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LECTURE 1

Derived Types

Topics: In this lecture,
• General type constructor: MPI_Type_struct and MPI_Type_commit
• Special type constructors: MPI_Type_vector, MPI_Type_contiguous, MPI_Type_indexed
• Type matching
• Compacting data: MPI_Pack, MPI_Unpack

Reference: Textbook Ch.6.

1.1. Derived types

In order to facilitate the transfer of multiple pieces of data (such as structures), MPI provides a mecha-
nism for user–defined types.

Both intrinsic (e.g. MPI_FLOAT, MPI_CHAR etc.) and derived datatypes in MPI can be viewed as a
sequence of pairs

{(t0, d0), (t1, d1), . . . , (tn−1, dn−1)}
where each ti is an intrinsic MPI datatype and each di is a displacement (usually in bytes).

To build a derived type for broadcasting three integers, we could proceed as follows:
#include <stdio.h>
#include "mpi.h"

int main(int argc, char **argv) {
int p, id;
int a, b, c;
int bl[3] = {1,1,1};
MPI_Datatype tl[3] = {MPI_INT, MPI_INT, MPI_INT};
MPI_Aint dl[3], saddr, addr;
MPI_Datatype three_ints;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &id);

a = id;
b = 2*id;
c = 3*id;

MPI_Address(&a, &saddr);
dl[0] = 0;

MPI_Address(&b, &addr);
dl[1] = addr - saddr;

MPI_Address(&c, &addr);
dl[2] = addr - saddr;
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MPI_Type_struct(3, bl, dl, tl, &three_ints);
MPI_Type_commit(&three_ints);

MPI_Bcast(&a, 1, three_ints, 1, MPI_COMM_WORLD);
printf("p%d: a = %d\t b=%d\t c=%d\n", id, a, b, c);

MPI_Finalize();
return(0);

}

Although this example does not fully illustrate the power of derived types, it does introduce several new
MPI features:

MPI Aint: An MPI datatype for addresses, specially designed to handle cases where addresses don’t
fit in 4 bytes, which is the usual size in C. It is bad (but unfortunately common) practice in C to
perform integer arithmetic on pointers.

MPI Address: An MPI function whose prototype is

MPI_Address(
void *var, /* in: variable */
MPI_Aint *address /* out: address of variable */

);

Returns the address of a variable.
MPI Type struct: An MPI “type constructor” function whose prototype is

int MPI_Type_struct(
int count, /* in: number of blocks of elements */
int *bl, /* in: array of block lengths */
MPI_Aint *dl, /* in: array of displacements */
MPI_Datatype *tl, /* in: array of types */
MPI_Datatype *new_mpi_t /* out: derived datatype */

);

Creates a derived datatype with the specified sequence of types, block lengths and displacements.
The parameter count refers to the lengths of the bl, dl and tl arrays. Note that the actual starting
address of the message is not a part of the datatype. This ensures that the datatype can be used for
similar structures that occur frequently in a program. Note also that more complex derived datatypes
can be built by calling this function with the tl array containing derived datatypes.

This function only creates a data structure representing the derived datatype, which is not ready
for use until committed (see next).

MPI Type commit: MPI function whose prototype is

int MPI_Type_commit(
MPI_Datatype *new_mpi_t /* in/out: type to be installed */

);

This function has to be called before a derived datatype can be used to allow MPI to make internal
optimizations to improve communication of objects of this type. In the case of a complex datatype
built out of derived datatypes, note that only the final complex datatype needs to be committed, and
not the intermediate datatypes which serve as building blocks.

When to use a derived datatype? When a fixed data structure that needs to be communicated occurs
repeatedly in a proram, it is worthwhile to incur the overhead of building a dedicated datatype for it.
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1.2. Special type constructors

The MPI_Type_struct is the most general type constructor in MPI. However, since vectors/matrices and
data structures with multiple entries of same type occur so frequently in parallel applications, MPI provides
specially tailored versions of MPI_Type_struct.

