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UMBC: An Honors University in Maryland

Located in the Mid-Atlantic region —
15 minutes South of Baltimore,
30 minutes North of Washington

Founded in 1966 as third Ph.D.-granting
research university in the
University System of Maryland

Science and Technology focus
(Applied Math. oldest Ph.D. program,
Statistics B.S. only in Maryland),
also strengths in Visual Arts, Performing
Arts, and Humanities

13,000 students (10,000 undergraduate,
3,000 graduate students); ≈ 480 research
faculty in ≈ 33 departments —
smallest public research university in U.S.!

Ranked #1 “up and coming” university by
U.S. News & World Report in 2009, 2010
— and again in 2011 !
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Location of UMBC

UMBC in the Baltimore-Washington corridor of science and technology:
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Current Research Interests

From webpage www.math.umbc.edu/∼gobbert:

Scientific computing and parallel algorithms for computing clusters and other
architectures

Applications in the life sciences, computational biology, engineering, statistics, and
other areas

Multiscale modeling and numerical simulation of chemically reactive flows; more
information: www.math.umbc.edu/∼gobbert/calcium

Numerical methods for stationary and time-dependent partial differential equations

Collaborations — mostly faculty listed; not all listed!:

Math biology, physiology, calcium flow, and related: Xuan HuangG, Samuel KhuvisG,
Zana CoulibalyG, Dr. Bradford E. Peercy, Thomas I. Seidman, Math and Stat
(UMBC)

Numerical linear algebra and computer science: Jonas SchäferG, Dr. Andreas Meister,
Uni Kassel, Germany; Yu WangG (HPCF RA), Marc Olano, CSEE (UMBC)

Computational statistics: Jonathan McHenryG (CIRC RA), Andrew RaimG (HPCF
RA), Dr. Nagaraj K. Neerchal, Math and Stat (UMBC)

UBM (bioinformatics, information theory): Robert ForderUG, Matthew BrewsterUG,
Kathryn CroniseUG, Dr. Ivan Erill, Dr. Kevin Omland, Biology (UMBC)

REU Site (NSA): Randal MckissackUG, Richard AdjogahUG, CSEE (UMBC)

−→ Links and more information on my webpage!
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How Research Works — Example of Calcium Wave Simulations:

Project history (G for graduate and UG for undergraduate co-author):
1998 Initial contact by Leighton T. Izu, U. of Maryland, Baltimore
2000–2002 Convergence of FEM and coarse-grained parallel solution:

[HanhartG M.S. thesis; HanhartG, Gobbert, Izu JCAM 2004]
2002–2008 Development of C code with fine-grained MPI parallelism:

[AllenUG and Gobbert, ICCSA 2003; AllenUG, senior thesis 2003
and UMBC Review 2004; Gobbert, SISC 2008;
Gobbert, HPCF–2008–1; MuscedereG, Gobbert, HPCF–2008–2;
RaimG and Gobbert, HPCF–2010–2; MuscedereG, RaimG,
Gobbert, HPCF–2010–4; TrottG and Gobbert, HPCF–2010–11]

2007–2008 Convergence of stationary FEM in COMSOL Multiphysics:
[YangG and Gobbert, HPCF–2008–4 and COMSOL 2008]

2004–2011 Rigorous convergence of time-dependent FEM:
[Seidman, Gobbert, TrottG, Kruž́ık, Numer. Math., submitted;
TrottG and Gobbert, COMSOL 2011]

2009–2011 Application studies for wave with recovery and spiral wave:
[CoulibalyG, MuscedereG, Gobbert, Peercy, HPCF–2009–6;
CoulibalyG, Peercy, Gobbert, in preparation (2 papers)]
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Outline

Introduction

Biological Background and Motivation
Mathematical Model and Numerical Challenges

Numerical Methods Used

Numerical Results

Convergence Studies
Application Problem Studies
Performance Studies of Parallel Code

Conclusions and Future Work

Matthias K. Gobbert Mathematics and Statistics, UMBC 7 / 89



Introduction Numerical Method Numerical Results HPCF Conclusions

A Model for Calcium Flow in a Heart Cell
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Motivations

Leading Causes of Death (Data are for the U.S.)
Number of deaths for leading causes of death

Heart disease: 616,067
Cancer: 562,875
Stroke (cerebrovascular diseases): 135,952
Chronic lower respiratory diseases: 127,924

(Source: CDC – Centers for Disease Control and Prevention. 2007 Statistics
Published in May 2010.)

An estimated 81,100,000 American adults (more than 1 in 3) have 1 or more
types of Cardiovascular Disease.
(Source: American Heart Association Heart Disease and Stroke Statistics –
2010 Update.)
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Heart:
Consists of numerous cell types: some form heart connective
tissue, other cells grow into heart valves, and cardiac muscle cells
(heart cells) give the heart its ability to beat and pump blood
throughout the body.

Cardiac cell structure (Guyton and Hall, 1996, p. 108) Single heart cell

⇒ Multiscale Modeling Problem! We consider one cell.
Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium:
Plays crucial role in the proper functioning of the heart cell
Electrical stimulation of the heart cell triggers thousands of calcium
sparks that sum to increase intracellular calcium levels. The increase in
calcium subsequently results in the activation of calcium-sensitive
proteins that are responsible for cell-shortening, or contraction.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium (cont.):
Spontaneous calcium sparks can occur without external electrical
stimulation!
Experiments

(1.a) t=0ms (1.b) t=399ms (1.c) t= 726ms

(1.d) t=1287ms (1.e) t=2079ms (1.f) t=2409ms

Figures (1.a–1.f) show an experimental calcium wave propagation in a rabbit
ventricular myocyte with confocal imaging used to record fluo-4 fluorescence (courtesy
of Dr. Kenneth Spitzer, CVRTI, University of Utah). The experiment uses a rabbit
ventricular myocyte bathed in solution containing 10mM Ca at 26◦C, pH 7.4. The
pacing was at a cycle length of 400 milliseconds for a few beats to overload the SR.
The frame size is 168µm×168µm.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Domain and Calcium Release Units

Model cell: Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0), units of µm,

CRU spacings ∆zs = 2.0 µm between z-planes and

∆xs = ∆ys = 0.8 µm on z-plane

⇒ large domain with 15× 15× 31 = 6,975 calcium release units (CRUs)!

