
Numerical Methods to Solve 2-D and 3-D Elliptic Partial
Differential Equations Using Matlab on the Cluster maya

David Stonko, Samuel Khuvis, and Matthias K. Gobbert (gobbert@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2014–9, www.umbc.edu/hpcf > Publications

Abstract

Discretizing the elliptic Poisson equation with homogeneous Dirichlet boundary conditions by the
finite difference method results in a system of linear equations with a large, sparse, highly structured
system matrix. It is a classical test problem for comparing the performance of direct and iterative linear
solvers. We compare in this report Gaussian elimination applied to a dense system matrix, Gaussian
elimination applied to a sparse system matrix, the classical iterative methods of Jacobi, Gauss-Seidel,
and SOR, and finally, the conjugate gradient method without preconditioning, and the conjugate gra-
dient method with SSOR preconditioning. The key conclusions are: (i) The comparison of dense and
sparse storage shows the crucial importance of sparse storage mode to solve problems even of interme-
diate size. (ii) The conjugate gradient method outperforms the classical iterative methods in all cases.
(iii) Preconditioning can speed up the conjugate gradient method by an order of magnitude. (iv) We
find that in two dimensions Gaussian elimination of a sparse system matrix is the fastest method, but
runs out of memory eventually, where iterative methods can still solve the problem, but at the price
of possibly extremely long run times. (v) However, in three dimensions, the iterative methods can be
significantly faster than Gaussian elimination and can solve significantly larger problems. This explains
the importance of iterative methods for three-dimensional problems.

Key words. Poisson Equation, Finite Difference Method, Iterative Methods, Matlab.

AMS subject classifications (2010): 65Y20, 65F50, 65M06, 65M12.

1 Introduction

Finding numerical methods to solve partial differential equations is an important and highly active field of
research. There are numerous ways to approximate such a solution. However, significant differences exist in
the sophistication of these methods, the speed at which these methods converge, how much memory these
methods utilize during their computation, and in the programmability of these methods across different
numerical software programs. In order to quantify some these differences, Coman, Brewster, et al. [1] did
work to compare several numerical computation programs, including Matlab (www.mathworks.com) using
various test problems. They also provide their driver code for some of the methods we test in this article,
which we use with modification in the computational described in this article. One of the test problems they
looked at was finding a solution to the Poisson equation in two dimensions. They computed the solution
using Gaussian elimination and the conjugate gradient method and compared the quality of these methods
and their efficiency.

In this article, we utilize the same test problem, except we use both the two- and three-dimensional
versions, and we compare not only the methods of Gaussian elimination and conjugate gradient, but also
several additional direct and iterative numerical methods, all of which have been programmed in Matlab.
Ultimately, we will draw conclusions about the accuracy and the convergence rates of these methods, which
will equip us with the knowledge of how these methods compare to one another so that we can predict
how they would perform with new problems in the future. Specifically, the numerical methods we use are
(1) Gaussian elimination applied to both a dense system matrix and a sparse system matrix, (2) the classical
iterative methods including the Jacobi method, the Gauss-Seidel method, and the SOR(ωopt) method, and
(3) the conjugate gradient method without and with SSOR(ωopt) preconditioning. We will compare these
methods on the test problem in both two and three dimensions.

1

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary
core facility for scientific computing and research on parallel algorithms at UMBC. The current machine in
HPCF is the 240-node distributed-memory cluster maya. The newest part of the cluster are the 72 nodes with
two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes
with two state-of-the-art NVIDIA K20 GPUs (graphics processing units) designed for scientific computing
and 19 hybrid nodes with two cutting-edge 60-core Intel Phi 5110P accelerators. All nodes are connected
via InfiniBand to a central storage of more than 750 TB.

Throughout this analysis, we utilize Matlab R2014a (8.3.0.532). Unless otherwise stated, results through-
out this report are run on one of the compute nodes with two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge
CPUs and 64 GB memory. This investigation is an extension of previous work done on a commodity lap-
top [5].

This report is organized as follows: Sections 2 and 3 introduce the Poisson equation and its discretization
by finite differences, respectively, that yields the system of linear equations used as test problem for the direct
and iterative linear solvers in the following sections. The following Sections 4, 5, and 6 present the results
for Gaussian elimination, the classical iterative methods, and the conjugate gradient method, respectively,
in the two-dimensional case. Then, Section 7 collects the results for all methods in the three-dimensional
case. Finally, Section 8 compares the way in which the iterative methods converge to the tolerance, and
Section 9 collects the conclusions for all methods considered in this report.

2 The Poisson Equation

For our test problem, we consider the classical problem of solving the two-dimensional Poisson equation with
homogeneous Dirichlet boundary conditions

−4u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where ∂Ω denotes the boundary of the domain of Ω, the Laplace operator is defined as 4u = ∂2u
∂x2 + ∂2u

∂y2

in two dimensions with the right-hand side given by the function

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy)

on the unit square domain Ω = (0, 1)× (0, 1) ⊂ R2.
This problem has been designed so that we can obtain a closed-form solution which we can compare to

our computed numerical solutions. This solution is given by

u(x, y) = sin2(πx) sin2(πy), (2.2)

in two dimensions. Figure 2.1 shows the true solution of the two-dimensional Poisson equation plotted over
Ω.

