AIN/GaN insulated gate HEMTs with HfO$_2$ gate dielectric

AIN/GaN single heterojunction MOS-HEMTs grown by molecular beam epitaxy have been fabricated utilising HfO$_2$ high-K dielectrics deposited by atomic layer deposition. Typical DC transfer characteristics of 1.3 μm gate length devices show a maximum drain current of 950 mA/mm and a transconductance of 210 mA/mm with gate currents of 5 μA/mm in pinch-off. Unity gain cutoff frequencies, f_c and f_{max}, were measured to be 9 and 32 GHz, respectively.

Introduction: The AIN/GaN high electron mobility transistor (HEMT) is an attractive structure for extending the frequency performance of III-N based transistors. This stems from the very thin AIN barrier layer that is utilised, which permits a significant reduction in gate length while maintaining an appropriate gate-to-channel aspect ratio to mitigate short channel effects. Recently, the AIN/GaN HEMT has shown its potential by demonstrating some of the highest current densities and transconductances in a single heterostructure with appreciable cutoff frequencies [1–3]. However, a major issue in such structures is high Schottky gate currents due to tunnelling through the thin AIN cap, which necessitates the insertion of a gate insulator. High-K dielectrics have matured to where they are now of interest in application to MOS-gated devices [4]. In this Letter, the first demonstration of an ALD deposited HfO$_2$ gate-dielectric AIN/GaN MOS-HEMT is presented. Owing to the insertion of a 3.6 nm HfO$_2$ layer, the gate current in these devices was extremely low, typically 5 μA/mm. This is particularly noteworthy since this result was achieved in a structure with a thin 4.5 nm AIN barrier layer. In this Letter, we report on DC, RF and power performance of the AIN/GaN HEMT.

Device growth and fabrication: The AIN/GaN heterojunctions were grown by plasma assisted MBE on 2 inch diameter semi-insulating 4H-SiC substrates. The procedures for SiC substrate preparation are similar to those we have described elsewhere [5, 6]. The 60 nm-thick AIN nucleation layer was grown, followed by subsequent unintentionally doped (UID) GaN buffer and AIN barrier layers with thicknesses of 1 μm and 4.5 nm, respectively. The AIN barrier thickness was chosen on the basis of work by Cao et al. who showed a minimum sheet resistance in single heterojunction AIN/GaN HEMTs with AIN thicknesses between 3–5 nm [7]. The GaN growth rate was determined to be 1.2 Å/s from optical reflectance measurements. All epitaxial layers were grown without interruptions.

Contactless resistance measurements on the unprocessed sample showed sheet resistances in the range 600–800 Ω/□, which we speculate is due to an AIN cap layer thickness variation across the wafer surface. Device fabrication was initiated by e-beam evaporation of Ti/Al/Ni/Au contact metallisation, which were annealed at 800 °C for 30 s to form ohmic contacts. Contact resistances were found to be in the range 0.8–1.1 Ω mm, determined by circular transfer length method measurements. Mesa isolation was achieved via a BCl$_3$ atomic layer deposition (ALD) reactor. The fixed volume approach as described elsewhere was used for the delivery of both reagents [8, 9]. The Ni/Au gate metallisation was then defined and deposited through standard photolithography and e-beam evaporation. A BC$_{11}$/Cl$_2$ plasma etch was applied to open windows in the HfO$_2$ to access the ohmic metal for the final overlay metallisation. This was followed by the deposition of a 100 nm-thick PECVD SiN film and a subsequent photolithographic patterning and S$_x$F$_y$ plasma etch to open windows to the overlay metal contacts for probing.