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Model for Calcium Release through the CRUs

Calcium ions (Ca2+) are released in a cell at discrete points called
Calcium Release Units (CRUs).
15× 15× 31 = 6,975 CRU lattice
⇒ need high-resolution 128× 128× 512 mesh
⇒ 25.6 million DOF for 3-species model
A high concentration of Ca2+ at a CRU will increase the
probability that it will release ions (‘fires’).
Organized waves of increasing calcium drive the heart beat,
but waves can also self-organize spontaneously
CRUs may open every 1 ms; if opened, stay open for 5 ms;
afterwards stay closed for at least 100 ms.
⇒ need large final time to simulate several waves
on laboratory time scales, for instance, tfin = 1,000 ms = 1 s.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Propagating Waves of Calcium Release in a Heart Cell

The release of calcium ions from the sarcoplasmic reticulum (SR)
occurs through clusters of ryanodine receptors (RyRs)
[Izu et al. 1998, 2001a, 2001b, 2006; Hanhart et al. 2004].
Species in model: calcium ions C = u(0), fluorescent calcium indicator
F = u(1), endogenous calcium buffer B = u(2), and F and B bound to
calcium as G = u(3) and H = u(4).
Reaction model and reaction rates (species generation rates):

C + F 
 G ⇔ R(1) = −k+
1 u(0)u(1) + k−1 u(3),

C + B 
 H ⇔ R(2) = −k+
2 u(0)u(2) + k−2 u(4),

The total of bound and unbound indicator and buffer species is
conserved, that is, u(1) + u(3) = u1 and u(2) + u(4) = u2 used to
eliminate u(3) and u(4) from the reaction rates.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Model for Calcium Release through the CRUs

Model for the calcium release units (CRUs) as point sources:

JSR(u(0),x, t) =
∑
x̂∈Ωs

σ Sx̂(u(0), t) δ(x− x̂)

Sx̂(u(0), t) = 1 for topen = 5 ms with probability

Jprob(u(0)) =
Pmax (u(0))nprob

(Kprob)nprob + (u(0))nprob

then closed for tclosed = 100 ms.
Model point source mathematically as Dirac delta distribution δ(x− x̂)
defined by δ(x− x̂) = 0 for all x 6= x̂ and

∫
δ(x− x̂) ϕ(x) dx = ϕ(x̂) for any

continuous function ϕ(x). ⇒ need finite element method (FEM) and
classical theory cannot guarantee convergence ⇒ research topic!

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium Flow in a Heart Cell

Problem: System of time-dependent reaction-diffusion equations

∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
+ ai u(i) = f (i) + r(i) +

(
Jpl + JSR

)
δi0

for the concentrations u(i)(x, t), 0 ≤ i < ns, of the ns reactive species for all
x ∈ Ω ⊂ R3 (d = 3) and time 0 ≤ t ≤ tfin.
Calcium flow: ns = 3, species i = 0 denotes calcium ions (Ca2+).

Diffusivity matrices D(i) ∈ R3×3 diagonal positive definite;

constant ai ≥ 0;

linear forcing term f (i)(x, t);

non-linear reaction terms r(i)(u(0), . . . , u(ns−1));

additional terms for Ca2+ species: Jpl = −Jpump + Jleak and JSR.

(Kronecker delta defined as δij = 0 for all i 6= j and δij = 1 for i = j)

Matthias K. Gobbert Mathematics and Statistics, UMBC
17 /
89



Introduction Numerical Method Numerical Results HPCF Conclusions

Calcium Flow in a Heart Cell

Reaction terms:

r(i)(u(0), . . . , u(ns−1)) :=


ns−1∑
j=1

R(j)(u(0), u(j)), for i = 0,

R(i)(u(0), u(i)), for i = 1, . . . , ns − 1.

with reaction rates

R(i) = −k+
i u(0)u(i) + k−i

(
ui − u(i)

)
for i = 1, . . . , ns − 1.

Pump and leak terms Jpl = −Jpump + Jleak:

Jpump(u(0)) =
Vpump (u(0))npump

(Kpump)npump + (u(0))npump
.

and Jleak = Jpump(u(0)) for u(0) = 0.1 µM at rest.

Matthias K. Gobbert Mathematics and Statistics, UMBC
18 /
89



Introduction Numerical Method Numerical Results HPCF Conclusions

Summary of Numerical Methods Used

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Method of Lines using Finite Elements

Take advantage of the regular shape of the domain Ω and use a
uniform mesh of 3-D brick elements of size ∆x ∆y ∆z

Use tri-linear nodal basis functions and expand in global basis
functions u(i)(x, t) ≈ u

(i)
h (x, t) =

∑
k u(i)

k (t) ϕk(x) with
u(i)

k (t) ≈ u(i)(xk, t)
Take advantage of the structure and constant coefficients to
precompute the stiffness matrix, mass matrix, etc. analytically.

Then need to solve the ODE problem

M̂
du(i)

dt
= −(K(i) + M (i)

a )u(i) + F(i) + r(i) + (jpl + Σ) δi0.

with lumped mass matrix M̂ (for all species) [Thomée 2006] and

Σk :=
∫

Ω

JSR ϕk dx = σ
∑
x̂∈Ωs

Sx̂

∫
Ω

δ(x− x̂) ϕk(x) dx = σ
∑
x̂∈Ωs

Sx̂ ϕk(x̂).

Matthias K. Gobbert Mathematics and Statistics, UMBC
20 /
89



Introduction Numerical Method Numerical Results HPCF Conclusions

Summary of Other Numerical Method Components

ODE method: fully implicit NDFk, 1 ≤ k ≤ 5, with automatic
step size and order selection [Shampine and Reichelt, SISC 1997]
non-linear solver: Newton method with analytical Jacobian
[Gobbert, SISC 2008]
linear solver: iterative QMR method with matrix-free products for
all system matrices and their transposes [Demmel, SIAM 1997]
matrix-free implementation of all matrix-vector products ⇒
Jacobian-Free Newton-Krylov (JFNK) method
since matrix-free, all matrices are always up to date, hence
convergence of Newton is best possible

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Convergence of the Finite Element Method for Highly Non-Smooth
Source Terms

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Scalar Test Problem with Smooth Source Term

Scalar test problem with ns = 1, D = 1, a = 0, f ≡ 0, and all
application-related functions set to 0.

Error on Ω against reference solution (estimated convergence order q(est))
t = 2 t = 3 t = 4

16× 16× 64 3.9999e–02 5.6112e–02 6.9959e–02
32× 32× 128 9.9770e–03 (2.0033) 1.3984e–02 (2.0046) 1.7424e–02 (2.0054)
64× 64× 256 2.3849e–03 (2.0647) 3.3408e–03 (2.0655) 4.1608e–03 (2.0661)

128× 128× 512 4.7750e–04 (2.3204) 6.6881e–04 (2.3205) 8.3285e–04 (2.3207)

Classical theory for ut −∇ · (D∇u) = f with f ∈ L2(Ω)
[e.g., Thomeé 2006]:
‖u− uh‖L2(Ω)

≤ C hq with q = 2 on Ω ⊂ Rd for all d = 1, 2, 3

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Scalar Test Problem with Non-Smooth Source Term

Scalar test problem with ns = 1, D = 1, a = 0, f ≡ 0, and all
application-related functions set to 0, except 1 CRU at cell center.