In short, the problem is to solve an elliptical partial differential equation that is linear with constant
coefficients, which we consider on a square domain in two dimensions. This problem is open to analytical
solutions by using techniques such as separation of variables and Fourier expansions, as provided above.
However, it is also a classical model problem for numerical methods research for partial differential equations,
where you can use the true solution in (2.2) to check our numerical solutions for accuracy and to compute
its error.

We perform analogous analysis on the three-dimensional system with domain Ω given by the unit cube.
Here we have that the right-hand size is given by the function

f(x, y, z) = −2π2
(
cos(2πx) sin2(πy) sin2(πz) + sin2(πx) cos(2πy) sin2(πz)2 + sin2(πx) sin2(πy) cos(2πz)

)
and that the true solution is given by

u(x, y, z) = sin2(πx) sin2(πy) sin2(πz).

2

Figure 2.1: True solution of the two-dimensional Poisson equation (2.2).

3 The Finite Difference Method

The finite difference methods are numerical methods which are used to approximate the solutions of differ-
ential equations. On our test problem, this method results in a system of linear equations for the unknowns
with a highly structured system matrix with size controlled by the number of mesh points. This property
has made this problem a good test case for numerical methods which find the solution of linear systems of
equations. This classical problem is also studied in [2–4, 6]. Moreover, the system matrix is sparse, which
means it has many zero entries. This enables us to demonstrate the issue of storage requirements of scientific
computing. It is symmetric positive definite, which allows us to use the conjugate gradient method, and
it is also irreducibly diagonally dominant, which guarantees the convergence of our solution for all classical
iterative methods that we employ.

In the next section, we develop the finite difference approximation for the two-dimensional system. With
the previously given definitions for the three-dimensional problem and this development, the analogous setup
for the three-dimensional test problem follows immediately.

3.1 The finite difference method discretization and error

First, we will divide our two-dimensional square domain Ω into a grid of mesh points Ωh = {(xi, yj) = (ih, jh)
for i, j = 0, . . . , N + 1} with an uniform mesh width of h = 1

N+1 . Now we apply the second-order finite
difference approximation to the x- and y-derivatives ∀(xi, yj) ∈ Ωh. Doing so, we obtain the approximations

∂2u

∂x2
(xi, yi) ≈

1
h2

(
u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

)
, (3.1)

∂2u

∂y2
(xi, yi) ≈

1
h2

(
u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

)
. (3.2)

By plugging these into (2.1), and using the boundary conditions defined on ∂Ω we find that

−u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)
h2

− u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)
h2

= fi,j (3.3)

with short-hand notation fi,j = f(xi, yj). By simplifying and plugging back in we find that the problem
becomes the following equations for the approximation ui,j ≈ u(xi, yj)

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = h2fi,j for i, j = 1, ..., N, (3.4)
u0,j = ui,0 = uN+1,j = ui,N+1 = 0, (3.5)

3

by the way that the mesh is defined. This is a set of linear equations in the unknowns ui,j , which can be
organized into a system of linear equations Au = b with N2 equations. Because we know the boundary
values, we have precisely N2 unknowns in the two-dimensional case. The system matrix A ∈ RN2×N2

is
defined as

A =

S −I
−I S −I

.
−I S −I

−I S

 ∈ RN2×N2
, S =

4 −1
−1 4 −1

.
−1 4 −1

−1 4

 ∈ RN×N ,

where I is the identity matrix of size N×N . In the three-dimensional case, it is possible to define the system
matrix A ∈ RN3×N3

recursively in generalizing the above formulation, as specified in [7]. The right hand
side vector b ∈ RN3

is also defined analogously in three dimensions.
Since the aim of this project is to examine and compare numerical methods, we will also need a way to

measure the distance between our numerical solution uh, and the true solution u given in (2.2). We quantify
this error as ||u − uh||L∞(Ω), which is norm of the difference between the true solution and the numerical
solution, as described previously. From analysis of the finite difference method, we expect that this method
will converge so that ||u−uh||L∞(Ω) ≤ Ch2 for some constant C that is not dependent on the mesh width h,
as h goes to 0 [6]. Moreover, for sufficiently small mesh sizes, we expect the ratio of the errors at step size
2h and h to be approximately 4. This can be shown easily:

Ratio =
||u− u2h||L∞(Ω)

||u− uh||L∞(Ω)
≈ C(2h)2

Ch2
≈ 4. (3.6)

Precisely, we utilize the function norm to calculate the distance between the computed solution and the true
solution, which is given by ||u− uh||L∞(Ω) = sup(x,y)∈Ω |u(x, y)− uh(x, y)|. Throughout this article, we will
use || · || to mean this norm. When using these methods to solve our test problem we will also compute this
error, and this ratio to observe how this method works in practice. In future sections we will provide these
data in the tables alongside the calculated solutions.

