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Abstract— We present a new initiative to create a 
training program or graduate-level course 
(cybertraining.umbc.edu) in big data applied to 
atmospheric sciences as application area and using high-
performance computing as indispensable tool. The training 
consists of instruction in all three areas of "Big Data + HPC 
+ Atmospheric Sciences" supported by teaching assistants 
and followed by faculty-guided project research in a 
multidisciplinary team of participants from each area. 
Participating graduate students, post-docs, and junior 
faculty from around the nation will be exposed to 
multidisciplinary research and have the opportunity for 
significant career impact. The paper discusses the 
challenges, proposed solutions, practical issues of the 
initiative, and how to integrate high-quality developmental 
program evaluation into the improvement of the initiative 
from the start to aid in ongoing development of the 
program. 
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Atmospheric Sciences, Multidisciplinary Education, 
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I. INTRODUCTION 
Next to theory and experimentation, computation has 

become the third pillar [1] and data-driven science has become 
the fourth pillar of the scientific discovery process [2] for many 
disciplines and critical to their research advances, such as 
bioinformatics, physics, computational chemistry, and 
mechanical engineering. It demands requirements on a course 
explaining how data and computation related techniques can 
help scientific discovery. Yet such a “Data + Computing + X”  
course is often missing in current curriculum design.  

As an NSF-funded CyberTraining initiative to create a 
nationwide online training program, we are presently designing 
a "Big Data + HPC + Atmospheric Sciences" graduate-level 
program/course (cybertraining.umbc.edu) for students in three 
disciplines (Computing, Mathematics, and Physics) to foster 
multidisciplinary research and education using advanced 
cyberinfrastructure (CI) resources and techniques. The course 

will teach students how to apply knowledge and skills of high-
performance computing (HPC) and Big Data to solve challenges 
in Atmospheric Sciences. We focus on the application area of 
atmospheric physics and within it radiative transfer in clouds 
and global climate modeling, since these topics are important, 
pose computational challenges, and offer opportunities for big 
data techniques to demonstrate their impacts. 

The participants in the new initiative will be selected 
competitively to form multidisciplinary teams of three 
participants with one participant from each area. The material is 
at the level of an advanced graduate course, and we anticipate 
most participants to be graduate students, but some can also be 
post-doctoral researchers or junior faculty. For all three groups, 
participating can have significant impact on their career in vastly 
expanding horizons from their own disciplines to two others. 
After an initial face-to-face course to develop the material, the 
training will be online with participants working together 
remotely from anywhere in the nation. In this way, this training 
can be made available to participants who do not have local 
access to the material. All work is conducted in an 
multidisciplinary team with participants from each area, 
mentored by a faculty and supported by a teaching assistants 
(TA) from each area. In the first 10 modules consisting of 
instruction in all three areas, team building is achieved by 
homework. In the final 5 modules, each team applies the 
material learned immediately to a small research project, 
culminating in a technical report and a project presentation. 
State-of-the-art collaborative and communication tools are used 
throughout, thus providing deep exposure to skills vital in 
today’s job market. 

The rest of the paper is organized as follows. In Section II, 
we explain why HPC and Big Data techniques are needed for 
atmospheric sciences related research. Yet even with the 
requirements, designing a “Data + Computing + X” course still 
face many challenges which are explained in Section III. To deal 
with the challenges, in Section IV, we design a "Big Data + HPC 
+ Atmospheric Sciences" graduate-level course. Section V 
discusses the benefits, mechanical aspects, and how to integrate 
program evaluation from the start, and the paper concludes in 
Section VI. 
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II. HPC AND BIG DATA REQUIREMENTS FOR ATMOSPHERIC 
SCIENCES 

Clouds play an important role in Earth’s climate system, 
particularly its radiative energy budget [3]. On one hand, clouds 
reflect a significant fraction of incoming solar radiation back to 
space, which exerts a cooling effect on the climate. On the other 
hand, same as greenhouse gases, clouds absorb thermal radiation 
from earth's surface and re-emit a lower temperature, which has 
a warming effect on the climate. In addition, clouds are also an 
important chain of the Earth’s water cycle and play center role 
in aerosol-cloud-radiation interactions. As shown in Figure 1, 
cloud radiation and energy is also a research topic that can link 
HPC and Big Data. 

