
A Comparative Study of the Parallel Performance of the Blocking and
Non-Blocking MPI Communication Commands on an Elliptic Test

Problem on the Cluster tara
Hafez Tari† and Matthias K. Gobbert‡

†Department of Mechanical Engineering, email: hafez.tari@umbc.edu
‡Department of Mathematics and Statistics, email: gobbert@umbc.edu
University of Maryland, Baltimore County, Baltimore, MD 21250, USA
Technical Report HPCF–2010–6, www.umbc.edu/hpcf > Publications

Abstract

In this report we study the parallel solution of the elliptic test problem of a Poisson equation with ho-
mogenous Dirichlet boundary conditions in a two dimensional domain. We use the finite difference method to
approximate the governing equations with a system of N2 linear equations, with N the number of interior grid
points in either spatial direction. To parallelize the computation, we distribute blocks of the rows of the interior
mesh point values among the parallel processes. We then use the iterative conjugate gradient method featured
with a so-called matrix-free implementation to solve the system of linear equations local to any of the processes.
The conjugate gradient method initiates with local vectors of zero elements, as the start solution, and updates
the successive solutions until the Euclidean norm of the global residual of the local iterative solutions relative
to that of the global residual of the local start solutions vanishes based on a predefined tolerance. To achieve
this and considering the fact that the conjugate gradient method forces some communication between the neigh-
boring processes, i.e. the processes possessing data of the grid interfaces, two modes of MPI communications,
namely blocking and non-blocking send and receive, are employed for the data exchange between the processes.
The obtained results given accordingly show excellent performance on the cluster tara with up to 512 parallel
processes when using 64 compute nodes, especially once non-blocking MPI commands are used. The cluster
tara is an IBM Server x iDataPlex purchased in 2009 by the UMBC High Performance Computing Facility
(www.umbc.edu/hpcf). It is an 86-node distributed-memory cluster comprised of 82 compute, 2 develop, 1 user,
and 1 management nodes. Each node features two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB
cache), 24 GB memory, and a 120 GB local hard drive. All nodes and the 160 TB central storage are connected
by an InfiniBand (QDR) interconnect network.

1 Introduction

The interplay of the processors in clusters and supercomputers, the architecture of their compute nodes, their
interconnect network, the numerical algorithm used and its implementation are the key to devise parallel computer
codes of decent performances. The solution of large, sparse, highly structured systems of linear equations by an
iterative linear solver that requires communication between the parallel processes at every iteration is an instructive
test of this interplay.

The numerical approximation of the classical elliptic test problem given by the Poisson equation with homo-
geneous Dirichlet boundary conditions on a unit square domain in two spatial dimensions by the finite difference
method results in a large, sparse, highly structured system of linear equations. The parallel implementation of the
conjugate gradient method as appropriate iterative linear solver for this linear system involves necessarily com-
munications both between all participating parallel processes and between pairs of processes in every iteration.
Therefore, this method provides an excellent test problem for the overall, real-life performance of a parallel com-
puter. The results are not just applicable to the conjugate gradient method, which is important in its own right as
a representative of the class of Krylov subspace methods, but to all memory bounded algorithms. See [2] for the
details of the conjugate gradient method. Section 2 elaborates the elliptic test problem under investigation.

Tara is the cluster that we will be using for our experimentation. It is an 86-node distributed-memory cluster
purchased in 2009 and comprised of 1 user, 1 management, 2 develop and 82 compute nodes. Each node features
two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache), 24 GB memory, and a 120 GB local hard
drive, thus up to 8 parallel processes can be run simultaneously per node. All nodes and the 160 TB central storage
are connected by an InfiniBand (QDR = quad-data rate) interconnect network. The cluster is an IBM System x
iDataPlex.1 An iDataPlex rack uses the same floor space as a conventional 42 U high rack but holds up to 84 nodes,
which saves floor space. More importantly, two nodes share a power supply which reduces the power requirements
of the rack and make it potentially more environmentally friendly than a solution based on standard racks.2 For

1Vendor page www-03.ibm.com/systems/x/hardware/idataplex/
2Press coverage for instance www.theregister.co.uk/2008/04/23/ibm_idataplex/

1

www.umbc.edu/hpcf
www.umbc.edu/hpcf
www-03.ibm.com/systems/x/hardware/idataplex/
www.theregister.co.uk/2008/04/23/ibm_idataplex/

tara, the iDataPlex rack houses the 84 compute and develop nodes and includes all ethernet switches and other
components associated with the nodes in the rack such as power distributors and ethernet switches. The user and
management nodes with their larger form factor are contained in a second, standard rack along with the InfiniBand
switch. Moreover, for our coding the MVAPICH2 implementation of MPI and for the compilation the PGI 9.0 C
compiler have been used to create the executables which were utilized in this report.

Past results using an implementation of this method [1, 2, 3] on the previous clusters show that the interconnect
network between the compute nodes must be high-performance, that is, have low latency and wide bandwidth, for
this numerical method to scale well to many parallel processes. This note like [4] is an update to the technical
report [3] with considering the same problem for the new cluster tara. Moreover, this letter is in line with [4] which
studies the same problem for the same cluster, tara, but with an independent improved coding effort considering
both blocking and non-blocking MPI communication commands.

2 The Elliptic Test Problem

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary
conditions (see, e.g., [5, Chapter 7])

−△u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit square domain Ω = (0, 1) × (0, 1) ⊂ ℝ2. Here, ∂Ω denotes the boundary of the domain Ω and the
Laplace operator in is defined as

△u =
∂2u

∂x21
+
∂2u

∂x22
.