Error on Ω against reference solution (estimated convergence order q(est))
t = 2 t = 3 t = 4

16× 16× 64 1.8651e+03 1.8503e+03 1.8415e+03
32× 32× 128 1.7120e+03 (0.124) 1.6974e+03 (0.124) 1.6951e+03 (0.120)
64× 64× 256 1.4537e+03 (0.236) 1.4531e+03 (0.224) 1.4529e+03 (0.222)

128× 128× 512 9.6843e+02 (0.586) 9.6832e+02 (0.586) 9.6829e+02 (0.585)

Heuristic arguments and computational evidence indicate
‖u− uh‖L2(Ω)

≤ C hq with q = 2− d/2 for d = 1, 2, 3 on Ω ⊂ Rd,

that is, ‖u− uh‖L2(Ω)
≤ C h1/2 on Ω ⊂ R3

[Hanhart, Gobbert, and Izu, JCAM 2004; Gobbert, SISC 2008]
Rigorous proof available now!
[Seidman, Gobbert, Trott, and Kruž́ık, Numer. Math., submitted]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Scalar Test Problem with Non-Smooth Source Term

Test in Ω excluding the neighborhood Ω0 of the CRU:

Error on Ω\Ω0 against reference solution (estimated convergence order q(est))
t = 2 t = 3 t = 4

16× 16× 64 2.6478e–01 9.8039e–01 2.2494e+00
32× 32× 128 1.2526e–01 (1.080) 3.7741e–01 (1.377) 6.6924e–01 (1.749)
64× 64× 256 3.7324e–02 (1.747) 1.1385e–01 (1.729) 1.8863e–01 (1.827)

128× 128× 512 8.0971e–03 (2.205) 2.3743e–02 (2.262) 3.8368e–02 (2.298)

Error in species mass (estimated convergence order q(est))
t = 2 t = 3 t = 4

16× 16× 64 1.4332e+00 3.6992e+00 4.4979e+00
32× 32× 128 1.2033e+00 (0.252) 1.2032e+00 (1.620) 1.2032e+00 (1.902)
64× 64× 256 3.1122e–01 (1.951) 3.1111e–01 (1.951) 3.1110e–01 (1.951)

128× 128× 512 7.8784e–02 (1.982) 7.8737e–02 (1.982) 7.8707e–02 (1.983)

Convergence second-order in Ω\Ω0

Mass is conserved throughout Ω

[Gobbert, SISC 2008]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Long-Time Simulation of Calcium Flow on High-Resolution Meshes

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Long-Time Simulation of Calcium Flow: Results

Following original work [Izu et al. 1998], consider two cases for the
amount of calcium injected per CRU:

σ =
{

51.8213655 µM µm3 / ms for ISR = 10 pA
103.6430533 µM µm3 / ms for ISR = 20 pA

in the model for the calcium release units (CRUs) as point sources

JSR(u(0),x, t) =
∑
x̂∈Ωs

σ Sx̂(u(0), t) δ(x− x̂)

Sx̂(u(0), t) = 1 for topen = 5 ms with probability

Jprob(u(0)) =
Pmax (u(0))nprob

(Kprob)nprob + (u(0))nprob

then closed for tclosed = 100 ms.
Movies available at http://www.math.umbc.edu/∼gobbert/calcium
[Gobbert, SISC 2008]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium Flow: Open calcium release units for σ = 51.82

t = 100 t = 200 t = 300

t = 400 t = 500 t = 600

t = 700 t = 800 t = 900

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium Flow: Calcium concentration for σ = 51.82

t = 100 t = 200 t = 300

t = 400 t = 500 t = 600

t = 700 t = 800 t = 900

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium Flow: Open calcium release units for σ = 103.64

t = 100 t = 200 t = 300

t = 400 t = 500 t = 600

t = 700 t = 800 t = 900

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Calcium Flow: Calcium concentration for σ = 103.64

t = 100 t = 200 t = 300

t = 400 t = 500 t = 600

t = 700 t = 800 t = 900

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Contrast General-Purpose / Special-Purpose Code

MPSalsa, Sandia NL This code spark

linear finite elements linear finite elements
unstructured mesh structured mesh
fully implicit time-stepping fully implicit time-stepping
trapezoidal rule (BDF2) NDFk, 1 ≤ k ≤ 5,

with fixed step size with variable step size
with fixed order k = 2 with mean(k) ≈ 2.9

Newton Newton with anal. Jac. and ≥ 0
(1 to 2 iterations) (1 or 2 iterations)

GMRES with ILU pre-cond. QMR without pre-cond.
(< 10 iter.) (≈ 4 iter.)

cell cross-section 2 z-planes entire cell (31 z-planes)
about 200,000 DOF about 3 million DOF (matrix-free)
tfin = 100 ms, 10,000 steps tfin = 1,000 ms, ≈ 58,000 steps
“12 to 36 hours on 40 hours on

4 to 16” dual-processor nodes 16 dual-processor nodes
[Izu et al., Biophys. J. 2006] [Gobbert, SISC 2008]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Number of Open CRUs vs. time

(a) σ = 50 (b) σ = 100

Total number of open CRUs throughout cell vs. time indicates whether wave
self-initiates.

Studies with values including σ = 50, 60, 70, 80, 90, 100 of the flux density narrow the
range of its critical value.

Coulibaly, Muscedere, Gobbert, and Peercy, HPCF–2009–6, www.umbc.edu/hpcf.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Wave Self-Initiation as Function of Flux Density

(a) (b)

(a) Fraction of simulation runs resulting in wave self-initiation for each flux density σ
with 20 different seeds to the pseudo-random number generator.

(b) Average time for wave self-initiation and its standard deviation as error bar for
each σ.

Coulibaly, Muscedere, Gobbert, and Peercy, HPCF–2009–6, 2009, www.umbc.edu/hpcf.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Summary

Previous work summary:
Model allows waves to self-organize!
wave self-organization is sensitive to σ and Vpump,
when wave self organize, calcium concentration increases without
bound,
model numerics are correct!

Conclusion:
need to find the set of parameters generating biophysically
acceptable behaviors.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Deterministic Firing Case

Matthias K. Gobbert Mathematics and Statistics, UMBC
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By defining Pmax = 1 and let nprob →∞ and obtain

Jprob(c) :=


0 if c < Kprob,
1/2 if c = Kprob,
1 if c > Kprob,

Model of Calcium Release:

JSR(c,x, t) :=
{

0 if c ≤ Kprob,
σδ(x− x̂) if c > Kprob.