MPI Type vector: An MPI function whose prototype is

int MPI_Type_vector(
int count, /* in: # elements in new type */
int bl, /* in: # entries in each element */
int stride, /* in: # elements between

* successive elements
* of new type */

MPI_Datatype el_type, /* in: type of each element */
MPI_Datatype *new_mpi_t /* out: new datatype */

);

Note the differences with MPI_Type_struct: bl and el_type are not arrays. Also, the stride
parameter is a single number.

MPI Type contiguous: An MPI function whose prototype is

int MPI_Type_contiguous(
int count, /* in: # elements in new type */
MPI_Datatype old_type, /* in: type of each element */
MPI_Datatype *new_mpi_t /* out: new datatype */

);

Self–explanatory!
MPI Type indexed: An MPI function whose prototype is

int MPI_Type_indexed(
int count, /* in: # elements */
int *bl, /* in: array of block lengths */
int *dl, /* in: array of displacements */
MPI_Datatype old_type, /* in: old type */
MPI_Datatype new_mpi_t /* out: new datatype */

);

This is different from MPI_Type_struct in that all elements have to be of the same type, although
they are are allowed to be located at arbitrary positions in memory.

1.3. Type matching

A typical Send/Recv of a derived datatype is as follows:

if (my_rank == 0) { /* root process */
dest = 1;
MPI_Send(mesg, send_count, send_mpi_t, dest, tag,
MPI_COMM_WORLD);

} else if (my_rank == 1) {
src = 0;
MPI_Recv(mesg, recv_count, recv_mpi_t, src, tag,
MPI_COMM_WORLD, &status);

}

What if send_mpi_t and recv_mpi_t are different? What if send_count and recv_count are different?
These issues are resolved by type matching.

The type signature of a datatype {(t0, d0), . . . , (tn−1, dn−1) is simply the sequence (t0, . . . , tn−1). The
type signature of a message with count elements of a given datatype is simply the type signature of the
given datatype concatenated count times.
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Given these definitions for type signatures, the type matching rule in MPI for non–collective commu-
nication functions (such as Send and Recv) is as follows. If (t0, . . . , tn−1) is the type signature of the sent
message and (u0, . . . , um−1) is that of the received message, then we must ensure that

• n ≤ m, and
• ui = ti (i = 0, . . . , n− 1).
Note, however, that for collective communication calls (such as MPI_Bcast), the type signatures specified

by all processes must match exactly.

1.4. Packing/Unpacking data

Another mechanism to communicate multiple pieces of data is to pack data into one contiguous segment,
bypassing the explicit construction of derived types. At the sending end, we have the MPI function
MPI_Pack(
void *pack_data, /* in: data to be packed */
int in_count, /* in: # elements to be packed */
MPI_Datatype datatype, /* in: type of elements */
void *buffer, /* out: packed data */
int buffer_size, /* in: size of buffer in bytes */
int *position, /* in: offset in buffer

* out: first free location in buffer */
MPI_Comm comm /* in: communicator */
);

First, note that all elements must have the same type. The array buffer must be at least as large as the
number of bytes to be packed. The first call to this function copies in_count elements from pack_data at
the address starting at buffer \ *position+. On return, position contains the first location in buffer
after the copied data.

At the receiving end, we have the MPI function
MPI_Unpack(
void *buffer, /* in: packed data */
int size, /* in: size of buffer in bytes */
int *position, /* in: offset into buffer

* out: first location after copied data */
void *unpack_data, /* out: unpacked data */
int count, /* in: # elements to be unpacked */
MPI_Datatype datatype, /* in: type of elements */
MPI_Comm comm /* in: communicator */
);

On the first call, the data starting from buffer \ *position+ is copied into the memory segment with
starting address unpack_data. On return, *position contains the first location in buffer after the copied
data.