4 Gaussian elimination

The first numerical method we implement here is Gaussian elimination. We apply this method to a dense
system matrix and sparse system matrix. In Section 3 we described the setup of this system, which we now
use Gaussian elimination to solve. In the first case our system is dense and requires a lot of memory. In the
second case our system is sparse and requires significantly less memory to store it. Here, we will investigate
how this difference in memory requirement impacts numerical performance, and will ultimately see that the
sparse system matrix has a much better capacity to handle system of larger values of N .

4.1 Gaussian elimination applied to a dense system matrix

As we have previously discussed, the system matrix corresponding to this problem is sparse. We set up the
system matrix A and keep it sparse. Then, once A is set up, we use A=full(A) to make the system matrix
dense. We then use code similar to that provided with the technical report on the HPCF webpage from
Coman et al. [1]. The result of this system being solved with Gaussian elimination with incrementally larger
systems is compiled into Table 4.1, and a plot of the numerical solution and corresponding error, is shown
in Figure 4.1. This figure is specifically for N = 32 in the two-dimensional system.

In the top half of Table 4.1 we provide the results for this with increasing values of N in two dimensions.
The first column in this table is N , which is the number of mesh points. The second column is the degrees
of freedom, which is N2 in two dimensions. The third column is the error of the solution that was computed
at the corresponding N compared to the true solution to the equation, which was provided and plotted in
Section 2. As expected, this error decreases as N increases. In fact, the ratio at which the error of each

4

(a) Numerical Solution (b) Numerical Error

Figure 4.1: (a) The numerical solution and (b) the error of the numerical solution to the Poisson equation
with N = 32.

successive run decreases is given in column four of Table 4.1. As expected, this ratio is nearly 4, which is
the analytical solution derived previously in (3.6). The fifth column, C, is the error divided by h2. The last
column is the observed wall clock time that it took for the method to converge. As expected, the runtime
increases each time N is doubled. Additionally, we see that increasing N past 256 causes the computer to
run out of memory in the two-dimensional case.

4.2 Gaussian elimination applied to a sparse system matrix

We now aim to solve the exact same problem that we did in Section 4.1, but now we use a sparse system
matrix so that we can compare the performance and the memory usage between the two options. To do this,
we use the setup of A as described in the previous section, except that we do not make A full (i.e., we do
not change it, and it remains sparse, because it is sparse upon setup).

The results of this method are provided in the second half of Table 4.1. Here, we observe much better
results than we observed in Section 4.1 for the dense system matrix. More specifically, we obtain the same
level of accuracy (and obtain the exact same solutions) as previously, but we do so in a fraction of the time.
Also, we can solve much larger systems. Before, we ran out of memory past N = 256, where here we obtain
results through N = 8192, which is more than an order of magnitude larger.

For N = 8192, 74.6 GB of memory are required. A compute node only has 64 GB of physical memory.
If a job exceeds the 64 GB of physical memory then the node will use swap space. Swap space is a space
on the hard drive in which chunks of memory are copied from physical memory. Since it is located on the
hard drive swap space performs slower than physical memory. This results in slower runtimes when swap
space is used. By running it on a user node with 128 GB of physical memory we can avoid using swap space.
Moreover, the runtime of the sparse system at N = 8192 was about the same as the runtime for N = 256
with the dense system on the compute node and half the runtime on the user node, and hence substantially
better.

We have demonstrated that when using Gaussian elimination, the memory requirement can be a limiting
factor in the viability of the method. We have also shown that a main factor in the speed of these methods
is memory usage. The only difference between these calculations was the sparsity of the matrix and, in turn,
the memory that the system required. Indeed, the sparse system exhibited substantially better performance
due to a smaller memory requirement.

5

2D - Gaussian Elimination applied to a dense system matrix:

N DOF = N2 ||u− uh|| Ratio C Run time (sec.)

32 1024 3.0128e-03 3.7399 3.2809 0.06
64 4096 7.7812e-04 3.8719 3.2876 0.39

128 16384 1.9766e-04 3.9366 3.2890 9.95
256 65536 4.9807e-05 3.9685 3.2897 411.37
512 262144 Out of memory

1024 1048576 Out of memory
2048 4194304 Out of memory
4096 16777216 Out of memory
8192 67108864 Out of memory

16384 268435456 Out of memory

2D - Gaussian Elimination applied to a sparse system matrix:

N DOF = N2 ||u− uh|| Ratio C Run time (s)

32 1024 3.0128e-03 3.7439 3.2809 <0.01
64 4096 7.7812e-04 3.8719 3.2876 0.01

128 16384 1.9766e-04 3.9366 3.2893 0.03
256 65536 4.9807e-05 3.9885 3.2897 0.14
512 262144 1.2500e-05 3.9843 3.2898 0.61