Combining both expressions gives:

JSR(c,x, t) := σH(c−Kprob)
[
H(t−Tm)−H(t−Tm−∆open)

]
δ(x− x̂),

∆open = how long CRU stays opened. Tm are release times defined by:

Tm = {inf t | c > Kprob,
∂c

∂t
> 0; t ≥ Tm−1}, m = 0, 1, . . . ,

[Coulibaly, Peercy, and Gobbert, Insight Into Spontaneous Recurrent
Calcium Waves in a 3-D Cardiac Cell Based on Analysis of a 1-D
Deterministic Model, in preparation]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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We consider the 1D equation involving only one species:

ct =

diffusion︷ ︸︸ ︷
Dccxx −

loss︷ ︸︸ ︷
Jpump +

creation︷ ︸︸ ︷
Jleak + JCRU,

t ∈ [0, tfin], x ∈ [0, cell-length], cx(0) = cx(cell-length) = 0.

~x0

x̂1 x̂k−1 x̂k x̂k+1 x̂N

cell-length

1D simulation details & advantages:
uses FEM with linear basis functions (motivated by presence of
Dirac Delta function),
no stochasticity (only one run per parameter set is needed),
characterization of wave phenomena in the system can be
automated.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) (b)

(c) (d)

Figures (a–d) show instances of a simulation run resulting in a wave followed by an increase

of calcium concentration without bound (similar to 3D case). Vpump = 0.3, σ = 15.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(4.a) (4.b)

(4.c) (4.d)

Figures (4.a–4.d) show instances of a simulation run resulting in no wave (similar to 3D

case).Vpump = 0.3, σ = 2.
Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) (b)

(c) (d)

Figures (a–d) show instances of a simulation run resulting in a wave propagation followed

by a recovery (no calcium increase without bound). Vpump = 0.3, σ = 10.
Matthias K. Gobbert Mathematics and Statistics, UMBC
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Wave region obtained from parameter study in the one dimensional-single-species version of

the model.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Wave region obtained from parameter study in the one-dimensional version of the model
with three species. Notice the shift of different regions to the right.

[Coulibaly, Peercy, and Gobbert, Insight Into Spontaneous Recurrent Calcium Waves in a

3-D Cardiac Cell Based on Analysis of a 1-D Deterministic Model, in preparation]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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1-D Deterministic Model

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Previous Parameter search in 3-D:
Vpump ∈ {0.2, 1.6, 3.2, 6.4},
σ = 70± ε.

resulted in no wave propagation or increase of calcium
concentration.

1D results suggest an increase in both Vpump and σ.
Example: Vpump = 8, σ = 200.
[Coulibaly, Peercy, and Gobbert, Insight Into Spontaneous Recurrent
Calcium Waves in a 3-D Cardiac Cell Based on Analysis of a 1-D
Deterministic Model, in preparation]

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) t=200 ms (b) t=230 ms (c)t=250ms

(d) t=300 ms (e) t=330 ms (f) t=380 ms

(g) t=410 ms (h) t=450 ms (i) t=470 ms

Isosurface plots of the calcium concentration throughout the 3 dimensional cell domain;

critical isolevel of 65 µM. Vpump = 8 µM/ms, σ = 200 µM µm3/ms.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Confocal images (post-processing producing output similar to experiments) from run

resulting in a wave propagation with recovery. The run is the same as the one in the

previous slide.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Line-scans summarize (in a single figure) the overall behavior of the simulation; the
horizontal axis corresponds to time (from 0 ms to 1000 ms), while the vertical axis
corresponds to the longitudinal axis taken from the cell domain. Each line-scan plots
calcium concentration (using a color-bar) at various times of the simulation along points of
the longitudinal axis.

Sample line-scan of a simulation resulting in an increase of calcium concentration without bond.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) (b) (c)

(d) (e) (f)

Figures (a) and (b) line-scans from a blow up simulation. Figures (c) and (d) line-scans

from a simulation resulting in no wave. Figures (e) and (f) line-scans from a simulation

resulting in a wave propagation with recovery.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Wave region obtained from parameter study in the 3 dimensional stochastic model with

buffers. Vpump is measured in µM/ms and σ is measured in µM µm3/ms.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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1D Deterministic parameter search allowed us to have a better feel
about 3D parameter sets,
3D model, with the correct set of a parameter, generates
spontaneous recurrent calcium waves with recovery!

[Coulibaly, Peercy, and Gobbert, Insight Into Spontaneous Recurrent
Calcium Waves in a 3-D Cardiac Cell Based on Analysis of a 1-D
Deterministic Model, in preparation]
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Spontaneous Spiral Waves

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Spiral waves are phenomenon that can be seen experimentally. From
simulation run observation, it is possible with the presented model to
produce sustainable spiral wave by picking Vpump and σ in the “no
wave”/“wave” region. Example: Vpump = 4 and σ = 110.

Line-scan from a simulation resulting in a spiral wave

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Confocal images (slice of a cell) from a simulation run resulting in a spiral. The repeating
spiraling behavior of the wave occurs throughout the duration of the simulation.

[Coulibaly, Peercy, and Gobbert, Spontaneous Spiral Wave Initiation in a 3-D Cardiac Cell,

in preparation]
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(a) t= 110 ms (b) t= 130 ms (c) t = 140 ms

(d) t= 160 ms (e) t= 180 ms (f) t = 195 ms

(g) t= 210 ms (h) t = 220 ms (i) t = 240 ms

Isosurface plots of the calcium concentration throughout the 3 dimensional cell domain;
critical isolevel of 65 µM. Eye of the spiral is clearly visible.

[Coulibaly, Peercy, and Gobbert, Spontaneous Spiral Wave Initiation in a 3-D Cardiac Cell,

in preparation]
Matthias K. Gobbert Mathematics and Statistics, UMBC
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The Distributed-Memory Cluster tara and Parallel Performance
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UMBC High Performance Computing Facility (HPCF)

The community-based, interdisciplinary core facility for scientific
computing and research on parallel algorithms at UMBC

Initiated in 2008 with participation of over 20 faculty from more than 10
departments and research centers from all three colleges at UMBC

Summer 2008: 35-node cluster (two dual-core AMD Opteron) with InfiniBand
(dual data rate DDR) and 14 TB central storage

Replacement in Summer 2009: 86-node cluster (two quad-core Intel Nehalem)
with new InfiniBand (quad data rate QDR) and 160 TB central storage

Original 32 nodes purchased with seed funding from UMBC and contributions
from faculty; extension partially funded by NSF grants
(MRI program $200,000, SCREMS program for Math & Stat $40,000) and
contributions from faculty and UMBC

System administration by Division of Information Technology;
user support by HPCF RAs in collaboration with CIRC

Governed by HPCF Governance Committee; point of contact:
Matthias K. Gobbert, gobbert@umbc.edu, 410–455–2404

All details, list of projects and publications, user info at www.umbc.edu/hpcf.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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History of the Clusters in HPCF

2003 — kali: $150,000
33-node cluster (two single-core Intel Xeon)
with Myrinet and 0.5 TB central storage
funding: $75k NSF SCREMS, $75k UMBC cost-sharing, discount from IBM

2008 — hpc: $270,000
35-node cluster (two dual-core AMD Opteron)
with InfiniBand (dual data rate DDR) and 14 TB central storage
funding: $100k seed money UMBC, $70k faculty, $100,000 DoIT

2009 — tara: $600,000
86-node cluster (two quad-core Intel Nehalem)
with new InfiniBand (quad data rate QDR) and 160 TB central storage
funding: $360k faculty, $240k NSF MRI and SCREMS

2012 — extension of tara intended: $500,000 estimated
42 hybrid nodes (two eight-core Intel Nehalem, two NVIDIA GPGPUs)
with InfiniBand (quad data rate QDR)
funding: to be determined, suggestions welcome!

