, q, r are real numbers, anda, b, and c areoctonions. In this setting, thedeterminant ofM,which

is the product of the spectral eigenvalues of M, is given, via the Freudenthal formula (see [4,12]), by

det(M) = pqr + 2 Re b̄(ac) − r|a|2 − q|b|2 − p|c|2.
Now let c be the idempotent inHerm(O3×3)which has 1 in the (1,1) slot and zeros elsewhere. Then

the Peirce decompositionM = U + V + W is given by

M =
⎡
⎣p 0 0

0 0 0

0 0 0

⎤
⎦ +

⎡
⎣0 a b

ā 0 0

b̄ 0 0

⎤
⎦ +

⎡
⎣0 0 0

0 q c

0 c̄ r

⎤
⎦ .
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Now, for any two matrices X and Y in Herm(O3×3),

PX(Y) = 1

2
[X(XY) + X(YX) + (XY)X + (YX)X − X2Y − YX2].

When p is invertible, a straightforward computation shows that

M/U = W − PV

(
U−1∗

)
=

⎡
⎢⎣
0 0 0

0 q − p−1|a|2 c − (āb)p−1

0 c̄ − (b̄a)p−1 r − |b|2p−1

⎤
⎥⎦ .

This leads to

det∗(M/U) = (q − p−1|a|2)(r − |b|2p−1) − (c̄ − (b̄a)p−1)(c − (āb)p−1),

and to det(M) = det∗(U)det∗(M/U).

3. The Frobenius transformation and the Schur determinantal formula

For any two elements x, y ∈ J , let

x � y :=Lx◦y + {LxLy − LyLx}.
Then given any idempotent c in J and z ∈ J

(
c, 1

2

)
, the Frobenius transformation is given by (see [5, p.

106]),

τz := exp(2z � c) = I + (2z � c) + 1

2
(2z � c)2.

In the following result, proved byMassam andNeher [11, Proposition 1], item (ii)(a) generalizes the

Aitken block diagonal formula and item (ii)(b) is the Schur determinantal formula in Euclidean Jordan

algebras.

Theorem 2. Let c be an idempotent in J .

(i) For any z ∈ J
(
c, 1

2

)
and x ∈ J , det(τz(x)) = det(x).

(ii) Consider the Peirce decomposition (2) of any x ∈ J , with u invertible, and let z = −2v ◦ u−1∗ . Then,

(a) τz(x) = u + x/u and

(b) det(x) = det∗(u)det∗(x/u).

4. Invariance of inertia under Frobenius transformations

Theorem 3. Let c be any idempotent in J . Then for any z ∈ J
(
c, 1

2

)
and x ∈ J , we have

In(τz(x)) = In(x).

Proof. Fix z ∈ J
(
c, 1

2

)
and x ∈ J ; let y = τz(x). First suppose that x is invertible.Define thehomotopy

yt = τtz(x) (0� t � 1),

whichconnectsy1 = yandy0 = x. ByTheorem2(i), det(yt) = det(x) forall t andsoyt is also invertible.
By the invariance of inertia, see Theorem 10 in [8], In(yt) is a constant; in particular,

In(y) = In(x).

Now suppose that x is not invertible; let x = ∑k
1 xiei +

∑r
k+1 0ei be the spectral decomposition of

x with k < r and xi /= 0 for 1� i � k. Let x(ε):=x + ε
(∑r

k+1 ei

)
and y(ε):=τz(x(ε)). As x(ε) is

invertible, from the previous case,
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In(y(ε)) = In(x(ε)).

Now for small positive ε, y(ε) is close to y and hence, by the lower semicontinuity of ν , see Theorem

10 in [8],

ν(y) � ν(y(ε)) = ν(x(ε)) = ν(x),

where the last equality comes from the observation that the negative eigenvalues of x are not disturbed

when ε
(∑r

k+1 ei

)
is added to x. Thus, when x is not invertible and y = τz(x), ν(y) � ν(x). Now,

applying this inequality to x = τ−z(y)we get ν(x) � ν(y). Thus ν(y) = ν(x). Byworkingwith (−y) =
τz(−x), we get π(y) = π(x) and so In(y) = In(x). This completes the proof. �

Remarks. The above result can also be proved in a slightly different way. It has been observed that for

any z ∈ J
(
c, 1

2

)
, τz belongs to the connected component of the automorphism group Aut(K), see p.

874 in [11]. Also, when V is simple, any transformation in Aut(K) preserves inertia, see Corollary 12 in

[8]. The general case (of nonsimple V) can be handled by writing V as a product of simple algebras [5]

and applying the previous argument to each component of z and then adding the inertias.

5. The Haynsworth inertia formula in Euclidean Jordan algebras

Given an idempotent c ∈ J , let a ∈ J (c, 1) and b ∈ J (c, 0). Then we define In∗(a):= Inertia of a

in the algebra J (c, 1) and In∗(b):= Inertia of b in the algebra J (c, 0). We note that

In(a + b) = In∗(a) + In∗(b). (7)

We are now ready to state the Haynsworth inertia formula in Euclidean Jordan algebras.

Theorem 4. Given the decomposition (2) with u invertible, we have

In(x) = In∗(u) + In∗(x/u).

Proof. Let z := − 2v ◦ u−1∗ . Then from Theorem 2(ii),

τz(x) = u + x/u.

Now by Theorem 3, we have In(x) = In(u + x/u). Since In(u + x/u) = In∗(u) + In∗(x/u), we have

the stated result. �

The following result is immediate from the above theorem.

Corollary 5. Given the decomposition (2) with u invertible, we have

(i) x > 0 (x � 0) in J if and only if u > 0 in J (c, 1) and x/u > 0 (respectively, x/u� 0) in J (c, 0).
(ii) rank(x) = rank∗(u) + rank∗(x/u).

6. Concluding remarks

This article is a shortened and revised version of Gowda and Sznajder [6] where the results were

proved by case-by-case analysis of the five simple algebras.
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