Because of the important role of clouds in the climate 
system, a realistic and accurate representation of clouds in the 
numerical global climate model (GCM) is critical for simulating 
the current and future climate. However, at present there is a 
significant difference among the current generation of GCMs on 
the prediction of whether and to what extent the global warming 
induced cloud changes would accelerate or dampen the warming 
[4]. The recent Intergovernmental Panel on Climate Change 
(IPCC) scientific reports have identified the cloud feedback be 
one of the largest uncertainties in our projection of future climate 
[5]. 

HPC requirements for cloud simulation in GCMs. It is 
extremely challenging to simulate clouds in GCMs realistically 
and accurately for two main reasons. First, many cloud-related 
processes, such as turbulence and convection, cloud droplet 
activation and growth, and transportation of radiation in clouds, 
occur at the spatial scale much smaller than the typical grid size 
of conventional GCMs (~100 km). New techniques, such as 
cloud super-parameterization embeds cloud-resolving models 
with resolution around 1 km inside of the conventional GCMs 
[6], have been developed aiming to solve this problem. 
However, such new techniques usually come with high 
computational cost, which more than ever makes HPC an 
indispensable tool for climate modeling. Another important 
reason is that many processes are modeled using highly 
simplified methods even though compressive methods are 
available to avoid the high computational cost. For instance, in 
the current paradigm, clouds are simply approximated as “plane-
parallel” one-dimensional (1D) column, even though such 
approximation has been known to cause significant errors in 
atmospheric radiation and remote sensing computations. Over 
the past decade, a number of 3D radiative transfer models have 
been developed [7]. These new models, together with the fast 
growth of HPC resources, have given rise to emerging 
opportunities to shift the paradigm from 1D plane-parallel to 3D 
realistic simulation of the radiative transfer and cloud-radiation 
interactions [8].  

Big Data analytics requirements for evaluation of GCM 
using multi-decadal satellite observations. The performance and 
reliability of GCMs are evaluated through comparisons of model 
simulations with measurements. Traditionally, measurements of 
the atmosphere made at the weather stations are sparse, 
especially over oceans, and unevenly distributed. The advances 
of satellite-based remote sensing techniques have led to a 
revolutionary change in our way to observe and measure the 

state of atmosphere. Now, satellite-based measurements of 
global cloud properties have become an important data source 
for evaluating cloud simulations in GCMs [9]. Satellite remote 
sensing has also led to an astronomically growing amount of 
data. For example, the measurements from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) are widely 
used for GCM evaluation [10]. MODIS takes measurements of 
the radiation reflected and emitted by earth-atmosphere in 36 
spectral bands continuously over a swath width of 2,330 km. 
Since its launch in 1999, MODIS has made continuous 
measurements for almost two decades, which are invaluable for 
understanding climate variability and trend. However, the 
tremendous volume of data amount (~500 TB raw data, ~PB 
processed data) has become a difficult obstacle for making full 
use of MODIS data records. 

 
Fig. 1. Categorization of HPC and Big Data related challenges in cloud 

radiation and energy. 

III. CHALLENGES OF "DATA + COMPUTING + X" COURSES 
There are many challenges holding multidisciplinary 

research training of "Data + Computing + X" courses. We will 
explain the challenges in the "Big Data + HPC + Atmospheric 
Sciences" context. Similar challenges also exist in many other 
disciplines. 

First, lower cyberinfrastructure (CI) adoption on advanced 
data and computing techniques in the current atmospheric 
sciences/physics curriculum. The traditional curriculum of an 
atmospheric sciences/physics major usually emphasizes the 
theoretical and experimental aspects of knowledge, but lacks the 
basic training on HPC and Big Data. For example at our 
institution, there is only one graduate course in the Atmospheric 
Physics Graduate Program, called Computational Physics, that 
has a numerical computation/simulation component. This 
course is designed to help the graduate students to build basic 
programming skills and numerical analysis techniques, as well 
as the ability to gain insights into physics problems using 
numerical simulations and models. As an introductory course, 
this course does not cover any topics related to HPC or Big Data.  