Using N + 2 mesh points in each dimension, we construct a mesh with uniform mesh spacing ℎ = 1/(N + 1).
Specifically, define the mesh points (xk1 , xk2) ∈ Ω ⊂ ℝ2 with xki = ℎ ki, ki = 0, 1, . . . , N,N + 1, in each dimension
i = 1, 2. Denote the approximations to the solution at the mesh points by uk1,k2 ≈ u(xk1 , xk2). Then approximate
the second-order derivatives in the Laplace operator at the N2 interior mesh points by

∂2u(xk1 , xk2)

∂x21
+
∂2u(xk1 , xk2)

∂x22
≈ uk1−1,k2 − 2uk1,k2 + uk1+1,k2

ℎ2
+
uk1,k2−1 − 2uk1,k2 + uk1,k2+1

ℎ2
(2.2)

for ki = 1, . . . , N , i = 1, . . . , d, for the approximations at the interior points. Using this approximation together
with the homogeneous boundary conditions (2.1) gives a system of N2 linear equations for the finite difference
approximations at the N2 interior mesh points.

Collecting the N2 unknown approximations uk1,k2 in a vector u ∈ ℝN2

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ ℝN2×N2

and a right-hand side vector b ∈ ℝN2

. The components of the right-hand side vector b are given by
the product of ℎ2 multiplied by right-hand side function evaluations f(xk1

, xk2
) at the interior mesh points using

the same ordering as the one used for uk1,k2
. The system matrix A ∈ ℝN2×N2

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N ×N each. Concretely, we have

A =

⎡⎢⎢⎢⎢⎢⎣
S T
T S T

. . .
. . .

. . .

T S T
T S

⎤⎥⎥⎥⎥⎥⎦ ∈ ℝN2×N2

(2.3)

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ ℝN×N for the diagonal blocks of A and with T = −I ∈ ℝN×N

denoting a negative identity matrix for the off-diagonal blocks of A.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for

solving this linear system. The system matrix A is known to be symmetric and positive definite and thus the
method is guaranteed to converge for this problem. In a careful implementation, the conjugate gradient method
requires in each iteration exactly two inner products between vectors, three vector updates, and one matrix-vector
product involving the system matrix A. In fact, this matrix-vector product is the only way, in which A enters into
the algorithm. Therefore, a so-called matrix-free implementation of the conjugate gradient method is possible that
avoids setting up any matrix, if one provides a function that computes as its output the product vector q = Ap

2

component-wise directly from the components of the input vector p by using the explicit knowledge of the values
and positions of the non-zero components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate
gradient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual
r, the search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method,
each vector is split into as many blocks as parallel processes are available and one block distributed to each process.
That is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled
in full on any process. To understand what this means for parallel programming and the performance of the
method, note that an inner product between two vectors distributed in this way is computed by first forming the
local inner product between the local blocks of the vectors and second summing all local inner products across all
parallel processes to obtain the global inner product. This summation of values from all processes is known as
a reduce operation in parallel programming, which requires a communication among all parallel processes. This
communication is necessary as part of the numerical method used, and this necessity is responsible for the fact
that for fixed problem sizes eventually for very large numbers of processors the time needed for communication —
increasing with the number of processes — will unavoidably dominate over the time used for the calculations that
are done simultaneously in parallel — decreasing due to shorter local vectors for increasing number of processes.
By contrast, the vector updates in each iteration can be executed simultaneously on all processes on their local
blocks, because they do not require any parallel communications. However, this assumes tacitly that the scalar
factors that appear in the vector updates are available on all parallel processes. This is accomplished already
as part of the computation of these factors by using a so-called Allreduce operation, that is, a reduce operation
that also communicates the result to all processes. This is implemented in the MPI function as MPI_Allreduce.
Finally, the matrix-vector product q = Ap also computes only the block of the vector q that is local to each
process. But since the matrix A has non-zero off-diagonal elements, each local block needs values of p that are
local to the two processes that hold the neighboring blocks of p. The communications between parallel processes
thus needed are so-called point-to-point communications, because not all processes participate in each of them, but
rather only specific pairs of processes that exchange data needed for their local calculations. Observe now that it
is only a few components of q that require data from p that is not local to the process. Therefore, it is possible and
potentially very efficient to proceed to calculate those components that can be computed from local data only, while
the communication with the other processes is taking place. This technique is known as interleaving calculations
and communications and can be implemented using the non-blocking MPI communications commands, MPI_Isend
and MPI_Irecv which are known to be ‘safe’ against deadlock. See [6] for a detailed explanation. A less effective
approach is to use the blocking MPI communications commands, MPI_Send and MPI_Recv which will not return
until the arguments to the functions can be safely modified by subsequent statements in the program. We will
compare the results of both methods for our case of study.

3 Convergence Study for the Model Problem

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit square
Ω = (0, 1)× (0, 1) with right-hand side function

f(x1, x2) = (−2�2)
(

cos(2�x1) sin2(�x2) + sin2(�x1) cos(2�x2)
)
, (3.1)

for which the solution u(x1, x2) = sin2(�x1) sin2(�x2) is known. On a mesh with 34 × 34 points (N = 32) and
mesh spacing ℎ = 1/33 = 0.03030303, the numerical solution uℎ(x1, x2) can be plotted vs. (x1, x2) as a mesh plot
as in Figure 3.1 (a). The shape of the solution clearly agrees with the true solution of the problem. At each mesh
point, an error is incurred compared to the true solution u(x1, x2). A mesh plot of the error u− uℎ vs. (x1, x2) is
plotted in Figure 3.1 (b). We see that the maximum error occurs at the center of the domain of size about 3.2e–3,
which compares well to the order of magnitude ℎ2 ≈ 0.92e–3 of the theoretically predicted error.

To check the convergence of the finite difference method as well as to analyze the performance of the conjugate
gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of
the N ×N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension of the linear system), the norm of
the finite difference error ∥u− uℎ∥L∞(Ω)

, the number of conjugate gradient iterations #iter, the observed wall clock
time in HH:MM:SS and in seconds , and the predicted and observed memory usage in MB for studies performed
in serial. More precisely, the runs used the parallel code run on one process only, on a dedicated node (no other

3

(a) Numerical solution uℎ (b) Error u− uℎ

Figure 3.1: Mesh plots (N = 32) of (a) the numerical solution uℎ vs. (x1, x2) and (b) the error u− uℎ vs. (x1, x2).