Device characterisation: Hall effect measurements were performed both prior to HfO$_2$ deposition and after gate metallisation. R_n decreased on average by 12% through an increase in sheet density, suggesting the partial passivation of surface states. Room temperature 2DEG density and mobility after HfO$_2$ deposition was found to be 1.48 × 1013 cm$^{-2}$ and 620 cm2/Vs, respectively. No change in mobility was observed, which indicates the ALD HfO$_2$ is a low damage process. Fig. 1 shows two-terminal diode current density for both Ni/Au-AlN and Ni/Au-HfO$_2$ Schottky diodes with 150, 100 and 50 μm diameter gate dot sizes. A 7 to 8 order of magnitude reduction in diode current down to approximately 1 μA/cm2 was observed in the sample with the 3.6 nm HfO$_2$ dielectric compared to the sample without the dielectric layer, indicating excellent gate-current suppression due to the dense ALD dielectric. It should be noted that, owing to high reverse bias Schottky diode current for the uninsulated Ni/Au-AlN diodes, output characteristics of HEMTs with such gates could not be taken and therefore are not compared. This is consistent with other reports in literature [1–3].

![Fig. 1](image1.png)

Fig. 1 Current density comparison of Ni/Au Schottky on AIN/GaN (above) and HfO$_2$/AIN/GaN (below) diodes

Each curve set demonstrates typical values for 150, 100 and 50 μm diameter dots.

Inset: Insulated gate structure

Representative drain characteristics for 1.3 μm gate length (L_G), 150 μm gate width (W_G), and 5 μm source–drain spacing MOS-HEMT are shown in Fig. 2. As seen in the Figure, a current density of ~800 mA/mm at $V_{GS} = 0$ V was measured. A maximum drain–source current of 950 mA/mm at $V_{DS} = +4$ V and transconductance of 210 mA/mm at $V_{DS} = +10$ V was measured despite the high sheet and contact resistances (not shown). Analysis of capacitance–voltage characteristics of the HfO$_2$/AIN stacked capacitor confirmed the dielectric constant of the HfO$_2$ to be ~30, which is typical of ALD HfO$_2$. As shown in Fig. 2a, the MOS-HEMTs have excellent pinch-off characteristics, demonstrating that leakage current through the AIN barrier is dramatically suppressed by the ALD HfO$_2$ gate insulator. The threshold voltage is ~−4.1 V. In deep pinch-off ($V_{GS} = −7$ V, $V_{DS} = 10$ V, $I_{DS} = 7$ μA/mm) the gate leakage current was measured to be 5 μA/mm (not shown). The off-state breakdown voltage was >25 V with the criterion of $I_{DS} = 1$ mA/mm under pinch-off conditions. S-parameter measurements at a quiescent bias of $V_{DS} = 15$ V and $V_{GS} = −1.5$ V yield a current gain cutoff frequency, f_c, of 9 GHz and a power gain cutoff frequency, f_{max}, of 32 GHz, as shown in Fig. 2b. A Focus Microwaves load-pull system was used to measure the output power at 2 GHz. An output power of 2.6 W/mm and a PAE of 33% was measured.

![Fig. 2](image2.png)

Fig. 2 IV drain characteristics

(a) $L_G = 1.3$ μm, $W_G = 150$ μm. Threshold voltage occurs at $V_{GS} = −4.1$ V

(b) Small-signal measurements

Conclusions: An AIN/GaN MOS-HEMT employing a 3.6 nm ALD HfO$_2$ gate dielectric has been demonstrated. Despite higher sheet and contact resistances, 1.3 μm gate lengths and a non-optimised growth, these devices showed maximum drain currents of 950 mA/mm and
210 mS/mm transconductance. Unity gain cutoff frequencies, f_t and f_{max}, were measured to be 9 and 32 GHz for 1.3 μm long gates, respectively. Most notable was the reduction in gate current to 5 μA/mm in deep pinch off conditions ($V_{\text{GS}} = -7 \text{ V}$, $V_{\text{DS}} = 10 \text{ V}$) in a structure with an overall barrier thickness of 8 nm. Such performance exemplifies the potential for ultrathin AlN/GaN heterostructures in conjunction with ALD HfO$_2$ dielectric layers for the application to high-speed, high-power III-N technology.

© The Institution of Engineering and Technology 2009
23 December 2008
doi: 10.1049/el.2009.3688

D.A. Deen, S.C. Binari, D.F. Storm, D.S. Katzer and J.A. Roussos (Naval Research Laboratory, Microelectronics Division, Washington, DC 20375-5347, USA)

E-mail: ddeen@ccs.nrl.navy.mil

J.C. Hackley and T. Gougousi (Department of Physics, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA)

References