−→ all purchased / to be purchased from IBM!

Matthias K. Gobbert Mathematics and Statistics, UMBC
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User and Governance Committees

User Committee:

Matthias Gobbert (Math/Stat),
Lynn Sparling (Physics),
Ian Thorpe (Chemistry);
UMBC DoIT system administration staff ex-officio

HPCF Governance Committee:

Matthias Gobbert (Math/Stat),
Lynn Sparling (Physics),
Ian Thorpe (Chemistry),
Ray Hoff (Physics),
Curtis Menyuk (CSEE),
Larrabee Strow (Physics),
Marc Olano (CSEE)

They represent over 120 long-term research users from over 35 research groups and
additionally over 40 short-term users (REU Site, students in a class, etc.).

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Detailed Hardware Specifications of Cluster tara

86-node distributed-memory cluster, IBM Server x iDataPlex

82 compute and 2 development nodes, 1 user node, and 1 management node:

two quad-core Intel Nehalem X5550 (2.6 GHz, 8 MB cache per core)
24 GB memory

Networks connecting all components:

high performance (low latency, wide bandwidth) quad-data rate (QDR)
InfiniBand (IB) interconnect for parallel communications
ethernet for management and login

160 TB central storage with partition for each research group,
connected through InfiniBand

For more information, see the webpage www.umbc.edu/hpcf of the

UMBC High Performance Computing Facility (HPCF).

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Tara: Overall System (Both Racks and Central Storage)

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Tara: iDataPlex Rack and Detail

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Tara: Front and Back of the InfiniBand Switch

Matthias K. Gobbert Mathematics and Statistics, UMBC
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How to Program a Distributed-Memory Cluster

Memory is distributed across nodes and only accessible by local CPUs

Total memory in compute nodes: 82× 24 GB = 1,968 GB

The processors have their own cache, but share the memory of a node,

therefore:

Should one use both processors per node or only one? (A traditional observation
is that best relative performance is achieved by using only one! [PETSc])
Should one use all cores per processor?

Algorithm design: Divide problem into pieces with as little dependence on each
other as possible, then program communication explicitly using MPI (Message
Passing Interface) ⇒ fully portable code.

Typical PDE problems:

domain split ⇒ communication of solution values on interfaces
(lower-dimensional region)
communication at every time-step / in every iteration

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Contrast to Other Types of Parallel Architectures

Shared-memory machines: data is in (apparently) one piece of memory
and is accessible from all (often, special-purpose) processors ⇒ issues of
consistency (of memory and cache)

Often, specialized vendor-directives in code needed. Often, more suited
to data-parallelism.

For suitable problems (with regular structure), shared-memory machines
should in principle be faster. But: substantially more expensive.

Beowulf clusters built from commodity hardware are an affordable
alternative ⇒ better ROI (more bang for the buck).

But inherently harder to work with (algorithm design, MPI coding, setup
of hardware and software, choice of components)
⇒ Challenging research topic!

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Performance Measures for Parallel Computing

Speedup Sp(N): How much faster are p processors over 1 processor (for
problem of fixed size N)? Optimal value: Sp(N) = p.

Efficiency Ep(N): How close to optimal is the speedup?
Optimal value: Ep(N) = 1 = 100%.

Sp(N) =
T1(N)
Tp(N)

, Ep(N) =
Sp(N)

p

Tp(N) = wall clock time for problem of size N on p processors.

Speedup and efficiency for fixed problem size are tough measures of
parallel performance, because inevitably communication will eventually
dominate (for truly parallel code).

Scaled speedup and efficiency: Increase problem size N along with using
more processors. Example: On p processors, solve a problem of size pN .
⇒ Less tough measures of performance, realistic measure of the
usefulness of parallel computing for memory-intensive applications.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Issue: What is Tp(N)?

Parallel program spends time in calculations Tcalc(N) and in communications
Tcomm(N); communication time is affected by latency (initialization of
communication) and bandwidth (throughput capability). ⇒ Coefficients in
model are difficult to determine reliably.

Fundamental problem of parallel computing: Communications hurt but are
unavoidable (for truly parallel algorithm), hence we must include them in our
timings. ⇒ Wall clock time is used (not: CPU time).

What wall clock time? Additional issues: OS delays, MPI/network startup, file
access for input (1 file read by all processors) and output (all processors write
a file, to where? central or local), etc.

What is T1(N)? Parallel code with 1 processor or serial code with same
algorithm or serial code with different (“best known”) algorithm. Example:
Jacobi vs. Gauss-Seidel (or SOR) for linear solve.

In summary, two ways to get good speedup: fast parallel code or slow serial
timing (slow due to any reason); clearly only first method acceptable.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Parallel Performance Study for Elliptic Test Problem
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Elliptic Problem

Classical elliptic test problem of the Poisson equation with homogeneous
Dirichlet boundary conditions

Find the solution u(x, y) on the unit square in two spatial dimensions
Ω = (0, 1)× (0, 1) ⊂ R2, given

−4u = f in Ω, 4 is the Laplace operator

u = 0 on ∂Ω f is a known function

Approximation by finite difference method results in a large, sparse, highly
structured system of linear equations

−4u(xk1 , xk2) ≈
uk1−1,k2 − 2uk1,k2 + uk1+1,k2

h2
+

uk1,k2−1 − 2uk1,k2 + uk1,k2+1

h2

Concretely, must solve Au = b where b are discretized values of f and

A =

2666664
S T
T S T

. . .
. . .

. . .