Table 3.1: Convergence study listing the mesh resolution N , the number of degrees of freedom (DOF), the norm of
the finite difference error ∥u− uℎ∥L∞(Ω)

, the number of conjugate gradient iterations to convergence, the observed
wall clock time in HH:MM:SS and in seconds, and the predicted and observed memory usage in MB for a one-process
run.

N DOF ∥u− uℎ∥L∞(Ω)
#iter wall clock time memory usage (MB)

HH:MM:SS seconds predicted observed
32 1,024 3.0127e–03 48 <00:00:01 < 0.01 < 1 12
64 4,096 7.7810e–04 96 <00:00:01 < 0.01 < 1 12

128 16,384 1.9764e–04 192 <00:00:01 0.03 < 1 12
256 65,536 4.9797e–05 387 <00:00:01 0.16 2 13
512 262,144 1.2494e–05 783 00:00:01 1.39 8 19

1024 1,048,576 3.1266e–06 1,581 00:00:19 18.88 32 44
2048 4,194,304 7.8019e–07 3,192 00:02:21 140.75 128 143
4096 16,777,216 1.9365e–07 6,452 00:18:43 1,123.34 512 536
8192 67,108,864 4.7374e–08 13,033 02:18:51 8,331.01 2,048 2,109

16384 268,435,456 1.1541e–08 26,316 18:24:11 66,251.23 8,192 8,401

processes running on the node), and with all parallel communication commands disabled by if-statements. The
wall clock time is measured using the MPI_Wtime command (after synchronizing all processes by an MPI_Barrier

command). The memory usage of the code is predicted by noting that there are 4N2 double-precision numbers
needed to store the four vectors of significant length N2 and that each double-precision number requires 8 bytes;
dividing this result by 10242 converts its value to units of MB, as quoted in the table. The memory usage is
observed in the code by checking the VmRSS field in the the special file /proc/self/status. For the one case where
multiple processes were needed, this number is summed across all running processes to get the total usage. For the
runs that take under one second, the observed memory appears to be dominated by some system overhead, rather
than reflecting the problem size directly.

In nearly all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time
that the mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent,
as predicted by the numerical theory for the finite difference method [7, 8]. The fact that this convergence order
is attained also confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently
accurate solution of the linear system. The increasing numbers of iterations needed to achieve the convergence of
the linear solver highlights the fundamental computational challenge with methods in the family of Krylov subspace
methods, of which the conjugate gradient method is the most important example: Refinements of the mesh imply
more mesh points, where the solution approximation needs to be found, and makes the computation of each iteration
of the linear solver more expensive. Additionally, more of these more expensive iterations are required to achieve
convergence to the desired tolerance for finer meshes. And it is not possible to relax the solver tolerance too much,
because otherwise its solution would not be accurate enough and the norm of the finite difference error would not

4

show a second-order convergence behavior, as required by the theory. The good agreement between predicted and
observed memory usage in the last two columns of the table indicates that the implementation of the code does not
have any unexpected memory usage. The wall clock times and the memory usages for these serial runs indicate
for which mesh resolutions this elliptic test problem becomes computationally challenging. Notice that the very
fine meshes show very significant run times and memory usage; parallel computing clearly offers opportunities to
decrease run times as well as to decrease memory usage per process by spreading the problem over the parallel
processes.

The results for the finite difference error and the conjugate gradient iterations in Table 3.1 of this report agree
essentially exactly with the corresponding results in Table 3.1 of [4]. This confirms that the parallel performance
studies in the next section are practically relevant in that a correct solution of the test problem is computed. But the
computational speed of the new serial results given in Table 3.1 are almost two times faster than those in Table 3.1
of [4]. For example, [4] reports 16,596.76 and 122,261.31 seconds for the cases N = 8,192 and N = 16,384,
respectively, which are 2.0 and 1.8 times slower, respectively, than the results in Table 3.1 of this report. The
obtained improvement in speed is due to only an improvement in the coding part not the MPI since for the serial
runs none of the MPI commands are incorporated.

4 Performance Studies on tara with Non-Blocking MPI Communica-
tion Commands

To study the performance of non-blocking MPI communication commands on tara, we have run the non-blocking
MPI version of our code for the test problem on a series of progressively finer meshes, resulting in progressively
larger systems of linear equations with system dimensions ranging from about 1 million up to hundreds of millions of
equations, with different numbers of nodes from 1 to 64 with different numbers of processes per node. After several
runs for each case, Table 4.1 summarizes the maximum recorded run time results of our runs for 5 meshes with
different numbers and arrangement of processes. Specifically, the upper-left entry of each sub-table with 1 process
per node on 1 node represents the serial run of the code, which takes 19 seconds for the 1,024 × 1,024 mesh that
results in a system of about 1 million linear equations to be solved. The lower-right entry of each sub-table lists the
run using all cores of both quad-core processors on 64 nodes for a total of 512 parallel processes working together
to solve the problem, which takes less than one second for this mesh. Results shown as 00:00:00 indicate that the
observed wall clock time was less than 1 second for that case.

The summary results in Table 4.1 are arranged to study two key questions: (i) whether the code scales linearly
to 64 nodes, which ascertains the quality of the InfiniBand interconnect network, and (ii) whether it is worthwhile
to use multiple processors and cores on each node, which analyzes the quality of the architecture of the nodes and
in turn guides the scheduling policy (whether it should be default to use all cores on a node or not).