1024 1048576 3.1313e-06 3.9922 3.2899 3.04
2048 4194304 7.8362e-07 3.9961 3.2900 15.98
4096 16777216 1.9607e-07 3.9966 3.2912 70.60
8192 67108864 4.9325e-08 3.9751 3.3109 281.43

16384 268435456 Out of memory

Table 4.1: Numerical results obtained from solving the Poisson equation using Gaussian elimination with
a dense system matrix and a sparse system matrix for various values of N on maya. As N doubles, the
error is approximately quartered, but the runtime increases exponentially. Clearly, Gaussian elimination
with a sparse system matrix is much faster than this method on a dense system matrix. For N = 8192 using
Gaussian Elimination with a sparse system matrix, the job was run on the user node since it requires 74.6
GB of memory. It is also possible to run this on a compute node by using swap space. However, this causes
a significant increase in runtime to 414.93 seconds.

5 Classical Iterative Methods: Jacobi, Gauss-Seidel, and SOR

Another set of methods to solve linear systems of equations is referred to as the classical iterative methods
and they include the Jacobi method, the Gauss-Seidel method, and the Successive Over Relaxation (SOR)
method.

In order to use these iterative methods we developed a Matlab function called classiter. Since each
of these functions can be written in the form as Watkins [6] writes as Mx(k+1) = Nx(k) + b with the
splitting matrix M depending on the method and N = M − A, we are able to set up the splitting ma-
trix for the system depending on the choice of method and then use the same body of code to compute
the iterations. This function takes the system matrix A, right hand side b, initial guess x(0), relaxation
parameter ω, an error tolerance to determine convergence, a limit on the maximum number of iterations
maxit and a parameter imeth which tells the function which method to use. Then, the splitting matrix
is described as follows: for the Jacobi Method, M is defined to be the diagonal elements of the system
matrix A, for the Gauss-Seidel method M is set to the lower triangular entries of A including the diagonal
using the Matlab command M=tril(A) and for the SOR(ωopt) method the splitting matrix is defined to

6

be M=(1/w)*D+(tril(A)-D), where D is a matrix with the diagonal entries of A and zeros elsewhere. As
indicated by the notation of ωopt in SOR(ωopt), we choose the optimal value of the relaxation parameter
ωopt = 2/(1 + sin(πh)), as defined by Yang and Gobbert [7]. The body of the function then computes the
iterates until the method either converges within the error tolerance, or the maximum number of iterations
is reached. This function returns the final iterate x(k), a flag, a number relres which is the final value of the
relative residual ||r(k)||2/||b||2 for r(k) = b−Ax(k), the number of iterations taken as iter, a vector resvec,
which is the vector of residuals such that the (k + 1)-st component is the value of ||r(k)|| for k ranging for
0 to iter. Together, this gives us that the classiter functions can be controlled with a call to Matlab
such as [x,flag,relres,iter,resvec]=classiter(A,b,x0,0,0.05,1000,1) which calls the function with
imeth=1 so it would use Jacobi method to solve the system matrix A with right hand side b and initial guess
x(0).

Now we approach this problem in the same way that we approached it with the previous method using
classiter to solve the same problem as before with each of the classical iterative methods. The top panel of
Table 5.1 shows the results of the Jacobi method on this problem. As previously, the first column represents
the number of mesh points and the second column is the degrees of freedom, DOF = N2, and the third
column is the error of the numerical method, the forth column is the ratio of the error as the mesh size halves
and the fifth column is the constant C = ||u−uh||/h2. The sixth column shows the number of iterations taken
by the method until convergence to the chosen tolerance of 10−6 in the relative residual. The last column is
the wall clock time of each run. We observe that the Jacobi method is slower than previous methods, but
fails to converge in a reasonable amount of time for even intermediate values of N . The second panel of
this table shows the numerical results from the Gauss-Seidel method on solving the Poisson equation for the
same values of N . The Gauss-Seidel method requires about half as many iterations and correspondingly less
time than the Jacobi method. But for larger N , the required numbers of iterations is still unacceptable. The
SOR(ωopt) method has results shown in the third panel of Table 5.1. Here, we observe that this iterative
method converges for higher choice of N and is dramatically faster than the other classical iterative methods.
However, it is still not as fast as or suitable for large values of N as other methods are, such as Gaussian
elimination or even the conjugate gradient method.

6 The Conjugate Gradient Method

We now aim to solve the Poisson equation using the conjugate gradient method. This method is another
alternative to solve systems of linear equations, namely those whose system matrix is symmetric positive
definite, as we have here. This method effectively solves the exact same problem as we examined in the
previous sections, but has been reported to do so with much less computational cost. In this article, we
examine two instances of this method. First, we examine how this method solves our test problem when
implemented without preconditioning, and, second, with preconditioning. One benefit of using this method is
that Matlab has a built in function pcg that implements the conjugate gradient method with preconditioners.