When communicating packed data, use the type MPI_PACKED.
In general, packed data should be used for communicating a data structure
• that occurs so infrequently that the overhead in the construction of a derived type (for instance, via
MPI_Type_indexed) is not justified, or
• that has variable length, so a single derived type cannot be used for communicating all instances of

the data structure (e.g. sparse matrices of fixed dimension, but variable number of nonzeros).
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LECTURE 2

Communicators

Topics: In this lecture,
• Constructing new communicators
• MPI_Comm_create and MPI_Comm_split

Reference: Textbook Ch.7.

2.1. Communicators

So far, we have always used MPI_COMM_WORLD as our universe of communicating processes. In many
applications, it’s natural for communication to repeatedly occur within a subgroup of the processes in
MPI_COMM_WORLD. For example, consider the following numerical approximations typical in gradient calcula-
tions for f : R2 → R:

∇xf(x0, y0) ≈ f(x0 + h, y0)− f(x0, y0)
h

(right–sided)

∇xf(x0, y0) ≈ f(x0, y0)− f(x0 − h, y0)
h

(left–sided)

∇xf(x0, y0) ≈ f(x0 + h, y0)− f(x0 − h, y0)
2h

(two–sided)

If we map a rectangular mesh of grid points in the domain on to a (virtual) grid of processes, we see that
communication occurs between processes of the same row. Similar expressions for ∇yf(x0, y0) will show
that communication occurs within processes of each column. Although it is possible to implement these
communications naively with the usual MPI functions we have used so far, it is definitely convenient to be
able to define subgroups of communicating processes which can take part in both point–to–point as well as
collective communication.

MPI provides a mechanism to create new communicators. New user–defined communicators may be
created in one of two broad classes:

Intra–communicators: Communication (point–to–point and collective) occurs between processes of
a newly created communicating class.

Inter–communicators: Communication can occur between processes of two different communicating
classes.

The second category is quite a complicated issue; we will focus on the first kind. Hereafter, our usage of
communicator refers to intra–communicator.

2.2. Creating New Communicators

Note that a communicator is merely a class of communicating processes, so a particular process can
participate in different communicators. Abstractly, a communicator is indentified by a

Group: An array of process ranks. (In MPI_COMM_WORLD, these ranks are 0, . . . , p−1, where p is number
of processes.)

Context: This is a unique ID that MPI uses internally for identifying communicators. Two distinct
communicators will have distinct ID’s even if they comprise the same group of processes. The same
process could have different ranks in different communicators. Since we are dealing with intra–
communicators, all processes in a given communicator must use the same communicator in their MPI
function calls. The context is a quick way for MPI to verify that this is the case.
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The actual implementation of groups and contexts is opaque to the user, who has no need to explicitly
manipulate them.

Let us try to construct a new communicator consisting of the first row of processes in our virtual grid.

/* comm_create.c -- builds a communicator from the first q processes
* in a communicator containing p = q^2 processes.
*
* Input: none
* Output: q -- program tests correct creation of new communicator
* by broadcasting the value 1 to its members -- all other
* processes have the value 0 -- global sum computed across
* all the processes.
*
* Note: Assumes that MPI_COMM_WORLD contains p = q^2 processes
*
* See Chap 7, pp. 117 & ff in PPMPI
*/
#include <stdio.h>
#include "mpi.h"
#include <math.h>
#include <stdlib.h>

main(int argc, char* argv[]) {
int p;
int q; /* = sqrt(p) */
int my_rank;
MPI_Group group_world;
MPI_Group first_row_group;
MPI_Comm first_row_comm;
int* process_ranks;
int proc;
int test = 0;
int sum;
int my_rank_in_first_row;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

q = (int) sqrt((double) p);

/* Make a list of the processes in the new
* communicator */
process_ranks = (int*) malloc(q*sizeof(int));
for (proc = 0; proc < q; proc++)

process_ranks[proc] = proc;

/* Get the group underlying MPI_COMM_WORLD */
MPI_Comm_group(MPI_COMM_WORLD, &group_world);

/* Create the new group */
MPI_Group_incl(group_world, q, process_ranks,

&first_row_group);
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/* Create the new communicator */
MPI_Comm_create(MPI_COMM_WORLD, first_row_group,