(i) Reading along each row of Table 4.1, speedup in proportion to the number of nodes used is observable. This
is to be discussed in detail in the following in terms of the number and pattern of parallel processes. As
inherent to real experimentations, the results show some experimental variability with better-than-optimal
results in some entries. But more remarkably, there is nearly optimal halving of the execution time even
from 16 to 32 and from 32 to 64 nodes in the final columns of the table for the 4,096× 4,096, 8,192× 8,192,
and 16,384× 16,384 meshes. These excellent results successfully demonstrate the scalability of the algorithm
and its implementation up to very large numbers of nodes as well as highlight the quality of the new quad-data
rate InfiniBand interconnect network.

(ii) To analyze the effect of running 1, 2, 4, or 8 parallel processes per node, we compare the results column-wise in
each sub-table. It is apparent that the execution time of each problem is in fact roughly halved with doubling
the numbers of processes per node. This is an excellent result, as a slow-down is more typical traditionally on
multi-processor nodes. These results confirm that it is not just effective to use both processors on each node,
but also to use all cores of each quad-core processor simultaneously. Roughly, this shows that the architecture
of the IBM nodes purchased in 2009 has sufficient capacity in all vital components to avoid creating any
bottlenecks in accessing the memory of the node that is shared by the processes. These results thus justify
the purchase of compute nodes with two processors (as opposed to one processor) and of multi-core processors
(as opposed to single-core processors). Moreover, these results guide the scheduling policy implemented on
the cluster: On the one hand, it is not disadvantageous to run several of serial jobs simultaneously on one
node. On the other hand, for jobs using several nodes, it is advantageous to make use of all cores on all nodes
reserved by the scheduler.

5

Table 4.1: Wall clock time in HH:MM:SS for the code incorporating the non-blocking MPI communication com-
mands running on tara for the solution of elliptic problems on N × N meshes using 1, 2, 4, 8, 16, 32, and 64
compute nodes with 1, 2, 4 and 8 processes per node.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:19 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01
2 processes per node 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01
4 processes per node 00:00:06 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:21 00:01:22 00:00:43 00:00:19 00:00:08 00:00:05 00:00:03
2 processes per node 00:01:24 00:00:42 00:00:19 00:00:08 00:00:04 00:00:03 00:00:02
4 processes per node 00:00:49 00:00:30 00:00:15 00:00:05 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:41 00:00:21 00:00:09 00:00:03 00:00:01 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:18:43 00:09:45 00:06:21 00:03:04 00:01:35 00:00:40 00:00:18
2 processes per node 00:10:28 00:05:40 00:02:51 00:01:26 00:00:39 00:00:17 00:00:10
4 processes per node 00:06:35 00:03:33 00:01:58 00:00:57 00:00:35 00:00:11 00:00:05
8 processes per node 00:05:30 00:02:46 00:01:24 00:00:42 00:00:19 00:00:07 00:00:03

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:18:51 01:23:50 00:50:37 00:25:25 00:12:37 00:06:40 00:03:41
2 processes per node 01:22:42 00:43:16 00:22:28 00:11:10 00:05:47 00:02:56 00:01:22
4 processes per node 00:51:57 00:28:10 00:15:23 00:09:02 00:03:53 00:02:44 00:01:17
8 processes per node 00:44:46 00:22:33 00:11:27 00:05:44 00:02:56 00:01:29 00:00:40

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:24:11 10:33:01 06:23:30 03:35:18 01:47:17 00:55:02 00:28:07
2 processes per node 10:32:19 05:16:17 02:48:07 01:32:45 00:46:40 00:23:26 00:11:50
4 processes per node 06:48:58 03:43:56 01:56:35 00:59:25 00:30:30 00:17:31 00:09:08
8 processes per node 06:06:07 03:03:01 01:32:33 00:46:00 00:23:17 00:11:45 00:06:07

In essence, the run times for the finer meshes observed for serial runs in Table 3.1 brought out one key motivation
for parallel computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced
by spreading the work across a group of parallel processes. More precisely, the ideal behavior of code for a fixed
problem size using p parallel processes is to do the job p times faster. If Tp(N) denotes the wall clock time for
a problem of a fixed size parameterized by N using p processes, then the quantity Sp = T1(N)/Tp(N) measures
the speedup of the code from one to p processes, whose optimal value is bounded by p. The efficiency defined as
Ep = Sp/p characterizes in relative terms how close a run with p parallel processes is to this optimal value, for
which Ep = 1. The behavior described here for speedup for a fixed problem size is known as strong scalability of
parallel code.

Table 1.1 in the report [4] using a completely separate code shows the corresponding results as Table 4.1 in
this report using a new implementation of the algorithm. The serial results (1 process on 1 node in Table 4.1) are
about twice as fast with the new code, as already noted in the context of Table 3.1. For all other combinations
of processes per node and nodes, it is also true that the new code is faster, in many cases significantly. However,
the speedup decreases from its maximum of about 2.0 for the serial code, when the number of processes per node
increase as well as when the number of nodes increase.

To further study the performance of the new code implementation, we reformat the obtained run times resulting
in four groups of tables to study the speedup and efficiency of the code by the number of parallel processes.
Accordingly, after several runs for each case and recording the maximum run time, Tables 4.2, 4.3, 4.4, and 4.5
tabulate the results for several runs, with 1, 2, 4, and 8 processes per node (whenever possible), respectively. The
corresponding tables in [4] are Tables 4.1, 4.2, 4.3, and 4.5, respectively; notice the different numbering schemes
for corresponding results. Comparing Tables 4.2 and 4.3 of this report to Tables 4.1 and 4.2 of [4], respectively,
and also using the associated plots in corresponding figures, shows comparable observed speedup and efficiency.

6

However, comparing Tables 4.4 and 4.5 of this report to Tables 4.3 and 4.5 of [4], respectively, and also using the
associated plots in corresponding figures, shows degraded speedup and efficiency for the new code; but recall again
that their absolute run times are always better than those of the code using for [4]. These results demonstrate that
subtle differences in ordering of loops with or without if statements inside of them can make significant difference
in run times.