T S T
T S

3777775 ∈ RN2×N2 S = tridiag(−1, 4,−1) ∈ RN×N ,

T = −I ∈ RN×N

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Elliptic Problem

Featured test problem has right-hand side function

f(x1, x2) = (−2π2)
“

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
”
,

This has a known solution

u(x1, x2) = sin2(πx1) sin2(πx2)

On a mesh with 33× 33 points and mesh spacing h = 1/32 = 0.03125, the
numerical solution uh(x1, x2) can be plotted

(a) Numerical solution uh (b) Error u− uh

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Elliptic Application

Finite difference mesh on unit square domain with (N + 2)× (N + 2) elements
has N2 degrees of freedom (DOF)
⇒ 4N2 double-precision numbers are stored

memory usage (MB)
N DOF ‖u− uh‖L∞(Ω) #iter predicted observed

32 1,024 3.2189e–3 47 < 1 12
64 4,096 8.0356e–4 95 < 1 12

128 16,384 2.0081e–4 191 < 1 12
256 65,536 5.0191e–5 385 2 13
512 262,144 1.2543e–5 781 8 19

1,024 1,048,576 3.1327e–6 1,579 32 44
2,048 4,194,304 7.8097e–7 3,191 128 140
4,096 16,777,216 1.9356e–7 6,447 512 524
8,192 67,108,864 4.6817e–8 13,028 2,048 2,061

16,384 268,435,456 8.0469e–9 26,321 8,192 8,207
32,768 1,073,741,824 2.9562e–9 53,136 32,768 33,923

Notice that serial run not possible for N = 32,768 on tara with 24 GB per node
⇒ Parallel computing enables the solution of a larger problem!

We implement the conjugate gradient method in parallel, to iteratively solve
the given linear system

This necessarily involves communications between processes every iteration

Raim and Gobbert, HPCF–2010–2, 2010, www.umbc.edu/hpcf
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tara: Elliptic Application Problem: Performance by Number of Nodes

(a) Mesh resolution N ×N = 8,192× 8,192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn 04:36:37 02:20:54 01:14:14 00:38:47 00:19:31 00:09:20 00:04:36
2 ppn 02:07:34 01:08:57 00:34:11 00:18:09 00:08:25 00:04:14 00:02:08
4 ppn 01:15:55 00:40:23 00:20:55 00:09:38 00:05:52 00:03:00 00:01:30
6 ppn 00:56:59 00:29:28 00:14:43 00:07:32 00:04:26 00:02:29 00:01:23
8 ppn 00:53:55 00:26:26 00:12:54 00:06:30 00:03:20 00:01:43 00:00:50

(b) Mesh resolution N ×N = 16,384× 16,384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn 33:57:41 19:44:19 09:54:27 05:01:30 02:34:15 01:17:16 00:37:23
2 ppn 16:21:30 08:31:15 04:31:04 02:23:42 01:09:54 00:34:00 00:17:01
4 ppn 10:03:34 05:01:41 02:41:11 01:24:53 00:47:29 00:22:45 00:11:43
6 ppn 08:20:03 04:04:07 02:02:50 01:02:55 00:32:32 00:17:35 00:08:59
8 ppn 07:07:54 03:39:54 01:57:19 00:56:47 00:26:50 00:13:44 00:07:04

(c) Mesh resolution N ×N = 32,768× 32,768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn N/A N/A N/A N/A N/A N/A 05:21:27
2 ppn N/A N/A N/A N/A N/A N/A 02:15:16
4 ppn N/A N/A N/A N/A N/A N/A 01:27:53
6 ppn N/A N/A N/A N/A N/A N/A 01:03:53
8 ppn N/A N/A N/A N/A N/A N/A 00:55:07

Raim and Gobbert, HPCF–2010–2, 2010, www.umbc.edu/hpcf

Optimal halving doesn’t occur from ppn 2 to 4, or ppn 4 to 8, but
improvement is still substantial

=⇒ Use all cores per node to maximize overall cluster productivity!
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Summary: Elliptic Test Problem

Poisson equation, finite difference discretization, conjugate gradient method, highly
efficient matrix-free implementation, mesh resolution N ×N = 4,096× 4,096, system
dimension 16,777,216.

Cluster (year) serial 1 node 32 node 32 node
(1 core) all cores 1 core per node all cores

time time (speedup) time (speedup) time (speedup)
kali (2003) 02:00:49 00:04:05 (29.59) 00:04:49 (25.08)
hpc (2008) 01:51:29 00:32:37 (3.42) 00:03:23 (32.95) 00:01:28 (76.01)
tara (2009) 00:31:16 00:06:39 (4.70) 00:01:05 (28.86) 00:00:09 (208.44)

kali (2003): two (single-core) Intel Xeon (2.0 GHz) per node
⇒ 2 cores per node; Myrinet interconnect

hpc (2008): two dual-core AMD Opteron (2.67 GHz) per node
⇒ 4 cores per node; InfiniBand (DDR) interconnect

tara (2009): two quad-core Intel Nehalem X5550 (2.67 GHz) per node
⇒ 8 cores per node; InfiniBand (QDR) interconnect

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Parallel Performance Study for Parabolic Test Problem
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Parabolic Problem

Problem: Time-dependent, scalar, linear reaction-diffusion equation in three space
dimensions that is a simplification of a multi-species model of calcium flow in heart
cells
Find the concentration of the single species u(x, y, z, t) for all (x, y, z) ∈ Ω and
0 ≤ t ≤ T such that

∂u
∂t
−∇ · (D∇u) = 0 in Ω for 0 < t ≤ T,

n · (D∇u) = 0 on ∂Ω for 0 < t ≤ T,
u = uini(x, y, z) in Ω at t = 0,

(1)

Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) ⊂ R3 micrometers

n = n(x, y, z) denotes the unit outward normal vector at the surface point
(x, y, z) of ∂Ω.

Diffusion coefficients D = diag(Dx, Dy, Dz) where Dx = Dy = 0.15 and
Dz = 0.30 in micrometers squared per millisecond

Muscedere, Raim, and Gobbert, HPCF–2010–4, 2010, www.umbc.edu/hpcf
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Parabolic Problem

The initial distribution is chosen to be:

uini(x, y, z) = cos2
„

λxx

2

«
cos2

„
λyy

2

«
cos2

„
λzz

2

«
, (2)

where λx = π/X, λy = π/Y and λz = π/Z.

The true solution is computed using separation of variables and Fourier analysis to be

u(x, y, x, t) =
1 + cos (λxx)e−Dxλ2

xt

2

1 + cos (λyy)e−Dyλ2
yt

2

1 + cos (λzz)e−Dzλ2
zt

2
.

(3)

System evolves from the non-uniform initial distribution uini(x, y, z) to the constant
steady state solution uSS ≡ 1/8

Steady state is not reached with our final simulation time of T = 100 ms.