&first_row_comm);

/* Now check whether we can do collective ops in first_row_comm */
if (my_rank < q) {

MPI_Comm_rank(first_row_comm, &my_rank_in_first_row);
if (my_rank_in_first_row == 0) test = 1;
MPI_Bcast(&test, 1, MPI_INT, 0, first_row_comm);

}
MPI_Reduce(&test, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (my_rank == 0) {
printf("q = %d, sum = %d\n", q, sum);

}

MPI_Finalize();
} /* main */

MPI_Group is an opaque, internal type and

MPI_Group(
MPI_Comm *comm, /* in */
MPI_Group *group /* out */

);

returns the group associated with comm in group. A call to

MPI_Group_incl(
MPI_Group old_group, /* in */
int q, /* in */
int *process_ranks, /* in */
MPI_Group *new_group /* out */

);

constructs a new group called new_group for the q processes whose ranks are in the array process_ranks,
whose context in the parent communicator (MPI_COMM_WORLD in this case) is in old_group. Finally, the new
communicator is actually created by calling

MPI_Comm_create(
MPI_Comm old_comm, /* in */
MPI_Group new_group, /* in */
MPI_Comm *new_comm /* out */

);

which returns a handle on the new communicator in new_comm. Note that this function is a collective call
made by all processes in old_comm (with the same argument passed for old_comm), inluding those not being
included in the new communicator! This is necessary for MPI to internally update the context.

If we want to simultaneously create a new communicator for each row, modifying the above code is
somewhat tedious. MPI provides the collectively–called function
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MPI_Comm_split(
MPI_Comm old_comm, /* in */
int split_key, /* in */
int rank_key, /* in */
MPI_Comm *new_comm /* out */

);

which, for each calling process, provides a handle new_comm into a new communicator containing all processes
in old_comm that executed this function with the same value of split_key. For two processes p1 and p2
belonging to the same new_comm that called MPI_Comm_split with arguments rank_key1 > rank_key2,
MPI will assign new ranks of these processes in new_comm such that the rank of p1 is greater than the rank
of p2. If a particular process in old_comm is to be excluded from new_comm, it should call MPI_Comm_split
with split_key = MPI_UNDEFINED. In this case, the predefined type MPI_COMM_NULL will be returned in
new_comm for this process. Note that although different processes in new_comm may receive different literal
pointers new_comm which point their own copies of a representation of new_comm, MPI maintains the context
of new_comm, so they will all be identified as the same communicator in any subsequent point–to–point or
collective communcation.

The following example illustrates how to use MPI_Comm_split to simultaneously create a new commu-
nicator for each row of our virtual grid.

/* comm_split.c -- build a collection of q communicators using MPI_Comm_split
*
* Input: none
* Output: Results of doing a broadcast across each of the q communicators.
*
* Note: Assumes the number of processes, p = q^2
*
* See Chap. 7, pp. 120 & ff in PPMPI
*/
#include <stdio.h>
#include "mpi.h"
#include <math.h>

main(int argc, char* argv[]) {
int p;
int my_rank;
MPI_Comm my_row_comm;
int my_row;
int q;
int test;
int my_rank_in_row;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

q = (int) sqrt((double) p);

/* my_rank is rank in MPI_COMM_WORLD.
* q*q = p */
my_row = my_rank/q;
MPI_Comm_split(MPI_COMM_WORLD, my_row, my_rank,

&my_row_comm);
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/* Test the new communicators */
MPI_Comm_rank(my_row_comm, &my_rank_in_row);
if (my_rank_in_row == 0)

test = my_row;
else

test = 0;

MPI_Bcast(&test, 1, MPI_INT, 0, my_row_comm);

printf("Process %d > my_row = %d, my_rank_in_row = %d, test = %d\n",
my_rank, my_row, my_rank_in_row, test);

MPI_Finalize();
} /* main */
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LECTURE 3

Topologies

Topics: In this lecture,
• Cartesian grids and tori
• MPI_Cart_create, MPI_Cart_coords, MPI_Cart_rank and MPI_Cart_sub.
• Fox’s algorithm for matrix multiplication.