Second, lack of training research challenges in applicable 
domains to apply their knowledge for graduate students in 
Computing and Applied Mathematics. Graduate programs in 
Computing (such as Computer Science and Information 
Systems) and Applied Mathematics teach some advanced Data 



and Computing techniques, such as programming and 
distributed computing in Computing, and parallel computing 
and partial differential equation (PDE) in Mathematics. But they 
normally do not have basic knowledge in application domains 
or disciplines that could benefit from what they learn. Instructors 
often use simple examples or common challenges in daily lives, 
such as social media analysis, as examples. These examples are 
often far different from scientific challenges in a discipline like 
Atmospheric Physics. 

Third, lack of customized training for students in different 
majors. Students in different majors have different knowledge 
base and learning interests. Currently, graduate students in the 
Physics Department at UMBC who are interested in HPC or Big 
Data are usually forced to take advanced courses in other 
departments, such as Computer Science, Information Systems, 
or Mathematics. The feedbacks are usually not so positive, 
because these courses are not tailored for physics students. 
Meanwhile, students in Computing and Applied Mathematics 
also do not want to learn too much primary knowledge in 
another discipline, especially the theory part, before they know 
how they could contribute.  

Fourth, lack of team-based multidisciplinary training and 
frontier research projects. Each current curriculums is designed 
for it own major, which rarely provides opportunities for 
students in different majors to work together for 
multidisciplinary research. Many current training programs, 
such as XSEDE Education and Outreach Services [11] and 
NCAR/UCAR Education Programs [12] are great resources for 
trainees within one discipline. While we can leverage all these 
efforts, there are still lacks of a good list of well-defined frontier 
multidisciplinary research projects, especially for “Big Data + 
HPC + Atmospheric Sciences”, designed for a team of students 
with diverse background to work on by applying the knowledge 
from the training. To conduct multidisciplinary research, many 
researchers, including us, have to seek collaborations by 
themselves and learn the knowledge from each other. 

IV. A PROPOSED COURSE FOR "BIG DATA + HPC + 
ATMOSPHERIC SCIENCES" 

We propose to design a “Big Data + HPC + Atmospheric 
Sciences” course addressing the four challenges above through 
the following innovative approaches: 1) it will teach students in 
atmospheric Sciences how to implement and run parallel and big 
data programs at an HPC facility; 2) it will teach students in 
computing and applied mathematics how to solve atmospheric 
Sciences challenges by applying their knowledge; 3) it will 
provide distinctive learning outputs and homework to fit the 
background and interests of students in different disciplines; 4) 
it will provide team-based frontier research projects where each 
team is composed with students in different disciplines so they 
can collaborate and contribute from their own research interests. 

Our proposed 15-module multidisciplinary course includes 
1) customized course design for three disciplines with 
commonalities and differences; 2) data and computing 
techniques adoption for Atmospheric Sciences (three/four 
modules each for Data Science, HPC and Atmospheric 
Sciences); 3) identification of open challenges (including related 
open data) that can benefit from advanced CI resources and 
techniques; 4) five weeks long team-based project for frontier 

research challenges; 5) open source CI software 
implementation; 6) publications from the designed research 
projects. If taught during a regular semester, the workload is 
equivalent to that of a three-credit course. 

A. Course Structure 
Table 1 lists the 15 modules of the course, where it will take 

around three hours to teach each module. Details of each module 
are explained below. 

Table 1: Modularized structure of the proposed training program. 
Module Topic Goal 

1 Introduction of Python/C, 
Linux and HPC environment 

Running their own jobs on 
HPC 

2 Numerical methods for 
Partial Differential Equations 

(PDE) 