Table 4.2: Performance of non-blocking MPI communication on tara by number of processes used with 1 process
per node, except for p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00 00:00:00
2048 00:02:21 00:01:22 00:00:43 00:00:19 00:00:08 00:00:05 00:00:03 00:00:02 00:00:01 00:00:01
4096 00:18:43 00:09:45 00:06:21 00:03:04 00:01:35 00:00:40 00:00:18 00:00:10 00:00:05 00:00:03
8192 02:18:51 01:23:50 00:50:37 00:25:25 00:12:37 00:06:40 00:03:41 00:01:22 00:01:17 00:00:40

16384 18:24:11 10:33:01 06:23:30 03:35:18 01:47:17 00:55:02 00:28:07 00:11:50 00:09:08 00:06:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0478 4.7778 9.5945 14.2054 15.6180 19.8336 23.5534 48.3816 110.8834
2048 1.0000 1.7108 3.2457 7.3422 16.7593 29.7518 43.8392 60.6864 113.2068 129.6279
4096 1.0000 1.9213 2.9491 6.0913 11.8661 28.1120 62.8595 115.2729 206.6333 347.2978
8192 1.0000 1.6564 2.7433 5.4640 11.0072 20.8098 37.7515 102.0918 107.5759 207.6313

16384 1.0000 1.7443 2.8792 5.1286 10.2916 20.0657 39.2785 93.3231 120.9622 180.5992

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0239 1.1945 1.1993 0.8878 0.4881 0.3099 0.1840 0.1890 0.2166
2048 1.0000 0.8554 0.8114 0.9178 1.0475 0.9297 0.6850 0.4741 0.4422 0.2532
4096 1.0000 0.9606 0.7373 0.7614 0.7416 0.8785 0.9822 0.9006 0.8072 0.6783
8192 1.0000 0.8282 0.6858 0.6830 0.6879 0.6503 0.5899 0.7976 0.4202 0.4055

16384 1.0000 0.8722 0.7198 0.6411 0.6432 0.6271 0.6137 0.7291 0.4725 0.3527

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 4.1: Performance of non-blocking MPI communication on tara by number of processes used with 1 process
per node, except for p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

7

Table 4.3: Performance of non-blocking MPI communication on tara by number of processes used with 2 processes
per node, except for p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00 00:00:00
2048 00:02:21 00:01:24 00:00:42 00:00:19 00:00:08 00:00:04 00:00:03 00:00:02 00:00:01 00:00:01
4096 00:18:43 00:10:28 00:05:40 00:02:51 00:01:26 00:00:39 00:00:17 00:00:10 00:00:05 00:00:03
8192 02:18:51 01:22:42 00:43:16 00:22:28 00:11:10 00:05:47 00:02:56 00:01:22 00:01:17 00:00:40

16384 18:24:11 10:32:19 05:16:17 02:48:07 01:32:45 00:46:40 00:23:26 00:11:50 00:09:08 00:06:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0756 5.1020 10.1391 15.6894 20.7131 24.4699 23.5534 48.3816 110.8834
2048 1.0000 1.6674 3.3299 7.3610 17.5143 32.4615 43.9981 60.6864 113.2068 129.6279
4096 1.0000 1.7890 3.3037 6.5779 13.0559 28.5507 65.0924 115.2729 206.6333 347.2978
8192 1.0000 1.6789 3.2090 6.1789 12.4275 23.9796 47.3083 102.0918 107.5759 207.6313

16384 1.0000 1.7463 3.4911 6.5680 11.9045 23.6653 47.1101 93.3231 120.9622 180.5992

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0378 1.2755 1.2674 0.9806 0.6473 0.3823 0.1840 0.1890 0.2166
2048 1.0000 0.8337 0.8325 0.9201 1.0946 1.0144 0.6875 0.4741 0.4422 0.2532
4096 1.0000 0.8945 0.8259 0.8222 0.8160 0.8922 1.0171 0.9006 0.8072 0.6783
8192 1.0000 0.8394 0.8023 0.7724 0.7767 0.7494 0.7392 0.7976 0.4202 0.4055

16384 1.0000 0.8731 0.8728 0.8210 0.7440 0.7395 0.7361 0.7291 0.4725 0.3527

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 4.2: Performance of non-blocking MPI communication on tara by number of processes used with 2 processes
per node, except for p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

8

Table 4.4: Performance of non-blocking MPI communication on tara by number of processes used with 4 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512
which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:06 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:02:21 00:01:24 00:00:49 00:00:30 00:00:15 00:00:05 00:00:02 00:00:01 00:00:01 00:00:01
4096 00:18:43 00:10:28 00:06:35 00:03:33 00:01:58 00:00:57 00:00:35 00:00:11 00:00:05 00:00:03
8192 02:18:51 01:22:42 00:51:57 00:28:10 00:15:23 00:09:02 00:03:53 00:02:44 00:01:17 00:00:40

16384 18:24:11 10:32:19 06:48:58 03:43:56 01:56:35 00:59:25 00:30:30 00:17:31 00:09:08 00:06:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0756 3.3051 8.4360 21.8697 38.4454 57.9093 60.1108 48.3816 110.8834
2048 1.0000 1.6674 2.8596 4.6569 9.6490 28.8742 72.6564 96.8552 113.2068 129.6279
4096 1.0000 1.7890 2.8459 5.2819 9.5147 19.7122 31.8089 103.8170 206.6333 347.2978
8192 1.0000 1.6789 2.6724 4.9290 9.0217 15.3799 35.7861 50.7585 107.5759 207.6313

16384 1.0000 1.7463 2.6999 4.9309 9.4717 18.5816 36.2067 63.0422 120.9622 180.5992

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0378 0.8263 1.0545 1.3669 1.2014 0.9048 0.4696 0.1890 0.2166
2048 1.0000 0.8337 0.7149 0.5821 0.6031 0.9023 1.1353 0.7567 0.4422 0.2532
4096 1.0000 0.8945 0.7115 0.6602 0.5947 0.6160 0.4970 0.8111 0.8072 0.6783
8192 1.0000 0.8394 0.6681 0.6161 0.5639 0.4806 0.5592 0.3966 0.4202 0.4055

16384 1.0000 0.8731 0.6750 0.6164 0.5920 0.5807 0.5657 0.4925 0.4725 0.3527

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 4.3: Performance of non-blocking MPI communication on tara by number of processes used with 4 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512
which uses 8 processes per node.