6.1 Conjugate gradient without preconditioning

Since we now aim to solve this system without preconditioning, we can pass Matlab’s pcg function empty
preconditioning matrices and the setup function provided with [1] on the HPCF webpage. The relevant lines
of code in driver_cg.m are

A = setupA(N);
tol = 1.0e-6;
maxit = 99999;
u = zeros(N^2,1);
M1 = [];
M2 = [];
[u,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,u);

7

2D - Jacobi Method:

N DOF = N2 ||u − uh|| Ratio C Iterations Run time (s)

32 1024 3.0114e-03 3.7411 3.2794 2902 0.13
64 4096 7.7673e-04 3.8771 3.2817 11258 1.46

128 16384 1.9626e-04 3.9577 3.2659 44331 17.19
256 65536 4.8397e-05 4.0551 3.1966 175921 235.52
512 262144 1.1089e-05 4.3646 2.9182 700881 4222.18

1024 1048576 1.7182e-06 6.4538 1.8051 2797915 61304.50
4028 4194304 Excessive time requirement
8192 67108864 Excessive time requirement

16384 268435456 Excessive time requirement

2D - Gauss-Seidel Method:

N DOF = N2 ||u − uh|| Ratio C Iterations Run time (s)

32 1024 3.0114e-03 3.7411 3.2795 1452 0.07
64 4096 7.7673e-04 3.8771 3.2817 5630 0.86

128 16384 1.9626e-04 3.9577 3.2659 22166 10.74
256 65536 4.8398e-05 4.0551 3.1966 87962 152.01
512 262144 1.1089e-05 4.3645 2.9182 350442 2621.92

1024 1048576 1.7182e-06 6.4538 1.8052 1398959 41022.65
4028 4194304 Excessive time requirement
8192 67108864 Excessive time requirement

16384 268435456 Excessive time requirement

2D - SOR(ωopt) Method:

N DOF = N2 ||u − uh|| Ratio C Iterations Run time (s)

32 1024 3.0125e-03 3.7401 3.2807 92 0.01
64 4096 7.7785e-04 3.8729 3.2864 181 0.03

128 16384 1.9737e-04 3.9410 3.2845 359 0.20
256 65536 4.9522e-05 3.9856 3.2709 716 1.41
512 262144 1.2214e-05 4.0544 3.2145 1429 11.58

1024 1048576 2.8630e-06 4.2662 3.0080 2861 92.93
2048 4194304 5.5702e-07 5.1399 2.3386 5740 811.30
4096 16777216 4.6471e-07 1.1986 7.8004 11559 6601.23
8192 67108864 3.8580e-07 1.2045 2.5897 23420 53242.47

16384 268435456 Excessive time requirement

Table 5.1: Numerical results obtained from solving the Poisson equation using the Jacobi, Gauss-Seidel, and
SOR(ωopt) in two dimensions on maya. The SOR(ωopt) method converges faster than the Jacobi and Gauss-
Seidel methods on corresponding systems. It also converges in fewer iterations. The Gauss-Seidel method
converges faster than the Jacobi method in terms of wall clock run time and iteration count. Excessive time
requirement corresponds to more than 24 hours wall clock time.

where setupA.m is given in the files on the HPCF webpage. We run these computations with tolerance of
10−6 and provide our results in Table 6.1. The columns here are analogous to those of the previous tables. It
is clear that the conjugate gradient method is able to solve the same size of the problem as the best classical
iterative method, the SOR method, but it did so about twice as fast in all cases.

6.2 Conjugate gradient with SSOR(ωopt) preconditioning

Now we consider the test problem and the preconditioned conjugate gradient method with SSOR(ωopt) as
preconditioner, or PCG-SSOR(ωopt) for short. We choose the optimal relaxation parameter ωopt as defined

8

2D - Conjugate Gradient Method:

N DOF = N2 ||u− uh|| Ratio C Iterations Run time (s)

32 1024 3.0128e-03 3.7399 3.2809 48 0.01
64 4096 7.7812e-04 3.8719 3.2875 96 0.03

128 16384 1.9766e-04 3.9368 3.2891 192 0.13
256 65536 4.9807e-05 3.9899 3.2891 387 0.89
512 262144 1.2494e-05 3.9856 3.2881 783 7.08

1024 1048576 3.1266e-06 3.9961 3.2849 1581 52.73
2048 4194304 7.8019e-07 4.0075 3.2756 3192 441.59
4096 16777216 1.9366e-07 4.0290 3.2701 6452 3402.96
8192 67108864 4.7401e-08 4.0856 3.1818 13033 26633.88

16384 268435456 Excessive time requirement

2D - Preconditioned Conjugate Gradient:

N DOF = N2 ||u− uh|| Ratio C Iterations Run time (s)

32 1024 3.0128e-03 3.7399 3.2809 19 0.01
64 4096 7.7812e-04 3.8719 3.2876 28 0.02

128 16384 1.9766e-04 3.9366 3.2893 40 0.06
256 65536 4.9811e-05 3.9683 3.2899 57 0.29
512 262144 1.2502e-05 3.9842 3.2902 83 1.75