Model as PDE and solve them 
using numerical methods 

3 Message Passing Interface 
(MPI) 

Write MPI jobs and 
performance studies 

4 Introduction of Data Science Know basic tasks and 
techniques of Data Science 

5 Basics of Big Data  Understand the basics of Big 
Data and demo programs 

6 Big Data system: 
Hadoop/Spark 

Write Hadoop/Spark jobs and 
run them on HPC 

7 Basics of Machine Learning Write a machine learning 
program using Spark MLlib 

8 Basics of earth-atmosphere 
radiative energy balance and 

global warming 

Understand basic concepts 
and principles of radiative 
energy balance and global 

warming  
9 Basics of radiative transfer 

simulation framework 
Understand the basic physics 
underlying the transport of 

radiation in atmosphere 
10 GCM simulation and satellite 

observations  
Understand the importance of 

GCM and satellite remote 
sensing 

11 Project introduction and 
assignment 

Each interdisciplinary team 
will be assigned one project  

12-14 Project progress report from 
each team and feedback 

20 minutes report from each 
team + Q&A + rating 

15 Final project presentation Report, software, and a final 
presentation from each team 

 

Module 1: Introduction of Python/C, Linux and HPC 
environment. The first module explains the whole structure of 
the program and required basic knowledge for the program. It 
briefly goes through a programming language such as Python or 
C. It also introduces the hardware architecture, available 
software and basic usage of the UMBC HPCF environment.   

Module 2: Numerical Methods for Partial Differential 
Equations. This module will explain the basics of partial 
differential equations, which is commonly used in physical 
models. It will discuss the use of numerical methods for PDEs, 
which is one major driving force behind research in many other 
fields like numerical linear algebra, scientific computing, and 
the development of parallel computers. It will cover the three 
basic PDE categories and their mathematical properties with 
examples. It will discuss two large classes of methods: finite 
difference and finite element methods. 

Module 3: Message Passing Interface (MPI). This module 
will explain how to write MPI programs which is one of most 
common approach to build portable and scalable parallel 
scientific applications. It will cover basic MPI commands such 



as MPI_Send and MPI_Recv, collective communication 
commands like MPI_Bcast, MPI_Reduce/MPI_Allreduce, and 
MPI_Gather/MPI_Scatter. It will also explain how to write MPI 
programs in both C and Python (through mpi4py).  

Module 4: Introduction of Data Science. This module will 
explain the basic concepts of Data Science, including generic 
lifecycle and different stages of data analytics, such as 
acquisition, cleaning/preprocessing, integration/aggregation, 
analysis/modeling and interpretation. It will cover basics of 
descriptive statistics, graphic displays of data summaries, and 
basics of probability theory (including Bayes’ theorem).  

Module 5: Basics of Big Data. This module will explain the 
basics of Big Data, including its 5V characteristics. It starts with 
the challenges and bottleneck of many applications when 
dealing with large volume of data. Then it will introduce the 
basics of distributed file system and why we need them. It will 
cover Big Data concepts/techniques: data partitioning, data 
parallelization, key-value pairs, functional programming and 
MapReduce.  

Module 6: Big Data system: Hadoop/Spark. This module 
will cover how to use two popular Big Data systems namely 
Hadoop and Spark. It will explain how Hadoop Distributed File 
System (HDFS) can achieve data partitioning, and fault 
tolerance and cluster management and job scheduling in 
Hadoop/Spark. For Spark, it will explain resilient distributed 
datasets (RDD), RDD transformations (map, join, cogroup, etc.) 
and actions (count, collection, foreach, etc.), lazy evaluation.  

Module 7: Basics of Machine Learning. This module will 
explain the main lifecycle (training, testing, applying) and main 
types of machine learning (supervised and unsupervised 
learning). Major techniques to be covered include inferential 
statistics, feature selection, regression, correlation, clustering 
and classification. It will also explain how to construct Big Data 
machine learning through Spark MLlib.  

Module 8: Basics of earth-atmosphere radiative energy 
balance and global warming. This module will explain the basic 
concepts and principles that control the radiative energy balance 
of earth-atmosphere system, and its implications to climate. The 
module will start with the fundamental physics, such as black-
body radiation, followed by zero-order radiative energy balance 
between incoming solar radiation and outgoing terrestrial 
longwave radiation. The module will end with discussion of 
what kinds of roles the greenhouse gases, aerosols and clouds 
play in the radiative energy budget.  

Module 9: Basics of radiative transfer simulation 
framework. Following previous module, this module will 
introduce the fundamental physical principles that control the 
transport of radiation (i.e., visible and infrared light) in our 
atmosphere. The module will also include the introduction of 
Monte-Carlo method and it application to radiative transfer.   