9

Table 4.5: Performance of non-blocking MPI communication on tara by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:06 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:02:21 00:01:24 00:00:49 00:00:41 00:00:21 00:00:09 00:00:03 00:00:01 00:00:01 00:00:01
4096 00:18:43 00:10:28 00:06:35 00:05:30 00:02:46 00:01:24 00:00:42 00:00:19 00:00:07 00:00:03
8192 02:18:51 01:22:42 00:51:57 00:44:46 00:22:33 00:11:27 00:05:44 00:02:56 00:01:29 00:00:40

16384 18:24:11 10:32:19 06:48:58 06:06:07 03:03:01 01:32:33 00:46:00 00:23:17 00:11:45 00:06:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0756 3.3051 4.5320 14.0793 32.4655 57.5018 86.4067 110.0752 110.8834
2048 1.0000 1.6674 2.8596 3.4148 6.8216 16.1720 48.5512 108.1860 175.5163 129.6279
4096 1.0000 1.7890 2.8459 3.4069 6.7591 13.3113 26.4742 60.6992 169.5317 347.2978
8192 1.0000 1.6789 2.6724 3.1021 6.1556 12.1351 24.1976 47.3406 93.4859 207.6313

16384 1.0000 1.7463 2.6999 3.0159 6.0332 11.9313 24.0014 47.4136 94.0371 180.5992

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0378 0.8263 0.5665 0.8800 1.0145 0.8985 0.6751 0.4300 0.2166
2048 1.0000 0.8337 0.7149 0.4268 0.4263 0.5054 0.7586 0.8452 0.6856 0.2532
4096 1.0000 0.8945 0.7115 0.4259 0.4224 0.4160 0.4137 0.4742 0.6622 0.6783
8192 1.0000 0.8394 0.6681 0.3878 0.3847 0.3792 0.3781 0.3698 0.3652 0.4055

16384 1.0000 0.8731 0.6750 0.3770 0.3771 0.3729 0.3750 0.3704 0.3673 0.3527

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 4.4: Performance of non-blocking MPI communication on tara by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
uses 4 processes per node.

10

5 Performance Studies on tara with Blocking MPI Communication
Commands

The goal of this section is to compare the performance of blocking and non-blocking MPI communication commands
on the cluster tara. This study is analogous to the previous section, but this time the blocking MPI communication
commands are used instead of the non-blocking ones. The results reported in Table 3.1 will be unchanged since the
serial runs in effect would not need any communication between processes as only a single computational process
will be available.

Table 5.1 in the following summarizes the exhaustive timing results for our new studies, analogous to Table 4.1
in the previous section. Reading the data row-wise (varying number of nodes) or column-wise (varying processes
per node), we again observe excellent scalability for small number of processes, roughly 64 processes.

Tables 5.2 through 5.5 and their corresponding figures show detailed performance results by number of parallel
process using blocking MPI commands; they contrast to Tables 4.2 through 4.5 and their corresponding figures in
the previous section using non-blocking MPI commands. For small number of processes acting on any arrangement
of 1, 2, 4 and 8 processes per node, the results are quite similar. However, starting from using 128 processes, a close
inspection reveals a considerably slower performance of the code when using blocking MPI commands. Comparison
of all corresponding figures, both the speedup and the efficiency plots, brings out this difference and highlight that
the result depends on the number of processes, for any arrangement of nodes and processes per node. As the raw
timing results show, the speed advantage is sometimes a factor 2.0 or similar, but ranges up to an extreme case of
a factor 5.0 or more for 512 processes and the finer meshes. In summary, we see that the code using non-blocking
MPI commands is faster than using blocking MPI commands for any number of processes, but that it may be
significantly faster when using large numbers or processes.

Table 5.1: Wall clock time in HH:MM:SS for the code incorporating the blocking MPI communication commands
running on tara for the solution of elliptic problems on N × N meshes using 1, 2, 4, 8, 16, 32, and 64 compute
nodes with 1, 2, 4 and 8 processes per node.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:19 00:00:09 00:00:04 00:00:02 00:00:02 00:00:02 00:00:02
2 processes per node 00:00:09 00:00:04 00:00:02 00:00:02 00:00:02 00:00:02 00:00:05
4 processes per node 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:02 00:00:04
8 processes per node 00:00:04 00:00:01 00:00:01 00:00:01 00:00:02 00:00:03 00:00:07

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:21 00:01:21 00:00:42 00:00:22 00:00:10 00:00:08 00:00:11
2 processes per node 00:01:24 00:00:43 00:00:19 00:00:09 00:00:06 00:00:08 00:00:11
4 processes per node 00:00:49 00:00:27 00:00:18 00:00:06 00:00:05 00:00:07 00:00:12
8 processes per node 00:00:41 00:00:22 00:00:10 00:00:06 00:00:06 00:00:10 00:00:20

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:18:43 00:11:15 00:06:32 00:02:51 00:01:37 00:00:54 00:00:39
2 processes per node 00:10:18 00:05:41 00:02:54 00:01:30 00:00:46 00:00:32 00:00:36
4 processes per node 00:06:41 00:03:14 00:02:03 00:01:01 00:00:42 00:00:31 00:00:41
8 processes per node 00:05:33 00:02:49 00:01:31 00:00:54 00:00:40 00:00:43 00:01:13