1024 1048576 3.1321e-06 3.9917 3.2906 121 9.61
2048 4194304 7.8394e-07 3.9953 3.2913 176 59.52
4096 16777216 1.9620e-07 3.9961 3.2918 256 331.70
8192 67108864 4.9109e-08 3.9951 3.2964 375 1862.98

16384 268435456 1.2301e-08 3.9923 3.3025 548 11248.57

Table 6.1: Numerical results obtained from solving the Poisson equation with the conjugate gradient method
on maya. For N = 16384 using PCG-SSOR, the job was run on the user node since it requires 87.5 GB of
memory. It is also possible to run this on a compute node by using swap space however the runtime is over
24 hours. Excessive time requirement corresponds to more than 24 hours wall clock time.

by Yang and Gobbert [7], which is given by ωopt = 2/(1+sin(πh)). We use a variation of the splitting matrix
M for SSOR, listed in Watkins [6], namely factored multiplicatively as M = M1M2 with triangular matrices

M1 =
√

ω

2− ω

(
1
ω

D − E

)
D−1/2, M2 =

√
ω

2− ω
D−1/2

(
1
ω

D − F

)
,

where −E is the strictly lower triangular portion of A, and −F is the strictly upper triangular portion of
A such that A = D − E − F . When actually coding this, we want to do it as inexpensively as possible, so
instead of calculating M2, we notice that M2 = Mᵀ

1 for a symmetric matrix A, and we set M2 by just taking
the transpose of M1. Moreover, we do all of these computations by maintaining the sparsity of the matrices
to ensure that we achieve the best computational results. This method is implemented with the following
code:

A = setupA(N);
tol = 1.0e-6;
maxit = 99999;
u = zeros(N^2,1);
w = 2/(1 + sin(pi*h)); % finds omega_opt
d = diag(A); % gets diagonal elements of system Matrix

9

D = spdiags(d,0,N^2,N^2); % puts the diag elements into sparse diag matrix
Ds = spdiags(1./sqrt(d),0,N^2,N^2); % finds D^(-1/2) and maintains sparsity
E = D-tril(A);
M1 = sqrt(w/(2-w))*((1/w)*D-E)*Ds; % calcuates the first precond.
M2 = M1’; % calculates the second, which is just the transpose of the first
[u,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,u);

where setupA(N) sets up our system matrix with size N . Here, pcg performs a linear solve for each M1 and
M2, but does each one cheaply because each is already a triangular matrix. We run this code and attempt
to achieve the best N possible. The results are shown in the bottom panel of Table 6.1

From Table 6.1 we can compare the numerical performance of the conjugate gradient method with and
without preconditioning in two dimensions. We see that the preconditioned conjugate gradient method has a
much lower iteration count, and has a lower runtime than the method without preconditioning. Specifically,
for N = 8192, the CG method took 13,033 iterations and 7 hours and 24 minutes versus the PCG method,
which took only 375 iterations and just 31 minutes. Clearly the additional few lines of code necessary for
preconditioning were worth it. These results also indicate that the conjugate gradient method is slower than
Gaussian elimination for all cases where the latter one does not run out of memory. However, it shows that we
can obtain results for larger N by using the preconditioned conjugate gradient method, even when compared
to Gaussian elimination of a sparse system matrix. Ultimately, this means that while it may converge more
slowly than Gaussian elimination, it may be an important option when looking at larger systems where we
would encounter memory issues.

7 The Three-Dimensional Poisson Equation

Table 7.1 gives the results from solving the three-dimensional problem with Gaussian elimination on a dense
system matrix in the top panel and a sparse system matrix in the bottom panel. These three-dimensional
results are analogous to the data given in Table 4.1 for the two-dimensional system, but with degrees of
freedom N3. Even more so than in two dimensions, we observe better performance in terms of speed and
memory with the sparse system compared to the dense system. Specifically, there was only sufficient memory
to solve the system with N = 32 and it took approximately 1 minute and 3 seconds to do so. However, the
sparse system solved this system in just 0.26 seconds. Additionally, the sparse system matrix was able to be
solved with system size N = 128. Thus, we conclude that sparse storage mode is vital to solving problems
of even intermediate size in three dimensions.

We also solve this system with the iterative methods. Table 7.2 contains the results from solving the
system with the Jacobi, the Gauss-Seidel, and the SOR(ωopt) methods. We observe here that, like in the
two-dimensional case, the SOR(ωopt) method can solve larger systems than Gaussian elimination, because
memory is less of an issue. Moreover, it is actually faster than Gaussian elimination, for instance for N = 128,
SOR(ωopt) takes 29 seconds and Gaussian elimination 513 seconds. Here, SOR(ωopt) solved the system up
to N = 512; Beyond this, a solution took prohibitively long to compute.

From Table 7.3 we can compare the numerical performance of the conjugate gradient method without and
with preconditioning in three dimensions. The first panel shows that already the unpreconditioned method
is faster than SOR in all cases, just like in two dimensions. We see that the conjugate gradient method with
preconditioning has a much lower iteration count, and has a lower runtime than without preconditioning.
Specifically, for N = 512, the CG method took 999 iterations and 1.3 hours versus the PCG method, which
took only 79 iterations and just 17 minutes.