Module 10: GCM simulation and satellite observations. This 
module will start with an introduction to the basic concepts and 
principles of numerical climate simulations, followed by 
explaining the importance of evaluating climate simulations and 
why satellite remote sensing products are invaluable for climate 
model evaluation. Basic concepts and principle underlying 
satellite remote sensing will also be introduced this module.  

Module 11: Project introduction and assignment. This 
module will explain available research projects to be conducted 
in the following five weeks (see below for possible projects). 
For each project, it will cover the required techniques, suggested 
phases and major tasks, expected outputs, output evaluation 
metrics and challenges to each discipline. Each team will be 
assigned one project to work on.  

Modules 12-14: Project progress report from each team and 
feedback from instructors as well. These three modules will be 
weekly project progress updates and discussions. Since each 
team has three members, every member will be a presenter for 
the reports. All instructors and other teams will discuss the 
progress, perform peer review, provide feedback and give 
ratings. 

Module 15: Final project presentation. The final module will 
be the final project presentation and final CI software program 
and technical report delivery. Each team will give a talk on the 
problems to be solved, the approaches taken, demonstration of 
developed software program, the experiments and results, and 
contributions of each member. All instructors and other teams 
will provide feedback and give ratings and suggestions for future 
work. 

B. Sample Multidisciplinary Research Projects 
The sample projects we have designed are listed below. With 

project assignment, each team will deliver their software 
program that can utilize CI resources/techniques for the project 
challenges and a technical report. Every project needs 
multidisciplinary research, deeper understanding of the topics, 
and learn necessary new knowledge for the project (such as 
OpenMP for Project 1 and additional classification models in 
Project 4). We will make sure each team has a unique project to 
work on so they can learn from each other and avoid possible 
plagiarism. Students are also welcome to design their own 
research projects related with the techniques/knowledge taught, 
especially for post-docs and junior faculties. Further, we will 
continue to design new multidisciplinary research projects and 
plan to maintain them well for future possible usage such as 
organizing nation or worldwide research competitions based on 
the projects. We note that the designed projects are closely 
related with the instructor team’s current research interests so it 
will not be a huge burden on the instructors. 

Team Project 1: Tuning of PDE simulations on modern 
architectures. This team will start with the MPI code for the 
sample PDE in Module 2 of the training and add OpenMP code 
to obtain a fully hybrid MPI+OpenMP code. The sample PDE 
here is the Poisson equation in two dimensions, which is a 
classical test case for linear solvers [13] and parallel computing. 
We mention that the team presentations to the whole group 
provide the ideal platform to share this knowledge with all 
participants. The team will then proceed to use cutting-edge Intel 
Xeon Phi KNL processors with 64 or more cores [14]. For best 
performance, the code needs tuning and the team will evaluate 
algorithmic and coding changes. With this basis, the PDE in the 
code will be generalized towards more complex PDEs as they 
appear in the atmospheric physics modules, such as the linear 
versions of the equation of radiative transport. This will make 
connections to the other teams and make the project 
presentations to all participants profitable for the other teams. 



Team Project 2: Monte-Carlo simulation of radiative 
transfer: serial vs. parallelization. The Monte-Carlo method is a 
popular method that is widely used for simulating the radiative 
transfer of light in scattering-absorbing medium, such as cloud 
and aerosol [15]. It is also used for spectral integration in GCM 
integration scheme [16]. Because it is conceptually simple and 
yet highly flexible and relatively easy to be parallelized, the 
Monte-Carlo method applied in atmospheric radiative transfer is 
an ideal topic to introduce HPC. The team will first develop a 
simple serial Monte-Carlo radiative transfer model and use the 
model to solve some classic problems, such as cloud and aerosol 
radiative forcing. At the beginning, problems will be simple with 
low computational cost that can be handled by serial code. More 
realistic and complicated problems will be added progressively, 
which will gradually help students to realize that the traditional 
serial code could not meet the computational cost for solving 
real-world problem. Finally, the team will parallelize their serial 
Monte-Carlo radiative transfer model using the knowledge from 
the training and then evaluate additional potential improvements 
of performance by leveraging GPUs. 