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:18:51 01:21:34 00:43:17 00:22:28 00:13:02 00:06:53 00:04:23
2 processes per node 01:19:47 00:44:48 00:22:01 00:11:42 00:06:10 00:03:46 00:03:08
4 processes per node 00:55:47 00:27:40 00:14:48 00:08:01 00:04:36 00:04:14 00:04:03
8 processes per node 00:45:05 00:22:42 00:11:58 00:06:54 00:05:00 00:05:42 00:07:38

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:24:11 09:50:28 06:35:50 02:56:17 01:44:01 00:54:44 00:29:60
2 processes per node 10:12:46 05:18:37 03:04:40 01:33:00 00:46:45 00:25:04 00:17:07
4 processes per node 06:49:13 03:50:17 01:57:49 01:02:01 00:32:26 00:20:39 00:18:53
8 processes per node 06:20:18 03:07:54 01:35:54 00:51:06 00:30:40 00:25:43 00:34:37

11

Table 5.2: Performance of blocking MPI communication on tara by number of processes used with 1 process per
node, except for p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:04 00:00:02 00:00:02 00:00:02 00:00:02 00:00:05 00:00:04 00:00:07
2048 00:02:21 00:01:21 00:00:42 00:00:22 00:00:10 00:00:08 00:00:11 00:00:11 00:00:12 00:00:20
4096 00:18:43 00:11:15 00:06:32 00:02:51 00:01:37 00:00:54 00:00:39 00:00:36 00:00:41 00:01:13
8192 02:18:51 01:21:34 00:43:17 00:22:28 00:13:02 00:06:53 00:04:23 00:03:08 00:04:03 00:07:38

16384 18:24:11 09:50:28 06:35:50 02:56:17 01:44:01 00:54:44 00:29:60 00:17:07 00:18:53 00:34:37

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0436 4.7509 8.6780 11.8713 11.8082 7.8064 4.1192 4.3181 2.8875
2048 1.0000 1.7407 3.3145 6.5368 14.6378 18.0810 12.6030 12.3292 11.5691 7.1043
4096 1.0000 1.6650 2.8664 6.5636 11.5364 20.8757 28.9331 31.4201 27.0805 15.4527
8192 1.0000 1.7024 3.2077 6.1821 10.6569 20.1866 31.7347 44.2010 34.3433 18.1721

16384 1.0000 1.8700 2.7895 6.2637 10.6154 20.1726 36.8082 64.5344 58.4585 31.8928

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0218 1.1877 1.0848 0.7420 0.3690 0.1220 0.0322 0.0169 0.0056
2048 1.0000 0.8704 0.8286 0.8171 0.9149 0.5650 0.1969 0.0963 0.0452 0.0139
4096 1.0000 0.8325 0.7166 0.8205 0.7210 0.6524 0.4521 0.2455 0.1058 0.0302
8192 1.0000 0.8512 0.8019 0.7728 0.6661 0.6308 0.4959 0.3453 0.1342 0.0355

16384 1.0000 0.9350 0.6974 0.7830 0.6635 0.6304 0.5751 0.5042 0.2284 0.0623

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 5.1: Performance of blocking MPI communication on tara by number of processes used with 1 process per
node, except for p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512
which uses 8 processes per node.

12

Table 5.3: Performance of blocking MPI communication on tara by number of processes used with 2 processes per
node, except for p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which
uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:04 00:00:02 00:00:02 00:00:02 00:00:02 00:00:05 00:00:04 00:00:07
2048 00:02:21 00:01:24 00:00:43 00:00:19 00:00:09 00:00:06 00:00:08 00:00:11 00:00:12 00:00:20
4096 00:18:43 00:10:18 00:05:41 00:02:54 00:01:30 00:00:46 00:00:32 00:00:36 00:00:41 00:01:13
8192 02:18:51 01:19:47 00:44:48 00:22:01 00:11:42 00:06:10 00:03:46 00:03:08 00:04:03 00:07:38

16384 18:24:11 10:12:46 05:18:37 03:04:40 01:33:00 00:46:45 00:25:04 00:17:07 00:18:53 00:34:37

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0673 4.9567 9.5368 12.4073 12.0363 11.7986 4.1192 4.3181 2.8875
2048 1.0000 1.6760 3.3056 7.2488 15.2532 21.9114 18.6431 12.3292 11.5691 7.1043
4096 1.0000 1.8190 3.2987 6.4650 12.5138 24.5101 34.7019 31.4201 27.0805 15.4527
8192 1.0000 1.7403 3.0993 6.3075 11.8609 22.4949 36.8857 44.2010 34.3433 18.1721

16384 1.0000 1.8020 3.4656 5.9793 11.8721 23.6155 44.0411 64.5344 58.4585 31.8928

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0336 1.2392 1.1921 0.7755 0.3761 0.1844 0.0322 0.0169 0.0056
2048 1.0000 0.8380 0.8264 0.9061 0.9533 0.6847 0.2913 0.0963 0.0452 0.0139
4096 1.0000 0.9095 0.8247 0.8081 0.7821 0.7659 0.5422 0.2455 0.1058 0.0302
8192 1.0000 0.8702 0.7748 0.7884 0.7413 0.7030 0.5763 0.3453 0.1342 0.0355

16384 1.0000 0.9010 0.8664 0.7474 0.7420 0.7380 0.6881 0.5042 0.2284 0.0623

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 5.2: Performance of blocking MPI communication on tara by number of processes used with 2 processes per
node, except for p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which
uses 8 processes per node.