In the three-dimensional case, the use of swap space is not an issue in the same way as in two dimensions.
For Gaussian elimination, the largest N value possible on a compute node, N = 128, requires 65.8 GB of
memory. This requires the use of swap space. However, by running it on the user node with 128 GB of
memory we observe only a negligible improvement in runtime from 513.46 seconds to 467.28 seconds. For
the PCG method the largest N value possible on a compute node, N = 512, requires 59.4 GB of memory so
swap space is not an issue at all in this case and running on the user node will not result in any improvement

10

3D - Gaussian Elimination applied to a dense system matrix:

N DOF = N3 ||u− uh|| Ratio C Run time (sec.)

32 32768 3.0060e-03 3.7164 3.2735 62.93
64 262144 Out of memory

128 2097152 Out of memory
256 16194277 Out of memory
512 134217728 Out of memory

3D - Gaussian Elimination applied to a sparse system matrix:

N DOF = N3 ||u− uh|| Ratio C Run time (s)

32 32768 3.0060e-03 3.7164 3.2735 0.26
64 262144 7.7767e-04 3.8654 3.2856 8.84

128 2097152 1.9763e-04 3.9350 3.2888 513.46
256 16194277 Out of memory
512 134217728 Out of memory

Table 7.1: Numerical results obtained from solving the Poisson equation using Gaussian elimination with
a dense system matrix and a sparse system matrix for various values of N in three dimensions on maya.
Clearly, Gaussian elimination with a sparse system matrix is faster than this method on a dense system
matrix.

3D - Jacobi Method:

N DOF = N3 ||u − uh|| Ratio C Iterations Run time (s)

32 32768 3.0049e-03 3.7174 3.2723 2916 2.51
64 262144 7.7656e-04 3.8695 3.2810 11316 75.87

128 2097152 1.9652e-04 3.9516 3.2703 44566 2389.50
256 16194277 Excessive time requirement
512 134217728 Excessive time requirement

3D - Gauss-Seidel Method:

N DOF = N3 ||u − uh|| Ratio C Iterations Run time (s)

32 32768 3.0049e-03 3.7174 3.2723 1459 1.59
64 262144 7.7656e-04 3.8695 3.2810 5659 49.48

128 2097152 1.9652e-04 3.9516 3.2703 22284 1610.31
256 16194277 Excessive time requirement
512 134217728 Excessive time requirement

3D - SOR(ωopt) Method:

N DOF = N3 ||u − uh|| Ratio C Iterations Run time (s)

32 32768 3.0049e-03 3.7174 3.2723 97 0.12
64 262144 7.7656e-04 3.8695 3.2818 196 1.79

128 2097152 1.9652e-04 3.9516 3.2747 388 28.78
256 16777216 4.9734e-05 3.9723 3.2849 773 476.97
512 134217728 1.2427e-05 4.0019 3.2705 1542 8431.63

Table 7.2: Numerical results obtained from solving the Poisson equation using the Jacobi, Gauss-Seidel, and
SOR(ωopt) in three dimensions on maya. Excessive time requirement corresponds to more than 24 hours
wall clock time.

11

3D - Conjugate Gradient Method:

N DOF = N3 ||u− uh|| Ratio C Iterations Run time (s)

32 32768 3.0060e-03 3.7165 3.2735 61 0.08
64 262144 7.7765e-04 3.8654 3.2856 120 1.13

128 2097152 1.9763e-04 3.9349 3.2888 244 17.30
256 16194277 4.9807e-05 3.9679 3.2897 493 282.19
512 134217728 1.2503e-05 3.9836 3.2904 999 4705.95

3D - Preconditioned Conjugate Gradient:

N DOF = N3 ||u− uh|| Ratio C Iterations Run time (s)

32 32768 3.0060e-03 3.7165 3.2735 19 0.06
64 262144 7.7765e-04 3.8654 3.2857 27 0.71

128 2097152 1.9763e-04 3.9349 3.2889 38 7.66
256 16194277 4.9809e-05 3.9679 3.2898 55 81.82
512 134217728 1.2503e-05 3.9838 3.2905 79 1014.21

Table 7.3: Numerical results obtained from solving the Poisson equation in three dimensions with the
conjugate gradient method on maya.

in runtime. By comparing Table 7.3 to Table 7.1 we are able to make a stronger conclusion than in the
two-dimensional case. Not only is it possible to solver larger systems with CG and PCG than with GE, but
CG and PCG are actually able to solve the problem with a lower runtime. In particular, PCG-SSOR(ωopt)
is faster than Gaussian elimination by nearly two orders of magnitude eventually for N = 128, and it is
therefore clearly the best method to use in the three-dimensional case.