Team Project 3: Derive regional climate trend and variability 
from MODIS radiometric measurements. MODIS is a key 
instrument aboard the Terra satellite launched in 1999 and the 
Aqua satellite launched in 2002. It takes measurements of the 
radiation reflected and emitted by earth-atmosphere in 36 
spectral bands ranging from near ultraviolet to thermal infrared. 
The wide spectral coverage of MODIS enables remote sensing 
of a variety of cloud properties, such as cloud fraction, cloud top 
height, cloud thermodynamics phase, cloud optical thickness 
and cloud particle sizes. Since their launch, the two MODIS 
instruments have been making continuous measurements for 
almost two decades. It is an invaluable dataset for assessing and 
understanding the variability and changes of climate on decadal 
scale. The scientific objective of this project is to derive the 
variability and trend of direct MODIS radiometric observations 
over several “climate-sensitive regions”, which will include 1) 
west coast of U.S. (drought), 2) East Asia and North-West 
Pacific (air pollution), and 3) eastern tropical Pacific (El Niño-
Southern Oscillation). The results from this analysis will help 
the scientific community to understand the climate variability in 
these regions over the last two decades, and also provide the 
much needed benchmark for evaluating GCM simulations. The 
tremendous amount of MODIS data (~100 TB) is a great 
challenge to this project. The other objective of this project is to 
create a realistic scenario for the students to apply Big Data 
analysis techniques provided by Hadoop and Spark. The team 
will study how to partition data, write data parallel analysis 
program, and evaluate their scalability on UMBC HPCF.  

Team Project 4: Rule based and clustering based 
classification on large scale MODIS data. Cloud type 
classification and identification are very important for 
atmospheric and cloud property retrievals. Many atmospheric 
applications depend on accurate and automatic cloud detection 
and classification. Generally, there are two types of approaches 
for cloud detection and classification based on satellite images. 
The first type is rule-based classification, which applies a set of 
thresholds of reflectance, temperature, spatial variances and 
others [17]. The second type is Machine Learning based 
classification, such as Bayesian methods [18] and clustering 

analysis [19]. In this project, students will first parallelize the 
MODIS cloud mask algorithm in [17] to large scale MODIS data 
using Hadoop/Spark. Then, they will apply clustering based 
classification on the same data using Spark MLlib. Last, we will 
ask students to combine these two types of approaches for 
further accuracy and execution performance improvement. [19] 
studied how to use rule-based results as initial classification of 
the iterative clustering based classification. This project will 
apply Big Data and parallel machine learning techniques to 
larger amount of MODIS data on a distributed computation 
environment. 

Team Project 5: Evaluation of GCM through comparison 
with satellite observation data. The accuracy and reliability of 
our future climate projection rely on the skills and performance 
of our numerical climate models. Thus, it is an important task to 
evaluate the GCMs by carefully comparing the GCM 
simulations, including simulated cloud properties (e.g., cloud 
fraction, cloud optical thickness and cloud radiative effects), to 
observations [20]. A great challenge is that the definition of 
cloud in GCM is fundamentally different from observations. As 
a result, it is difficult to make “apple-to-apple” comparisons 
between GCM and observed cloud fields. To overcome this 
challenge, a model-to-observation projector, called CFMIP 
Observation Simulator Package (COSP) [21], is developed to 
facilitate the evaluation of GCM using satellite cloud remote 
sensing products. In this project, students will run off-line COSP 
on the CMIP5 GCM simulations [22]. Both the data generated 
by the CMIP5 model simulations and collected from satellite 
observations are in tremendous volume (~100TB) [23]. The 
team will study how to efficiently process the CMIP5 model 
simulations and satellite observations utilizing Big Data 
framework systems like Hadoop and Spark. The team will also 
evaluate GCM simulation using the COSP and satellite 
observations, and provide their findings.  