Muscedere, Raim, and Gobbert, HPCF–2010–4, 2010, www.umbc.edu/hpcf
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tara: Parabolic Application Problem: Convergence Study

Standard FEM theory predicts ‖uh(·, t)− u(·, t)‖L2(Ω) = O(hq) where q = 2

We estimate q by

q(est) = log2

 ‖u2h(·, t)− u(·, t)‖L2
Ω

‖uh(·, t)− u(·, t)‖L2
Ω

!
. (4)

Nx ×Ny ×Nz t = 30 ms t = 40 ms t = 50 ms
32× 32× 128 2.6954e–02 2.1525e–02 1.7019e–02
64× 64× 256 6.7459e–03 (1.9984) 5.3837e–03 (1.9994) 4.2556e–03 (1.9997)

128× 128× 512 1.6843e–03 (2.0019) 1.3451e–03 (2.0009) 1.0636e–03 (2.0004)
256× 256× 1024 4.1852e–04 (2.0088) 3.3541e–04 (2.0037) 2.6569e–04 (2.0012)
512× 512× 2048 1.0213e–04 (2.0349) 8.3029e–05 (2.0143) 6.6226e–05 (2.0043)

1024× 1024× 4096 2.3358e–05 (2.1284) 2.0048e–05 (2.0501) 1.6401e–05 (2.0136)

L2(Ω)-norm of the finite element error decreases by a factor of about 4

Estimated convergence order q(est) ≈ 2 (Second order convergence)

=⇒ Tolerance of the iterative linear solver is tight enough to ensure a sufficiently
accurate solution of the linear system

=⇒ Tolerance on ODE error is small enough to ensure that the time error does not
dominate

Muscedere, Raim, and Gobbert, HPCF–2010–4, 2010, www.umbc.edu/hpcf
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Parabolic Application

memory usage (MB)
Nx ×Ny ×Nz DOF predicted observed

32× 32× 128 140,481 23 33
64× 64× 256 1,085,825 174 177

128× 128× 512 8,536,833 1,368 1,379
256× 256× 1024 67,700,225 10,846 10,859
512× 512× 2048 539,233,281 86,394 86,544

Notice that serial run not possible for 512× 512× 2048 with 24 GB
⇒ Parallel computing enables the solution of a larger problem!

Number of time steps taken by the ODE solver is 208.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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(a) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 8,536,833
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn 00:46:14 00:23:44 00:12:09 00:06:37 00:03:23 00:01:45 00:00:52
2 ppn 00:23:38 00:11:52 00:06:40 00:03:25 00:01:49 00:00:58 00:00:30
4 ppn 00:12:54 00:06:20 00:03:47 00:02:02 00:00:59 00:00:33 00:00:18
8 ppn 00:07:07 00:03:53 00:02:00 00:00:59 00:00:32 00:00:20 00:00:12

(b) Mesh resolution Nx ×Ny ×Nz = 256× 256× 1024, DOF = 67,700,225
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn 10:58:00 04:54:49 02:45:21 01:22:05 00:41:33 00:20:56 00:10:36
2 ppn 04:48:32 02:26:29 01:24:19 00:40:52 00:21:10 00:10:53 00:05:40
4 ppn 03:04:01 01:22:23 00:44:27 00:23:53 00:12:33 00:06:17 00:03:04
8 ppn 01:27:12 00:43:35 00:22:03 00:11:52 00:06:04 00:03:33 00:01:57

(c) Mesh resolution Nx ×Ny ×Nz = 512× 512× 2048, DOF = 539,233,281
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 ppn N/A N/A N/A 18:58:45 09:36:22 05:01:33 02:27:50
2 ppn N/A N/A N/A 09:26:10 04:46:39 02:24:10 01:12:10
4 ppn N/A N/A N/A 05:25:31 02:49:06 01:23:08 00:43:20
8 ppn N/A N/A N/A 02:43:45 01:21:29 00:40:56 00:22:11

04:50:18 to run 1024× 1024× 4096 problem with DOF =
4,304,410,625 on 512 processes (8 per node)
Muscedere, Raim, and Gobbert, HPCF–2010–4, 2010,
www.umbc.edu/hpcf
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Three-Species Application

Memory requirements: Finite element mesh with Nx ×Ny ×Nz elements has
N = (Nx + 1)(Ny + 1)(Nz + 1) nodes and neq = nsN = 3N degrees of
freedom (DOF) for the application problem with ns = 3 species.

Nx ×Ny ×Nz N neq = DOF Total memory
16× 16× 64 18,785 56,355 9 MB

32× 32× 128 140,481 421,443 68 MB
64× 64× 256 1,085,825 3,257,475 522 MB

128× 128× 512 8,536,833 25,610,499 4,103 MB

Studies use Nx ×Ny ×Nz mesh with Nx = Ny and Nz = 4Nx

in accordance with cell shape.

Final time for all studies tfin = 1,000 ms, as required for application
problem. Number of time steps by the ODE solver is over 56,000.

Notice that serial run is possible for 128× 128× 512 with 24 GB,
but would be unacceptably slow, as it will turn out!
⇒ Parallel computing enables the solution in acceptable
amount of time!
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tara: 3 Species Application Problem: Performance by Number of Nodes

(a) Mesh resolution Nx ×Ny ×Nz = 16× 16× 64, DOF = 56,355
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:30:09 00:15:29 00:08:19 00:04:25 00:02:36 00:01:56 00:01:51
2 processes per node 00:15:41 00:08:01 00:04:25 00:02:31 00:01:45 00:01:31 N/A
4 processes per node 00:08:04 00:04:19 00:02:31 00:01:39 00:01:25 N/A N/A
8 processes per node 00:04:27 00:02:34 00:01:36 00:01:10 N/A N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 421,443
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 05:16:13 02:40:35 01:21:26 00:42:09 00:22:29 00:13:13 00:07:45
2 processes per node 02:41:35 01:20:33 00:41:27 00:21:46 00:12:56 00:07:44 00:05:24
4 processes per node 01:24:06 00:43:23 00:22:00 00:12:06 00:07:38 00:05:14 N/A
8 processes per node 00:45:17 00:23:13 00:12:39 00:07:46 00:05:09 N/A N/A

(c) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 3,257,475
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 57:14:46 29:32:28 14:34:19 08:15:46 03:51:04 01:59:36 01:05:30
2 processes per node 29:08:07 14:39:54 07:21:31 03:46:57 02:00:56 01:04:30 00:43:10
4 processes per node 14:39:19 08:05:01 04:03:45 02:05:39 01:08:09 00:38:44 00:25:21
8 processes per node 08:19:29 04:14:48 02:10:41 01:10:29 00:41:40 00:27:47 N/A

(d) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 25,610,499
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 21:44:14 11:18:17
2 processes per node 23:45:20 11:17:57 06:43:25
4 processes per node 26:42:05 12:12:05 06:35:41 03:53:24
8 processes per node 23:44:55 12:30:28 06:53:45 03:57:07 02:33:53