8 Comparison of Iterative Methods

Up to this point we have seen that the more sophisticated iterative methods have converged in fewer and
fewer iterations and typically with a shorter wall clock run time. We now aim to further characterize the
differences in convergence rate in terms of iterations. In order to do so we have taken the vector of residuals,
which are supplied by the pcg and classiter functions return variable resvec from each method with
N = 32 using the setup of our test problem. We then use this vector to calculate the relative residuals by
dividing the residuals by the 2-norm of b. Then, we plot the relative residuals versus the iteration number
and compare the results from each method, which is shown in Figure 8.1. Here we have two visualizations
of this result. Figure 8.1(a) depicts the convergence of each method for the first 2000 iterations and (b)
shows the same data, but only for the first 200 iterations, so that we can take a closer look at the methods
that converge very fast. From Figure 8.1(a) we can see that the Jacobi and Gauss-Seidel methods are much
worse than the other three methods. They clearly take many more iterations to converge. In Figure 8.1(b)
we see that either instance of the conjugate gradient method is better than the SOR(ωopt), and that the
preconditioned conjugate gradient method converges the fastest (in terms of iteration count). This figure
also lends to the observation that there are some maybe unexpected results for the first few iterations. Here
we observe that SOR actually started off slightly worse than the other methods, but quickly improved over
the Jacobi and Gauss-Seidel methods. We also see a bit of fluctuation in the conjugate gradient method,
before it rapidly converges.

We also perform this analysis on the three-dimensional problem, and this is given in Figure 8.2. Here
we observe the same general relationship between the iterative methods. In the right hand panel, which is
the same as the left, but focused in on the lower iterations, we see that the convergence is similar for each
method in the three-dimensional test problem, but that there are some small differences. Namely, that the
conjugate gradient method remains above the SOR method for a bit longer.

12

Figure 8.1: Comparison of iterative methods in two dimensions. (a) The relative residual versus the iteration
number for each of the iterative methods with N = 32 on a semilog plot for 2000 iterations and (b) the same
data as (a), but only the first 200 iterations.

Figure 8.2: Comparison of iterative methods in three dimensions. (a) The relative residual versus the
iteration number for each of the iterative methods with N = 32 on a semilog plot for 2000 iterations and (b)
the same data as (a), but only the first 200 iterations.

9 Conclusions

Through this investigation, we have seen that in both the two- and three-dimensional case, using a sparse
storage mode of the system matrix is needed to solve problems even of intermediate size. Also, we have
shown that in both the two-dimensional and three-dimensional case, the SOR(ωopt) is the best among the
classical iterative methods, but already the (unpreconditioned) conjugate gradient method is twice as fast
in all cases. This explains why modern iterative methods have supplanted the classical iterative methods in
practice. In turn, the conjugate gradient method with SSOR(ωopt) preconditioning is faster by an order of
magnitude than without preconditioning. This explains the crucial importance of preconditioning to improve
the performance of iterative methods.

As for Gaussian elimination, we find very different conclusions in two and three dimensions: In two
dimensions, we observe that Gaussian elimination with sparse storage is the fastest solver, provided that
it does not run out of memory; the iterative methods can eventually solve larger problems than Gaussian
elimination, but not significantly larger ones and at the price of extremely long run times, even for the best

13

iterative method tests, PCG-SSOR(ωopt). In three dimensions, the difference with respect to problem size
solved is more significant, with iterative methods being able to handle significantly larger problems than
Gaussian elimination, and moreover the iterative methods are faster than Gaussian elimination, with PCG-
SSOR(ωopt) nearly two orders of magnitude. This explains the importance of iterative methods to solve
three-dimensional problems.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant
nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional
substantial support from the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf
for more information on HPCF and the projects using its resources. This project began as the class project
of the first author in Math 630 Numerical Linear Algebra in Spring 2014 at UMBC. It is a heavily modified
version of that report [5], which considered the same test problem on a commodity laptop. The second
author acknowledges financial support as HPCF RA.

References

[1] Ecaterina Coman, Matthew W. Brewster, Sai K. Popuri, Andrew M. Raim, and Matthias K. Gobbert.
A comparative evaluation of Matlab, Octave, FreeMat, Scilab, R, and IDL on tara. Technical Re-
port HPCF–2012–15, UMBC High Performance Computing Facility, University of Maryland, Baltimore
County, 2012.

[2] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[3] Anne Greenbaum. Iterative Methods for Solving Linear Systems, vol. 17 of Frontiers in Applied Mathe-
matics. SIAM, 1997.

[4] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in
Applied Mathematics. Cambridge University Press, 1996.

[5] David Stonko. Numerical methods to solve 2-D and 3-D elliptical partial differential equation using
Matlab, 2014. Department of Mathematics and Statistics, University of Maryland, Baltimore County,
http://userpages.umbc.edu/∼dstonko1/ClassProject 630.pdf.

[6] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

[7] Shiming Yang and Matthias K. Gobbert. The optimal relaxation parameter for the SOR method applied
to the Poisson equation in any space dimensions. Appl. Math. Lett., vol. 22, pp. 325–331, 2009.

14