V. DISCUSSION AND EVALUATION 

A. Benefits to Each Discipline 
Table 2 lists the knowledge base and required training for 

students in different majors based on typical current curricula. It 
shows while each program offers some basic training, additional 
training is critical to conduct multidisciplinary research. Our 
proposed course is designed to fill the gap and take the diverse 
knowledge background of students in each major into 
consideration. For each topic, we will identify what needs to be 
learned for students in each major. For instance, students in 
computing related majors do not need to understand the physics 
theories of cloud-related processes, but they need to know their 
representations in programming models. By this approach, the 
students will be able to communicate and collaborate, yet they 
can still focus on their own interests. Further, the courses listed 
in the second column of the table will be prerequisite courses of 
our course so that students enrolled have enough preparation to 
start the course. 

We acknowledge that our training program cannot fill all the 
gaps for “Big Data + HPC + Atmospheric Sciences” based 
multidisciplinary research. Instead, we select a narrow yet 
interconnected list of topics from the disciplines. We will focus 
on one research topic in Atmospheric Sciences, namely cloud 
radiation and energy. We will also limit the training of data and 



computing topics to selected PDEs, MPI, Hadoop, Spark, and 
three machine learning techniques. Since the instructors will 
design research projects before the course starts, the designed 
the projects will help us tailor the necessary knowledge to be 
taught in the first 10 modules. This will allow students to quickly 
grasp required knowledge and be prepared to collaborate and 
then focus on the research challenges. Because the course is 
designed to be multidisciplinary and research project driven, this 

course does not intend to teach complete knowledge for each 
topic, such as HPC, Big Data and Atmospheric Sciences. 
Students can take other courses for a more complete knowledge 
for each specific topic. What they will experience in the setting 
of this training is the powerful and relevant experience of an 
interdisciplinary collaboration, in which each participant 
contributes his or her discipline’s expertise. 

 
Table 2: Knowledge base and required training for students in different majors to conduct “Big Data + HPC + Atmospheric Sciences” based multidisciplinary 

research. 

Graduate 
program Existing courses can be leveraged Other main courses offered Additionally required knowledge 

Information 
systems 

● Programming 
● Data Mining and Machine 

Learning 
● Distributed Systems 
● Introduction to Data Science 

● Databases 
● Artificial Intelligence  
● Decision Making 
● System Analysis and Design 

● Computational Physics 
● Parallel Computing 
● Partial Differential Equations 
● Big Data Techniques and Systems 

Applied 
Mathematics 

● Partial Differential Equations 
● Computational Mathematics and 

Programming 
● Introduction to Parallel 

Computing 

● Ordinary Differential Equations 
● Optimization Techniques 
● Combinatorics and Graph Theory 
● Linear Algebra 

● Computational Physics 
● Data Mining and Machine Learning 
● Big Data Techniques and Systems 

Atmospheric 
Physics 

● Computational Physics ● Atmospheric Physics 
● Atmospheric Dynamics 
● Atmospheric Radiative Transfer 
● Atmospheric Remote Sensing 
● Quantum Mechanics 

● Parallel Computing 
● Partial Differential Equations 
● Data Mining and Machine Learning 
● Big Data Techniques and Systems 

 

B. Teaching Mechanics. 
We plan to develop the course in three steps. In Year 1, the 

training material will be developed in a team-taught three-credit 
face-to-face course held at UMBC during Spring 2018. This is 
realistic for workload of the instructors and to give enough time 
for coordination (preparation during Fall 2017 and during the 
semester itself) among the instructors. This instruction of the 
first offering will be taped, and these tapes form the basis of the 
online off-site instruction in the following offerings. Already in 
the first offering with face-to-face instruction, we will recruit 
participants from nearby colleges, universities, and government 
agencies. We wish to create the training not just for graduate 
students. So, junior faculty at colleges (both public in the 
University System of Maryland, such as HBCUs Coppin State 
U. or Bowie State U. and others like Towson U., as well as 
private colleges including Notre Dame of Maryland or Loyola 
U. Maryland) as well as post-docs / visiting assistant professors 
at academic institutions or government agencies (such as NASA, 
NOAA, EPA) who wish to extend the breadth of their 
professional preparation are part of our target audience. 
Additionally, graduate student populations exist at many local 
institutions, including Towson U., Morgan State U., U. of 
Maryland College Park, and Johns Hopkins U., who will be 
interested. All these can already participate in the first offering 
face-to-face, since they can come to the UMBC campus for one 
class per week. We plan to offer this class as one meeting per 
week on Friday afternoons, so that in particular faculty and post-
docs from local colleges/universities could avoid time conflicts 
with their own classes. 