Reference: Textbook Ch.7.

3.1. Cartesian Grids and Tori

A topology is a mapping of processes in a communicator to an addressing scheme. The addressing scheme
is usually chosen for convenience; there may be no relation between the addressing scheme and the physial
hardware layout of a parallel computer. While any graph topology can be implemented on a set of MPI
processes, a special set of functions is available to construct and manipulate Cartesian grids which occur
frequently in applications. In the next section, we will see an application of Cartesian grids, but first let us
see how to construct a communicator with this topology.

The following code snippet shows how to map q2 processes onto a q × q Cartesian grid:
MPI_Comm grid_comm;
int dim_sizes[2] = {q, q};
int wrap_around[2] = {1, 1};
int reorder = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dim_sizes, wrap_around,
reorder, &grid_comm);

The second argument in MPI_Cart_create indicates the dimension of the grid (2–D in this case). The array
dim_sizes contains the size along each dimension. The wrap_around array has entries 1 (first process is
considered adjacent to the last process along that dimension) or 1 (first process is not considered to be
adjacent to the last process in that dimension). Setting the parameter reorder to 1 allows MPI to relabel
the process ranks in grid_comm to optimize communication.

MPI provides two addressing functions for Cartesian grids:

MPI_Cart_coords(
MPI_Comm grid_comm, /* in */
int my_grid_rank, /* in */
int dim, /* in */
int *coords /* out */

);

returns in the array coords, the grid location associated with process rank my_grid_rank in the dim–
dimensional grid communicator grid_comm.

The inverse of this function is

MPI_Cart_rank(
MPI_Comm grid_comm, /* in */
int *coords /* in */
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int *grid_rank /* out */
);

which returns the rank of the process at grid location given by coords in the address grid_rank.
(Note the annoying asymmetry between the argument lists for these two functions. The dim parameter

is not needed for MPI_Cart_rank, presumably because MPI keeps track of it in the context for grid_comm
at the time the grid was created. Yet, the dim parameter has to be passed explicitly for MPI_Cart_coords!)

Once a grid has been created, we can subsequently partition it into subgrids of communicating processes
using

MPI_Cart_sub(
MPI_Comm grid_comm, /* in */
int *free_coords, /* in */
MPI_Comm *new_comm /* out */

);

The processes in grid_comm are partitioned into disjoint communicators with associated Cartesian topologies.
Here, the length of the free_coords array must equal the number of dimensions of the grid corresponding to
grid_comm. If free_coords[i] = 0, then the resulting new_comm contains all those processes of grid_comm
whose ith coordinate is the same. Thus, if the grid associated with grid_comm has dimensions d1 × . . . dn,
and if free_coords[i] = 0 only for i = i1, i2, . . . , ik, then di1di2 . . . dik communicators are simultaneously
created.

Like MPI_Comm_split, this function is also a collective operation.

3.2. Fox’s algorithm

In this section, we will discuss Fox’s algorithm for matrix multiplication. Although this may not be the
best way to multiply to matrices in parallel, it serves to illustrate the usefulness of Cartesian grid topologies.

Suppose we want to multiply two n × n matrices A and B. For the sake of illustration, let us assume
that we have n2 processes in a Cartesian grip topology, so we can index a process with a pair (i, j). We
assume that arithemtic on indices are modulo n, e.g. i+ k stands for (i+ k) mod n. In the beginning, each
processor (i, j) contains aij and bij . The multiplication proceeds in n stages as described below.

• Stage 0 on process (i, j): This process multiplies the diagonal entry of A in its process row i with its
entry of B, namely bij :

cij = aiibij .

• Stage 1 on process (i, j): This process multiplies the element to the right of the diagonal of A in its
process row i by the element of B directly beneath its own element of B, namely bi+1,j :

cij = cij + ai,i+1bi+1,j .

• . . . and so on.
• Stage k on process (i, j):

cij = cij + ai,i+kbi+k,j .