13

Table 5.4: Performance of blocking MPI communication on tara by number of processes used with 4 processes per
node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which
uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:02 00:00:04 00:00:07
2048 00:02:21 00:01:24 00:00:49 00:00:27 00:00:18 00:00:06 00:00:05 00:00:07 00:00:12 00:00:20
4096 00:18:43 00:10:18 00:06:41 00:03:14 00:02:03 00:01:01 00:00:42 00:00:31 00:00:41 00:01:13
8192 02:18:51 01:19:47 00:55:47 00:27:40 00:14:48 00:08:01 00:04:36 00:04:14 00:04:03 00:07:38

16384 18:24:11 10:12:46 06:49:13 03:50:17 01:57:49 01:02:01 00:32:26 00:20:39 00:18:53 00:34:37

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0673 2.9012 9.3184 18.9362 25.1171 20.4717 8.2387 4.3181 2.8875
2048 1.0000 1.6760 2.8988 5.1483 7.7144 22.5308 31.0336 21.4843 11.5691 7.1043
4096 1.0000 1.8190 2.8044 5.7860 9.1125 18.4090 27.0180 36.1795 27.0805 15.4527
8192 1.0000 1.7403 2.4888 5.0196 9.3855 17.3115 30.1706 32.7799 34.3433 18.1721

16384 1.0000 1.8020 2.6983 4.7949 9.3716 17.8032 34.0535 53.4584 58.4585 31.8928

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0336 0.7253 1.1648 1.1835 0.7849 0.3199 0.0644 0.0169 0.0056
2048 1.0000 0.8380 0.7247 0.6435 0.4822 0.7041 0.4849 0.1678 0.0452 0.0139
4096 1.0000 0.9095 0.7011 0.7233 0.5695 0.5753 0.4222 0.2827 0.1058 0.0302
8192 1.0000 0.8702 0.6222 0.6274 0.5866 0.5410 0.4714 0.2561 0.1342 0.0355

16384 1.0000 0.9010 0.6746 0.5994 0.5857 0.5563 0.5321 0.4176 0.2284 0.0623

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 5.3: Performance of blocking MPI communication on tara by number of processes used with 4 processes per
node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which
uses 8 processes per node.

14

Table 5.5: Performance of blocking MPI communication on tara by number of processes used with 8 processes per
node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses
4 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:19 00:00:09 00:00:07 00:00:04 00:00:01 00:00:01 00:00:01 00:00:02 00:00:03 00:00:07
2048 00:02:21 00:01:24 00:00:49 00:00:41 00:00:22 00:00:10 00:00:06 00:00:06 00:00:10 00:00:20
4096 00:18:43 00:10:18 00:06:41 00:05:33 00:02:49 00:01:31 00:00:54 00:00:40 00:00:43 00:01:13
8192 02:18:51 01:19:47 00:55:47 00:45:05 00:22:42 00:11:58 00:06:54 00:05:00 00:05:42 00:07:38

16384 18:24:11 10:12:46 06:49:13 06:20:18 03:07:54 01:35:54 00:51:06 00:30:40 00:25:43 00:34:37

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0673 2.9012 4.5282 12.8586 22.5093 20.6651 10.8090 5.8529 2.8875
2048 1.0000 1.6760 2.8988 3.3957 6.5054 14.0736 25.5167 23.9379 13.7896 7.1043
4096 1.0000 1.8190 2.8044 3.3745 6.6621 12.3505 20.6816 27.7392 26.3148 15.4527
8192 1.0000 1.7403 2.4888 3.0803 6.1185 11.6024 20.0994 27.7469 24.3668 18.1721

16384 1.0000 1.8020 2.6983 2.9035 5.8764 11.5145 21.6090 36.0138 42.9504 31.8928

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0336 0.7253 0.5660 0.8037 0.7034 0.3229 0.0844 0.0229 0.0056
2048 1.0000 0.8380 0.7247 0.4245 0.4066 0.4398 0.3987 0.1870 0.0539 0.0139
4096 1.0000 0.9095 0.7011 0.4218 0.4164 0.3860 0.3231 0.2167 0.1028 0.0302
8192 1.0000 0.8702 0.6222 0.3850 0.3824 0.3626 0.3141 0.2168 0.0952 0.0355

16384 1.0000 0.9010 0.6746 0.3629 0.3673 0.3598 0.3376 0.2814 0.1678 0.0623

100 200 300 400 500

100

200

300

400

500

Number of processes

O
bs

er
ve

d
sp

ee
du

p

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
optimal value

Observed speedup Sp Observed efficiency Ep

Figure 5.4: Performance of blocking MPI communication on tara by number of processes used with 8 processes per
node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses
4 processes per node.

15

6 Conclusions

Both the old code used for [4] and the new code used for this report show very good performance on tara. This
observation characterizes the efficiency and appropriateness of the architecture of the cluster tara and the usefulness
and capability of the InfiniBand interconnect network. The new coding effort clearly shows an improvement of
speed for any pattern and arrangement of processes per node, with the extreme case of speedup by a factor of
about 2.0 for the serial code. According to our experimentation with the two versions of the new code, i.e., using
blocking or non-blocking MPI communication commands for the inevitable data exchange between the processes,
it appears that non-blocking commands eventually significantly outperform blocking ones for large numbers of
processes, for any pattern and arrangement of processes between 1 to 8 processes per node. It was also justified
that the non-blocking version of the code scales well even to 512 processes for 1, 2, 4, and 8 processes per node.

References

[1] Kevin P. Allen. A parallel matrix-free implementation of the conjugate gradient method for the Poisson equation.
Senior thesis, University of Maryland, Baltimore County, 2003.

[2] Kevin P. Allen. Efficient parallel computing for solving linear systems of equations. UMBC Review: Journal of
Undergraduate Research and Creative Works, vol. 5, pp. 8–17, 2004.

[3] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical Report HPCF–2008–1,
UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2008.

[4] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem on the
cluster tara. Technical Report HPCF–2010–2, UMBC High Performance Computing Facility, University of
Maryland, Baltimore County, 2010.

[5] David S. Watkins. Fundamentals of Matrix Computations. Wiley, second edition, 2002.

[6] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[7] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[8] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied
Mathematics. Cambridge University Press, second edition, 2009.

16

	Introduction
	The Elliptic Test Problem
	Convergence Study for the Model Problem
	Performance Studies on tara with Non-Blocking MPI Communication Commands
	Performance Studies on tara with Blocking MPI Communication Commands
	Conclusions