Starting with the offering of the training in Year 2, to be 
offered online in Spring 2019, we anticipate to recruit and admit 
from around the nation, using recruiting techniques including 
conferences, professional societies, regional mailing lists, and 
personal connections, and also the cohort from the first offering 
as multiplier. Including some post-docs or junior faculty from 
other institutions in Year 1 might also be very helpful in this 
outreach. We anticipate currently that the second offering will 
still use a regular semester schedule using UMBC start and end 
dates, so that we can continue to fine tune the organization. 

Starting with Year 3, we plan to use a summer time slot, i.e., 
a compressed schedule of about six weeks, to demonstrate the 
feasibility of completing the training during a period outside of 
a regular semester, when the participants can focus solely on this 
training. 

The admission of participants will be based on demographic 
information collected in a web form, a CV, a thorough personal 
statement, and at least two letters of recommendation. The 
personal statement needs to address specifically why the 
participant is interested in interdisciplinary research, how 
participation will promote his/her career goals, and how he/she 
can contribute to a team of participants from each discipline. 

By teaching the same course at least three years will help us 
explore and compare different specific teaching mechanics 
including 1) whether we could setup teams and assign projects 
earlier so each team has more time to work on their project? 2) 
should class homework assignment be the same for all students 
or be linked with their individual projects; 3) whether it is good 



to have TAs fill in the vacancies if some students drop out in the 
middle of the course? 

C. Evaluation Methods 
The assessment of this multidisciplinary training program 

will follow the American Evaluation Association guidelines for 
systematic, competent, honest and respectful evaluation that is 
useful, accurate and conducted with due regard for the welfare 
of those involved in the evaluation. The methodology of the 
evaluation will be primarily a developmental, mixed methods 
approach [24] that focuses on the NSF approved proposal as the 
project strategy.  The methods will include both qualitative [25] 
and quantitative [26] data collection methods, focusing on the 
logic and intended emergent outcomes that acknowledges that 
multidisciplinary training, even in a semester-long training 
program is uncertain and requires a dynamic approach. The 
purpose of the evaluation is to foster development of the 
curriculum over time by building learning and reflection into the 
process to further iterate the curriculum and training pedagogies 
and process. The assessment is built around a set of questions 
collaboratively developed in partnership with the external 
evaluation team, instructors and other relevant partners to guide 
the inquiry.  The external evaluation includes the development 
of success metrics aimed at student learning and quality of 
faculty collaboration and adaptive learning to further develop 
the training curriculum as a successful online course. 

A key component of our strategy is to engage our outside 
developmental evaluator at the beginning of the process, one full 
semester before the first offering of the course. Timely feedback 
and a systems perspective are key features of the developmental 
evaluation that reinforces the purpose of further developing the 
on-line course rather than improve a fixed model. The 
anticipated innovation of the course is expected to be in its 
design as an adaptive, context specific course, rather than a static 
model that does not change. For example, after the first offering, 
data gathered by the evaluator and faculty will be discussed in a 
retreat format to further evolve the course consider other 
applications. This feedback loop will be repeated, with 
particular emphasis on collecting the experiences of the 
students, considering quality of their academic outputs and 
examining quality of faculty collaboration. The model will then 
shift as an online offering only as the context for the course will 
change and require further adaptation and development. 

 

VI. CONCLUSION 
Both the National Strategic Computing Initiative [27] and 

the Federal Big Data Research and Development Strategic Plan 
[28] highlighted the importance of workforce development on 
HPC and Big Data. Starting with the current curriculum design 
and to prepare the next generation scientists, we present a new 
initiative to create a training program or graduate-level course in 
big data applied to atmospheric sciences as application area and 
using high-performance computing as indispensable tool. We 
outline a concrete procedure how to create the course and 
believe that this approach could also be used to create other 
courses for the “Computational and Data Science for All” 
educational ecosystem. 
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