Over the course of the n stages, we compute cij as

cij = aiibij + ai,i+1bi+1,j + . . .+ ai,n−1bn−1,j + ai0b0j + . . .+ ai,i−1bi−1,j .

At each stage, each of the n2 processes performs one operation (a multiplication and an addition) amounting
to a total of n3 operations, but in n time steps. To understand how to move data around from Stage k to
Stage (k+1), see Figure 7.3 of the textbook. An implementation of the algorithm, along with other code
appearing in the book, can be downloaded from the web page for the textbook.
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LECTURE 4

Rings and Hypercubes

Topics: In this lecture,
• Special topologies: rings and hypercubes.
• Implementing MPI_Allgather on rings and hypercubes.

Reference: Textbook Ch.13.1–13.4.
In the previous lecture, we saw how MPI can partition the universe of processes MPI_COMM_WORLD into

virtual Cartesian grids, irrespective of the underlying physical connections between the processors. In this
lecture, we will see how to implement MPI’s communication functions on rings and hypercubes. The specific
communication function we use to illustrate the idea is MPI_Allgather.

4.1. Rings

Suppose we have p processes 0, . . . , p− 1 configured as a ring. Perhaps the simplest way to implement
Allgather is to use a ring pass. This proceeds in p− 1 stages. During Stage k, process i passes to process
i+ 1 the data it received from process i−1 in Stage k−1. (All arithmetic here is modulo p.) This operation
clearly takes O(p) time to complete, and is accomplished by the following code snippet. We assume that, in
the beginning, each process contains one unit of data, which is a block of floats.

void Allgather_ring(
float x[] /* in */,
int blocksize /* in */,
float y[] /* out */,
MPI_Comm ring_comm /* in */) {

int i, p, my_rank;
int successor, predecessor;
int send_offset, recv_offset;
MPI_Status status;

MPI_Comm_size(ring_comm, &p);
MPI_Comm_rank(ring_comm, &my_rank);

/* Copy x into correct location in y */
for (i = 0; i < blocksize; i++)

y[i + my_rank*blocksize] = x[i];

successor = (my_rank + 1) % p;
predecessor = (my_rank - 1 + p) % p;

for (i = 0; i < p - 1; i++) {
send_offset = ((my_rank - i + p) % p)*blocksize;
recv_offset =

((my_rank - i - 1 + p) % p)*blocksize;
MPI_Send(y + send_offset, blocksize, MPI_FLOAT,

successor, 0, ring_comm);
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MPI_Recv(y + recv_offset, blocksize, MPI_FLOAT,
predecessor, 0, ring_comm, &status);

}
} /* Allgather_ring */

Note that every processor first sends, then receives. Consequently, this function would be unsafe in
systems without buffering.

4.2. Hypercubes

A classic way to propagate data in a hypercube is the so–called hypercube exchange, which we will now
describe. Note that the d–dimensional hypercube consists of 2d processes, and can be defined recursively by
connecting corresponding nodes in two (n−1)–dimensional hypercubes. We can address each of these nodes
using a bit vector of length d. The addresses are chosen such that two nodes in a hypercube are considered
adjacent if the Hamming distance between their addresses is unity. In the beginning, each node has one unit
of data. During stage k, adjacent pairs of nodes in the two (d − 1)–dimensional hypercubes exchange 2k

units of data (see Fig. 13.6 of the textbook).
This operation is completed in O(d) stages, or equivalenty, O(log p) stages, where p = 2d is the number

of processes. However, note that the amount of data transferred in each stage is not constant. Suppose we
want to Allgather a single precision number on each node. Initially (Stage 0), each node exchanges one
float with a neighbor. In the first stage, each node exchanges two (= 21) floats, but spaced 2p−1 units apart,
with another neighbor. In the second stage, each node exchanges four (= 22) floats, but spaced 2p−2 units
apart, and so on. In general, for transferring arrays, we will have to deal with blocks of floats, for which we
can build a derived datatype using, for example, MPI_Type_vector.

