
Introduction to Parallel Computing — Matthias K. Gobbert
Wintersemester 2011/2012 — Universität Kassel

Homeworks 4 and 5 — due on January 10 and 17, 2012, respectively

General note: This project is designed to study the overall process of taking a mathematical
algorithm and implementing it as a parallel program. For convenience and clarity, the process is
separated into different problems, but only one code (consisting of several files) and one set of runs
is needed. In addition, this homework introduces the use of a Makefile.
I will post a file ver0.0suppliedfiles.tgz along with this lab that expands into a directory with
the name ver0.0suppliedfiles; it contains the needed files to get started on this project.
One of these files is a Matlab code of the numerical method discussed below that you may use as
a guide for creating your code; this approach reflects the approach of testing a method in Matlab
first and then using its code as template for the parallel code. Additionally, a Matlab driver file is
enclosed that you may want to run to create an example that you can compare to the results of
your code for debugging.
A Makefile is supplied that can be used to create the executable power. This file assumes that
you use the Portland Group compiler suite and includes some useful compile options in CFLAGS. It
also links to the math library with loader flag -lm in LDFLAGS. As you solve the problems below,
you should add additional source and header files for your routines; you will have to add references
to these new files in the OBJS list of the Makefile. It will of course be necessary to add include
statements to your files in main.h and calls to your routines in main.c. However, no changes to the
other supplied files should be necessary.
The code demonstrates the one-dimensional matrix storage scheme by column and its use, including
basic improvements to efficiency such as the ordering of the inner and outer loops to access the
matrix elements. (You could interchange this ordering and check for slower execution time.) Notice
that the supplied main program also demonstrates the use of command-line arguments, so it actually
has the correct calling sequence for the power method already, as power n tol itmax with integers
n and itmax and real number tol. Also some error handling is already included for demonstration
purposes.
Write a README file to document which files make up your code. List which functions are
contained in each file and what their purpose is. Provide a snippet of Linux command line that
demonstrates that all of your code compiles cleanly; use make clean to delete all object files first
to force a recompile of everything. Also submit your code to me in the form of a tgz-file, similar to
the way in which I am making the files available to you. In order to ensure that I can distinguish
the directories from different students, please incorporate your name into the name of the directory.
Your code must compile cleanly without errors. Include a README file with instructions for how
to run your code.

1. [Homework 4, 20 points.] This problem asks you to write various auxiliary routines. For each
part, explain how you implemented its solution in parallel, and how you tested your code for
correctness.

(a) The matrix A ∈ Rn×n is split on the p parallel processes by blocks of n/p consecutive
columns. On each process, its part of the matrix is stored as a one-dimensional vector
in memory. See the setup routine setup_example for an example.

Write an output routine that assembles a temporary copy of the matrix on Process 0 and
outputs it to the screen. Such a routine is a useful utility to make sure that small sample
matrices are set up correctly; of course, you will not use this routine in production runs
involving large matrices. (If you want to use a function like this in production runs, you
would output to a file instead, and you would not actually assemble the entire matrix
before outputting.)



(b) Write a function to compute the dot product between two (column) vectors x and y.
The data structure of such vectors has blocks of rows stored on the p processes. The
result of the dot product should be available on all processes.

(c) Write a function to compute the Euclidean vector norm ‖x‖2 of a (column) vector x
with blocks of its rows spread across the p processes. Its result should be available on
all processes. (Hint: I suggest that you simply implement this function by calling the
dot product function and taking the square root of the result.)

(d) Write a matrix-vector product routine that computes y = Ax with a given matrix A
and column vector x, both of which are stored as detailed above. The resulting vector y
should have the same data structure as x, i.e., it should be spread across the p processes
by blocks of consecutive rows.

What to submit for Homework 4: Program the above functions. Use the examples of matrix
A and vector x that are set up in the supplied main.c file. In the blank area of the main
program, write code that computes y as the matrix-vector product y = Ax using part (d),
then outputs (i) matrix A using part (a), (ii) the dot product of x and y using part (b),
(iii) the norm of x using part (c), and (iv) the vector y using part (d). Run your code with
the input n = 4 and include copy-and-paste from the contents of slurm.out in your report.

2. [Homework 5, 10 points.] The power method is used to compute approximations to the
largest eigenvalue in magnitude and associated eigenvector of a matrix; see any book on
Numerical Linear Algebra for more information. For your convenience, the power method is
given in the Matlab file supplied; notice that the algorithm has been formulated to minimize
the computation of matrix-vector products. Using the utility functions from the previous
problem, program a parallel version of the power method. Use the standard initial guess for
the eigenvector x ∈ Rn with components xj = 1/

√
n for all 0 ≤ j < n. Your power method

function should return the eigenvalue approximation λ, the eigenvector approximation x, and
the number of iterations taken. As a summary at the final time, print out (at a minimum) the
maximum number of iterations allowed, the chosen tolerance, the eigenvalue approximation
λ, the norm of the residual ‖Ax− λx‖2 , and the number of iterations taken, using suitable
format conversions for each. Are your results independent of the number of processes used?
Explain your implementation and how you made sure that it as well as your results themselves
are correct.

What to submit for Homework 5: For several values of n, including n = 8192, copy-and-paste
the contents of slurm.out with properly formatted output of all significant variables; see the
Matlab code for guidance.

3. [Homework 5, 10 points.] Use the function MPI_Wtime to time execution of the power method,
excluding all other parts of the code. This is an example of how it is possible to selectively time
a particular function (your power method only) instead of the entire code, which is relevant if
file I/O or other serial operations were involved in the execution of your code. Demonstrate
the scalability of the method for several large matrix dimensions. Approach this task by first
estimating the memory usage of your code, that is, count the large variables and compute
how much memory the total code should use. Explain why you chose the selected matrix
dimensions. For simplicity and to ensure that the number of processes divide the matrix
dimension n, you may want to restrict yourself n = 2ν with integer ν. Explain exactly how
you obtained your timing results. Collect your timing results in the form of Table 1.1 of
the tech. report HPCF–2010–2. (In order to have at least one case to compare for all of us,
include n = 8,192 in your choices of values.)

What to submit for Homework 5: Submit the requested table as part of your report. Discuss
your timing results and any recommendations that result.


