
Introduction to Parallel Computing — Matthias K. Gobbert
Wintersemester 2011/2012 — Universität Kassel

Homework 3 — due on Tuesday, December 20, 2011

1. [20 points.] Consider the program for the trapezoidal rule in Chapter 4 of Pacheco.

(a) Obtain the code, run it, and verify that it works properly for you. Discuss any issues
that you feel are short-comings of this code and how to fix them.

(b) This and the following parts of this problem are dedicated to applying some obvious
fixes to Pacheco’s original code.

Improve the output of the program by also outputting the true value of the integral,
the true error, the quantity h2, the step size h, number of intervals n, and the number
of processes p. These numbers can be used to check that the code is performing
properly. For optimal readability, organize each output in a separate line and align
the numbers by proper formatting. Make sure to choose a suitable format conversion
for all numbers; why did you choose the format conversion that you did choose?

(c) Program command-line input for the pertinent problem parameters a, b, and n.
Notice that a and b are real numbers, while n is an integer.

(d) Install error checking for all pertinent problems; in this context, consider n an input,
whose validity needs to be checked. You should print an informative message from
Process 0 and use the MPI_Abort function to abort with a non-zero error code.

(e) Demonstrate that the code as given in Pacheco is not accurate, whenever the number
of processes p does not divide the number of subintervals of the trapezoidal rule n.
Explain this.

Fix the program such that the number of processes p does not have to divide the
number n of subintervals any more. In the cases, where p does not divide n, different
processes will do different amounts of work. For best performance, the work should
be divided as evenly as possible, of course. Here, the work is proportional to the
number of subintervals that each process handles. Devise a scheme for load-balancing
that ensures that the number of subintervals does not differ by more than 1 between
any two processes. Explain the algorithm you implement, and argue that it works
for all possible cases of n and p. If your code does not handle all possible cases, e.g.,
leaves out some trivial case, implement at least an error check.

The final result of this change is a computer program, but I suggest that you use
mathematical notation to explain and document your ideas. Introduce notation as
required to do so. Assuming that you use Pacheco’s program as a starting point,
you only have to explain your changes to it. For testing purposes, you may want
to have each process output a message like “Process id: local_n subintervals from
node index l_ia to l_ib” to demonstrate that you are covering all nodes from 0
to n

(f) Run your code with as many nodes as available and with different numbers of pro-
cesses per node. Present your results in one table of the form of Table 1.1 of the tech.
report HPCF–2010–2, that is, the rows reflect the number of processes per node and
the columns the number of nodes. (The case of 6 processes per node is a special case
for this tech. report only; you do not need to do that case.) Discuss the performance



you observe. What steps have you taken to be sure that your timing results are ac-
curate? What limitations of your code do you encounter, if any? Finally, remember
to check the output of the code as set up earlier in the assignment to ensure that
the code is computing correct results: Code that computes incorrect answers is never
acceptable! Implement improvements to the code as needed.

Two notes on performance studies: (i) One big problem in parallel computing is commu-
nication time. Therefore, only wall clock time is an honest measure of whether your code
performs well. This can simply be accomplished by using the MPI command MPI_Wtime,
which saves a current time stamp in seconds. Notice that the time as such is meaning-
less (see its man-page) and that only differences of two such time stamps can be relied
upon. To get the most conservative time, it is necessary to wait for the slowest process
to complete its job, hence it is customary to force a synchronization of all processes with
the MPI_Barrier command. Thus, the outline of code looks like

MPI_Barrier(MPI_COMM_WORLD);

startTime = MPI_Wtime();

/* ... code to time here ... */

MPI_Barrier(MPI_COMM_WORLD);

endTime = MPI_Wtime();

if (id == 0) { /* output from Process 0 only */

tsec = endTime - startTime;

printf ("elapsed wall clock time in seconds = %9.2f\n", tsec);

}

which prints the difference of the start and end time to stdout. (The above printf is
just a starting point for your coding; you might need to work on the formatting of the
output to get useful data for all cases.)

(ii) A practical aspect is how to organize the large number of studies that you want to
do in a way that ensures that results do not overwrite earlier ones and such that you
have a record saved in case of future questions. I have found that the only safe way is to
have one directory for each run, which contains the job submission script and all other
necessary files for each run. The only difference from one directory to the next are the
job submission script’s entries for nodes and ppn. A naming scheme for theses directories
might thus be nXXppnYY, where XX = 01, 02, 04, etc. denotes the number of nodes and YY

= 01, 02, 04, etc. the number of processes per node.

What to submit at minimum as part of your report: (1) There should only be one final
version of code; include it in your report as listing. (2) Include the contents of one
qsub.out in your report that shows the output of your code for n = 8192 in its formatted
form. (3) Include a table of observed wall clock times in the format of a summary table
(rows for processes per node, columns for number of nodes, as Tables 1.1 and 1.2 in the
tech. report HPCF–2010–2). (4) Discuss the changes you made to the code and whether
your final code is optimal.