Addressing nodes in a hypercube is best done with bit operators in the C language. The following code
snippet illustrates the basic idea.

int log_base2(int p) {
/* Just counts number of bits to right of most significant
* bit. So for p not a power of 2, it returns the floor
* of log_2(p).
*/

int return_val = 0;
unsigned q;

q = (unsigned) p;
while(q != 1) {

q = q >> 1;
return_val++;

}
return return_val;

} /* log_base2 */

/*--------------------------------------------------------------------*/

void Allgather_cube(
float x[] /* in */,
int blocksize /* in */,
float y[] /* out */,
MPI_Comm comm /* in */) {

int i, d, p, my_rank;
unsigned eor_bit;
unsigned and_bits;
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int stage, partner;
MPI_Datatype hole_type;
int send_offset, recv_offset;
MPI_Status status;

int log_base2(int p);

MPI_Comm_size(comm, &p);
MPI_Comm_rank(comm, &my_rank);

/* Copy x into correct location in y */
for (i = 0; i < blocksize; i++)

y[i + my_rank*blocksize] = x[i];

/* Set up */
d = log_base2(p);
eor_bit = 1 << (d-1);
and_bits = (1 << d) - 1;

for (stage = 0; stage < d; stage++) {
partner = my_rank ^ eor_bit;
send_offset = (my_rank & and_bits)*blocksize;
recv_offset = (partner & and_bits)*blocksize;

MPI_Type_vector(1 << stage, blocksize,
(1 << (d-stage))*blocksize, MPI_FLOAT,
&hole_type);

MPI_Type_commit(&hole_type);

MPI_Send(y + send_offset, 1, hole_type,
partner, 0, comm);

MPI_Recv(y + recv_offset, 1, hole_type,
partner, 0, comm, &status);

MPI_Type_free(&hole_type); /* Free type so we */
/* can build new type during next pass */

eor_bit = eor_bit >> 1;
and_bits = and_bits >> 1;

}
} /* Allgather_cube */

Once again, notice that the function is unsafe as it may fail in the absence of buffering. Also, the
behavior of MPI_Type_vector is not well–defined when blocksize is zero, resulting in an invalid datatype.

4.3. Avoiding Deadlocks

In the absence of buffering, an MPI_Send will not return until the corresponding MPI_Recv has been
executed. If all processes are busy in a send operation, we have a deadlock.

One way to avoid a deadlock is to re–organize the sends and the receives. For instance, the odd numbered
processes could send, while the even numbered processes could receive. (Convince yourself that this scheme
works even when there are an odd number of processes.) Alternatively, MPI provides the function

int MPI_Sendrecv(
void *send_buf, /* in */
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int send_count, /* in */
MPI_Datatype send_type, /* in */
int dest, /* in */
int send_tag, /* in */
void *recv_buf, /* out */
int recv_count, /* in */
MPI_Datatype recv_type, /* in */
int src, /* in */
int recv_tag, /* in */
MPI_Comm comm, /* in */
MPI_Status *status /* out */

);

which is a safe implementation of a simultaneous send and receive. The parameters dest and src can be the
same. Moreover, this function call by the sender (receiver) can be matched by a call to MPI_Recv (MPI_Send)
by the receiver (sender). However, send_buf and recv_buf must be distinct. (If it is convenient for data
to be received in the same buffer whose data was sent, recall the function MPI_Sendrecv_replace which we
encountered earlier. However, a little thought immediately shows that this function implicitly assumes some
buffering.)

4.4. Null Processes

To exclude a specific process from a communication, we can test the rank of the process. A more elegant
solution that works cleanly even in collective communication is the use of MPI_PROC_NULL, a predefined
constant. A process executing a send to MPI_PROC_NULL will return immediately without any effect. A
process executing a receive from MPI_PROC_NULL will return immediately without any change to its output
buffer. The status argument in the receive will have the count parameter set to zero and the MPI_Tag
parameter set to MPI_ANY_TAG.
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