Near-optimal speedup from 1 to 2, from 2 to 4 as well as from 4 to 8 processes per
node. =⇒ Use all cores per node!
Trott and Gobbert, HPCF–2010–11, 2010, www.umbc.edu/hpcf
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Summary: Parabolic Test and Application Problems

Parabolic scalar (1 species) test problem and 3-species application problem, mesh
resolution Nx ×Ny ×Nz = 64× 64× 256

Cluster problem serial (1 node) 32 node 32 node
1 core all cores 1 core per node all cores
time time (speedup) time (speedup) time (speedup)

kali (2003) scalar test 02:19:23 00:05:07 (27.51) 00:04:09 (33.56)
hpc (2008) scalar test 00:09:43 00:02:42 (3.60) 00:00:22 (26.50) 00:00:10 (58.30)
tara (2009) scalar test 00:04:33 00:00:42 (6.50) 00:00:12 (22.75) 00:00:04 (68.25)
tara (2009) 3-species 57:14:46 08:19:29 (6.88) 01:59:36 (28.72) 00:27:47 (123.63)

Scalar test problem: system dimension 1,085,825;
3-species application problem: system dimension 3,257,475

kali: ODE solver implicit Euler (BDF1), linear solver CG;
hpc and tara: ODE solver NDFk, 1 ≤ k ≤ 5, linear solver QMR
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Conclusions and Future Work

Conclusions:

Code is valid simulation tool for the process,
based on numerical analysis and on computational convergence studies

Model captures wave initiation and allows waves to self-organize,
most recently examples of wave with recovery and of spiral wave!

Parallel computing enables studies of desired resolution for full length of
laboratory time scale in reasonable wall clock time

Performance study guides effective use of cluster:
Use cores per node, i.e., 8 processes per node for tara

Future work = available research projects:

Parallel Implementation of Matrix-Free Preconditioning in C with MPI

Parallel Implementation of the Linear Solve in CUDA for GPGPUs

Mathematical and Numerical Multi-Scale Algorithms for Calcium Flow
in a Heart Cell

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Research Project 1: Matrix-Free Preconditioning

Available Research Project 1:
Parallel Implementation of Matrix-Free Preconditioning in C with MPI

Problem: Krylov subspace methods (CG, QMR, etc.) should be
preconditioned. As rough guide, expect a preconditioned method to use
10 times fewer iterations.

Issue 1: Since the current implementation is matrix-free for memory
efficiency, also the implementation of the preconditioning needs to be
matrix-free. An algorithm for this idea has been implemented in Matlab
that needs to be translated into C.

Issue 2: If we do not communicate between parallel processes at all, then
the preconditioning will not be very effective. But communicating
between all neighboring processes is likely too costly. Since memory
hierarchy has several levels today, some communication may be
acceptable and improve iteration count. A flexible implementation in
MPI is needed to test various strategies.

Matthias K. Gobbert Mathematics and Statistics, UMBC
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Research Project 2: GPU Programming

Available Research Project 2:
Parallel Implementation of the Linear Solve in CUDA for GPGPUs

GPGPU = general purpose GPU, GPU = graphics processing unit.

CUDA = C-style programming language for GPGPUs from NVIDIA

GPGPUs hold great potential for parallel computing, due to their
extremely good cost-per-processor. Rough example: 8-core CPU is same
cost in dollars as a GPGPU with 128 processors!

Issues: GPGPUs are SIMD = single-instruction multiple-data and
shared-memory, that is, very different from currently dominating MPI
(Message Passing Interface) approach. For programming, we need to
learn CUDA, an extension of C.

GPGPUs have complicated memory hierarchy, whose use we need to
control explicitly (different from caches in CPUs). Therefore, the
algorithm needs to be carefully implemented and tested.
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Research Project 3: Multi-Scale Algorithm for Calcium Flow

Available Research Project 3: Mathematical and Numerical
Multi-Scale Algorithms for Calcium Flow in a Heart Cell

Models for calcium flow in a cell are actually multi-scale: (i) calcium
channel (under µm), (ii) calcium release unit (µm), (iii) one cell (tens of
µm), (iv) whole heart (cm).

Currently, calcium release units (CRUs) are modeled as point sources
with constant-in-time parameters and independent of actual species
concentrations at the location.

Mathematical multi-scale model: instead of one formula for a CRU, call
another model for each CRU to obtain more precise data
⇒ makes the one-cell simulator more accurate

Numerical multi-scale model: instead of one formula for a CRU, call
another simulator to obtain data for each open CRU, thus allowing less
resolution in areas without open CRUs
⇒ makes the one-cell simulator more efficient

Issue: Interface one-cell simulator with CRU simulators.
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Center for Interdisciplinary Research and Consulting (CIRC)

CIRC is a consulting service for mathematics and statistics provided by
the Department of Mathematics and Statistics at UMBC.

Established in 2003, CIRC is dedicated to support interdisciplinary research
for the UMBC campus community and for outside industry researchers.

CIRC provides a full range of consulting services on mathematics and statistics
from free initial consulting to long term support for research programs.

Mathematics and statistics students gain hands on interdisciplinary experience
vital for industry and academia jobs.

Graduate students are involved as RAs and via Math/Stat 750
Interdisciplinary Consulting.

In collaboration with the Division of Information Technology (DoIT), CIRC
provides hands-on workshops on mathematical and statistical software
packages including: MATLAB, COMSOL Multiphysics, Mathematica,
Microsoft Access, SAS, S-Plus, and SPSS.

All information: www.umbc.edu/circ
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REU Site: Interdisciplinary Program in High Performance Computing

NSF-funded summer research program for undergraduates: 8 weeks, $3,600
stipend plus room and board, travel, books, tuition, fees covered

Fully transferrable course Math 447 on scientific, parallel, and statistical
computing in Phase I (Weeks 1 through 3) leveraging HPCF

Collaborative research projects with interdisciplinary clients (AT&T Labs,
NIH, Census Bureau, Oak Ridge NL, NSA, and other departments in 2010 and
2011) in Phase II (Weeks 3 through 8) leveraging CIRC

Deliverables: (i) result to client, (ii) presentation at university-wide poster
session, (iii) publications (HPCF tech. rep., SIURO, etc.)

All aspects of program in teams of participants, continuously supported by
graduate TAs/RAs (UMBC funded) and faculty

Participants diverse: gender, race/ethnicity, univ. vs. liberal arts colleges

Holistic approach: GRE course, field trips, professional development
workshops, lectures on LaTeX, CV, paper publication process, academic
integrity, advice for graduate school, etc.

Contact: hpcreu@umbc.edu, www.umbc.edu/hpcreu;
Matthias K. Gobbert and Nagaraj K. Neerchal, {gobbert,nagaraj}@umbc.edu
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