
Introduction to Parallel Computing — Matthias K. Gobbert
Wintersemester 2011/2012 — Universität Kassel

Homework 7 — due on January 31, 2012

This homework uses the same serial test of BLAS functions in Problem 1. as starting point as the
previous homework did, but applies the results to a different Problem 2.
This homework uses the example of matrix-matrix multiplication to demonstrate the use of the
celebrated Basic Linear Algebra Subprograms (BLAS) (Problem 1.) as well as their integration
in utility functions (Problem 2.). Let A ∈ Rm×k and B ∈ Rk×n be given matrices. We wish to
compute the matrix-matrix product

C := AB ∈ Rm×n. (1)

We will denote the components in C-style counting as A = (Aiq), B = (Bqj), C = (Cij) with indices
0 ≤ i < m, 0 ≤ q < k, and 0 ≤ j < n. By definition of the matrix product, the components of C
are given by Cij =

∑k−1
q=0 AiqBqj . The idea is to interpret this summation in different ways below

to motivate different algorithms.
This homework builds on the previous homework, because you may be able able to re-use some of
the utility functions and Problem 2. specifically aims at modifying the existing utility functions.

1. [10 points.] The purpose of this problem is to give you some basic experience with the BLAS. I
am posting three files for this homework that are modified from the homework for the power
method: (i) a new Makefile; the real point is only to show the changes in the LDFLAGS
and DEFS definitions that are necessary to use the BLAS; (ii) utilities.c and utilities.h that
demonstrate the use of the define statement -DPARALLEL in the Makefile on the example of
a dot product using the BLAS ddot to allow for use of BLAS or not, based on the DEFS in
the Makefile.

This Problem 1. requires actually only to run the code in serial; you may still use MPI
functions (like MPI_Wtime) by leaving the the pre-processor definition -DPARALLEL in the
Makefile in place.

Information on the BLAS including documentation on their use can be found at the Netlib
Repository webpage www.netlib.org, then “Browse” under the entry blas.

(a) Use command-line arguments to your program to read in the integers m, k, and n that
determine all matrix dimensions. Program a function that sets up the matrices A and
B. You can choose how to handle the setup and allocation of matrices; I recommend the
one-dimensional data structures in memory.c to re-use the utility functions from before.
You can choose random matrices in principle, but I recommend to use an example, for
which the result C can be checked for correctness analytically.

(b) Program all methods described below and ensure that the different methods give the
same correct result.

(c) Provide timing results that compare the different methods used in this problem. Report
your results in table form with 7 columns that list m, k, n, and timings (in units of
seconds) for naive, BLAS1, BLAS2, and BLAS3. To allow a comparison of results from
all of us, submit your timings (in units of seconds) for the case m = k = n = 8192 by
e-mail to me; this should be one row of your table. Analyze how the choices for the
dimensions m, k, and n influence your results. [Hint: Design one study for each of the
three integers m, k, and n by fixing two of them at a suitable value (e.g., 8192) and
varying only one of them (e.g., to smaller values like 4096, 2048, and 1024). Use powers
of 2 for these integers such that the problem size doubles from one row of the table to
the next.]



Naive C-code: Since we want to ensure that your code also works in an environment, where
BLAS may not be available, provide code that computes the conventional component-
wise definition

Cij =
∑k−1

q=0 AiqBqj (2)

directly without the use of BLAS. Notice that there may be more than one way to
implement the details of this formula. If you have a pre-processor definition -DBLAS in
the Makefile, this code should be in the #else case of the #ifdef BLAS.

BLAS 1: Write a function to compute C, but this time, using the BLAS1 routine ddot to
compute the inner products of rows of A with columns of B to get Cij .

BLAS 2: Write a function that uses the BLAS2 routine dger to implement the following
alternative formula

C = AB =
∑k−1

q=0 aqb
T
q , (3)

where aq and bT
q are the qth column of A and the qth row of B, respectively.

BLAS 3: Write a routine that computes C using a call to the BLAS3 routine dgemm.

What to submit: Discuss what you did to ensure that the results from all methods used
give the correct result. Submit the tables of observed wall clock times (in plain-text in body
of e-mail). How does your naive code compare to the BLAS codes? What is your final
recommendation for which BLAS to use?

2. [10 points.] We want to implement a parallel matrix-matrix product based on the interpreta-
tion as an outer product of vectors as given in (3). This assignment is designed to work with
derived data types and is not necessarily the best way to solve the problem of matrix-matrix
multiplication. Proceed as outlined below. Use the outline of the problems below to explain
the code you implement. Discuss any methods you use to assure correctness of the individ-
ual functions. You may assume that the number of processes p divides k; implement error
handling if this is not satisfied.

(a) Set up the matrix A on Process 0 by calling your serial setup function on this process
only. To use (3), we need to distribute blocks of columns aq of the matrix A to the
Processes 0, . . . , p. Build a derived type for communicating these blocks of columns of
A, and use it to write a function that scatters blocks of columns of A from Process 0 to
the Processes 0, . . . , p.

(b) Set up the matrix B on Process 0 by calling your serial setup function on this process
only. The matrix B in (3) needs to be distributed by rows, that is, we need to distribute
blocks of rows bT

q of B to the Processes 0, . . . , p. Build a derived type for communicating
these blocks of rows of B, and use it to write a function that scatters blocks of rows of
B from Process 0 to the Processes 0, . . . , p.

(c) To compute the final result C = AB, compute on each process the local part of (3),
then reduce these results from all processes to Process 0. In the local accumulation, you
could use an appropriate BLAS function, as seen in the previous problem. Notice that
we only want the final result C to be defined on Process 0. As always, ensure that your
final result is actually correct. Explain your implementation.

(d) Provide timing results for your parallel implementation. We are only interested in timing
the parallel part of the method, therefore, make a choice where to put MPI_Wtime in your
code. Report your results in table form with columns that list m, k, n, and timing results
(in units of seconds) for 1, 2, 4, 8, . . . processes. To allow a comparison of results from
all of us, submit your timings (in units of seconds) for the case m = k = n = 8192 by
e-mail to me; this should be one row of your table. Analyze how the choices for the
dimensions m, k, and n influence your results. [Hint: Same hint as for Problem 1. (c).]


